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The present article establishes a general theory of frictional moving contact of
orthotropic materials indented by a moving rigid punch with various punch profiles.
The punch moves to the right or left at a constant speed with the shear stress arising
inside the contact region. The motion should be subsonic. By using Galilean trans-
formation and Fourier transform, a singular integral equation of the second kind is
obtained, solution of which has a non-square-root or unconventional singularity. Nu-
merical results are presented to show the influences of relative moving velocity and
the friction coefficient on surface in-plane stress for each case of the four types of
punches, which demonstrates that the surface crack initiation and propagation in
load transfer components more likely occur at the trailing edge. The present theory
provides a basis for explaining the surface damage mechanism of orthotropic materi-
als under an indentation loading and for exploiting the physics behind the different
punch profiles.
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1. Introduction

In the recent decade there has been an increasing development of com-
posite materials in many engineering applications, for example in construction
sector. Because of the nature of the techniques used in processing, like the plasma
spray technique [1] and electron beam physical vapor deposition method [2], the
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composite materials are seldom isotropic. Thus, the inherent orthotropy should
be considered and the mechanical behavior characteristics of orthotropic mate-
rials have been the subject of intense research. To accurately determine their
mechanical properties is vital for orthotropic materials’ applications.

Indentation techniques are ways to characterize material properties. Thus,
the indentation problems have attracted attention of many engineers and sci-
entists. For static indentation problems involving isotropic materials, a detailed
description and review can be found in [3–6]. Studies of indentation problems
in the non-isotropic materials were also considered. For early work about static
contact problems of orthotropic materials, such as those presented by Sveklo

(1964 and 1970), Willis (1966), Kim and Suncheleev (1970), one may refer
to [4] (p. 579). Shi et al. [7] proposed a numerical method for the contact problem
for orthotropic materials with the surface of the half-space parallel to two of the
axes of material symmetry. Swanson [8] showed how stresses and deformations
can be determined throughout the contact region for an orthotropic half-space.
Later, Swanson [9] developed an approach to determine the entire stress, strain
and deformation in orthotropic plates of finite thickness. In the above-mentioned
papers involving contact mechanics, the punch indenting on the materials was
stationary and the punch profiles were usually only flat-ended or round-ended.
Besides, most results were given in numerical form.

Dynamic contact problem, in which a deformable half-space is indented by
a moving rigid punch, is an important type of problem in contact mechanics
and tribology [10] and has attracted researchers’ attention. Using the plane-
strain equations of linear elasticity, Craggs and Roberts [11] studied the
moving of a heavy cylinder over the surface of an isotropic elastic half-space
and obtained physically acceptable solutions for sub-Rayleigh and supersonic
moving speeds. Clement [12] extended results of Craggs and Roberts [11]
to deal with the case when the cylinder is moving steadily over an anisotropic
half- space. Georgiadis and Barber [13] examined the elastodynamic super-
Rayleigh/subseismic indentation paradox. Brock [14] conducted a plane-strain
analysis of steady sliding by a smooth rigid punch at any constant speed on
a class of orthotropic or transversely isotropic half-spaces. These studies are
frictionless. Baber and Cominon [15] studied the problem of an elastic cylin-
der rolling with friction on an elastic half-space with constant velocity which
is supersonic with respect to the materials of the two bodies. Considering the
presence of Coulomb friction, Brock [16, 17] dealt with the steady-state slid-
ing contact of thermoelastic half-spaces with only sub-Rayleigh speeds treated.
Later, by allowing it to move with any (constant) speed (subsonic, transonic,
and supersonic), Brock and Georgiadis [18] treated friction-resisted sliding
as a coupled thermoelastic process in the dynamic steady-state. The half-spaces,
in the studies involving dynamic contact with friction, are isotropic and the
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punch is either cylinder or saw-tooth. Using integral transforms and perform-
ing asymptotic analysis, Brock and Georgiadis [19] addressed the frictional,
dynamic steady state response of a coupled thermoelastic transversely isotropic
half-space with multiple-zone, in which a complete solution was constructed for
rounded “W”-shaped rigid indenter depicted by a fourth-order polynomial. Re-
cently, Zhou et al. [20] presented an exact contact analysis for orthotropic ma-
terials under a smoothly moving punch. Despite these work, more efforts need to
be made to offer a deeper insight of how the punch profiles and the friction affect
the dynamic contact between orthotropic materials and moving rigid punch with
various punch profiles.

In this paper, a frictional moving contact model for orthotropic materials
indented by a moving rigid punch with various punch profiles is established. The
punch moves to the right or left at a constant speed and the motion should
be subsonic. The complicated problem is reduced to singular integral equations
of the second kind in terms of unknown contact stress under the punch. For
four general punch profiles, such as a flat, triangular, parabolic or cylindrical
profile, analytical solution of the reduced singular integral equations of the second
kind is obtained, which may provide benchmark for the interpretation of the
surface damage mechanism of general anisotropic materials under an indentation
loading and the physics behind the different punch profiles. Numerical results
show that the relative moving velocity c should be within the interval [0, 1).
The influences of relative moving velocity and the friction coefficient on surface
in-plane stress are detailed. The present results show that the surface crack
initiation and propagation in load transfer components are more likely to occur
at the trailing edge.

2. Problem statement and boundary conditions

The problem under consideration consists of semi-infinite orthotropic mate-
rials in contact with a rigid punch. The stamp may possess various profiles. The
punch moves frictionally to the right or left at a constant speed V , which should
be not larger than the lowest bulk wave velocity as it will be mentioned later.
Inside the contact region,

(2.1) Q = µf · P,

where µf is the friction coefficient, P and Q are the resultant normal and tan-
gential forces acting on the punch, respectively.

Plane strain state is considered. Stress components of the orthotropic mate-
rials can be written as
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(2.2)





σxx

σyy

τxy



 =





C11 C12 C13

C21 C22 C23

C31 C32 C33









∂u/∂x
∂v/∂y

∂u/∂y+∂v/∂x



 ,

where σxx, σyy and τxy are stress components, u and v are elastic displacements,
and the elements Cmn are stiffness coefficients (C13 = C23 = 0, C33 = G0).

Motion equations of free body forces are written as

∂σxx

∂x
+
∂τxy

∂y
= ρ

∂2u

∂t2
,(2.3)

∂τxy

∂x
+
∂σyy

∂y
= ρ

∂2v

∂t2
,(2.4)

where t is the time variable and ρ represents the mass density.
The Galilean transformation is introduced to make the time related problem

tractable

(2.5) X = x∓ V t, Y = y,

where “−” denotes that the punch moves to the right, while “+” to the left. The
translating coordinate system (X,Y ) is attached to the punch. In what follows,
analyses will be conducted in the translating coordinate system (X,Y ).

In the coordinate system (X,Y ), the reduced problems are subjected to the
following boundary conditions:

v(X, 0) =



















−v0, X ∈ [−a, a], for flat,

−v0 +m0X, X ∈ [0, b], for triangular,

−v0 +X2
/

(2R) , X ∈ [0, b], for parabolic,

−v0 +X2
/

(2R) , X ∈ [−a, b], for cylindrical,

(2.6)

σY Y (X, 0) =

{

−p(X), X ∈ [−a, b],
0, X /∈ [−a, b],(2.7)

τXY (X, 0) =

{

−q(X), X ∈ [−a, b],
0, X /∈ [−a, b],(2.8)

where v(X, 0) denotes the penetration depth, which is known a priori,
m0 > 0 and R is the radius of the parabolic or cylindrical punch. The surface
stresses beneath the punch are unknown and are denoted by p(X) and q(X).
In Eq. (2.6), the profile of the cylindrical punch is approximated as a parabola
when a+ b≪ R [6]. The contact region and the physical nature at the edges of
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the parabolic and cylindrical punch are quite different as it will be seen in Sub-
sections 5.3 and 5.4. Equations (2.7) and (2.8) indicate that the contact stress
and shear stress are unknown inside the contact region, while are free outside
the contact region.

Inside the contact region, the Coulomb friction law applies, i.e.,

(2.9) τXY (X, 0) = µfσY Y (X, 0), X ∈ [−a, b].

The equilibrium condition should be satisfied

(2.10)

b
∫

−a

σY Y (X, 0)dX = −P.

Note that in Eqs. (2.6)–(2.10), the contact region is denoted for convenience
as [−a, b] for various punch profiles.

Since the orthotropic materials are modeled as a semi-infinite plane, the
displacements must vanish at infinity. Hence, one has

(2.11) u(X,Y ) → 0, v(X,Y ) → 0,
√

X2 + Y 2 → ∞.

3. Fundamental solutions

Substituting Eq. (2.2) into Eqs. (2.3) and (2.4) in view of Galilean trans-
formation equation (2.5), one can get the governing equations, which have the
following related characteristic equation:

(3.1)

∣

∣

∣

∣

∣

−
(

C11 − C33 · c2
)

+ C33η
2 −i · sgn(ζ) (C12 + C33) η

−i · sgn(ζ) (C12 + C33) η −C33(1 − c2) + C22η
2

∣

∣

∣

∣

∣

= 0,

where sgn(·) is the sign function and i2 = −1.
Equation (3.1) is of quadratic order of η, in which only terms with even

order of η remain. Considering regularity conditions equation (2.11), one may
find that the eigenvalues of Eq. (3.1) take either of the following forms: (A) two
pairs of complex conjugate roots (no purely imaginary roots) or (B) two pairs of

opposite real roots. In what follows, eigenvectors Θn =
[

Θ1n (ζ, Y ) Θ2n (ζ, Y )
]T

(n = 1, 2) will be given for the each case of above eigenvalue distributions.

Case A: two pairs of complex conjugate roots (no purely imaginary roots)

(3.2) η1 = −η4 = θ + i · ϑ, η2 = −η3 = θ − i · ϑ,

where θ > 0 and ϑ is a real number.
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In this case, eigenvectors Θn =
[

Θ1n (ζ, Y ) Θ2n (ζ, Y )
]T

(n = 1, 2) are given
by

(3.3)

Θ1 =

[

cos(|ζ|ϑY )

−i · sgn(ζ)[Re(h(η1)) cos(|ζ|ϑY ) − Im(h(η1)) sin(|ζ|ϑY )]

]

e|ζ|θY ,

Θ2 =

[

sin(|ζ|ϑY )

−i · sgn(ζ)[Im(h(η1)) cos(|ζ|ϑY ) + Re(h(η1)) sin(|ζ|ϑY )]

]

e|ζ|θY ,

where Re(·) and Im(·) denote, respectively, the real part and imaginary part,
and the function h(·) is defined as

(3.4) h(η) =
C33η

2 − C11 + C33c
2

(C12 + C33)η
.

Case B: two pairs of opposite real roots

(3.5) η1 = −η4 = δ1, η2 = −η3 = δ2,

where δn > 0 (n = 1, 2).

In this case, eigenvectors Θn =
[

Θ1n (ζ, Y ) Θ2n (ζ, Y )
]T

(n = 1, 2) are given
by

(3.6) Θn =

[

1
−i · sgn(ζ)h (δn)

]

e|ζ|δnY ,

where h(·) is defined in Eq. (3.4).
Considering fundamental solutions given in Eq. (3.3) or (3.6) leads to the

following expressions for the stresses:

(3.7)







σXX(X,Y )

σY Y (X,Y )

τXY (X,Y )






=

∞
∫

−∞

2
∑

n=1

|ζ|Tn







Ω1n(ζ, Y )

Ω2n(ζ, Y )

Ω3n(ζ, Y )






e−iζXdζ,

where Tn (n = 1, 2) are unknown functions to be determined from boundary
conditions, and known functions Ωmn(ζ, Y ) (m = 1, 2, 3, n = 1, 2) are given in
Appendix.

Considering boundary conditions, one can determine unknown functions Tn

(n = 1, 2). In the following section, integral equations will be established to
determine unknown stresses p(X) and q(X) inside the contact region.
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4. Integral equation

Differentiating the vertical displacement on the surface, one can obtain the
following equation:

(4.1)
∂v (X, 0)

∂X
=

1

π

b
∫

−a

[K1(X,υ)p(υ) +K2(X,υ)q(υ)] dυ.

Due to its role in causing surface damage, the surface in-plane stress can be
given as

(4.2) σXX(X, 0) =
1

π

b
∫

−a

[L1(X,υ)p(υ) + L2(X,υ)q(υ)] dυ.

The kernels Kn(X,υ) and Ln(X,υ)(n = 1, 2) in Eqs. (4.1) and (4.2) are given
as

(4.3)

K1(X,υ) =

∫ ∞

0
N11 sin [ζ (υ −X)] dζ,

K2(X,υ) =

∫ ∞

0
N12 cos [ζ (υ −X)] dζ,

L1(X,υ) =

∫ ∞

0
N21 cos [ζ (υ −X)] dζ,

L2(X,υ) =

∫ ∞

0
N21 sin [ζ (υ −X)] dζ,

where Nmn (m,n = 1, 2) are given as

(4.4)

N11 =

2
∑

n=1

(−1)nMn1Θ2n(ζ, 0),

N12 = i
2

∑

n=1

(−1)nMn2Θ2n(ζ, 0),

N21 =
2

∑

n=1

(−1)nMn1Ω1n(ζ, 0),

N22 = i
2

∑

n=1

(−1)n+1Mn2Ω1n(ζ, 0),

which are independent of ζ and Mmn (m,n = 12) are given in Appendix.
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Equations (4.1) and (4.2) can be rewritten as:

∂v (X, 0)

∂X
= N12 · µf · p(X) +

1

π

b
∫

−a

N11

υ −X
p(υ)dυ,(4.5)

σXX(X, 0) = N21p(X) +
1

π

b
∫

−a

N22 · µf

υ −X
p(υ)dυ.(4.6)

To obtain solutions of Eqs. (4.5) and (4.6), the following formulas are used:

(4.7)

∞
∫

0

sin [ζ (υ −X)] dζ =
1

υ −X
,

∞
∫

0

cos [ζ (υ −X)] dζ = π · δ(υ −X),

where δ(·) is the Dirac delta function.
As mentioned above, the penetration depth v(X, 0) is known a priori. Thus,

the unknown function p(X) can be solved from the Cauchy singular integral
equation of the second type, i.e., Eq. (4.5), plus equilibrium condition Eq. (2.10).
Equations (4.5) and (2.10) can be normalized as

N12 · µf · ψ(s) +
1

π

1
∫

−1

N11

t− s
ψ(t)dt = Λ(s), |s| < 1,(4.8)

1
∫

−1

ψ(s)ds =
2P

b+ a
,(4.9)

where the following changes of variable are used:

(4.10)
X =

b+ a

2
s+

b− a

2
, υ =

b+ a

2
t+

b− a

2
, −a < (X,υ) < b,

− 1 < (s, t) < 1, p(X) = ψ(s),
∂v (X, 0)

∂X
= Λ(s).

To solve Eqs. (4.8) and (4.9), the following expression [21] is defined:

(4.11) Ψ(z) =
1

2πi

1
∫

−1

ψ(t)

t− z
dt,

which satisfies the following properties, i.e., general Plemelj formulae:

Ψ+(s) − Ψ−(s) =

{

ψ(s), |s| < 1,

0 |s| > 1,
(4.12)
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Ψ+(s) + Ψ−(s) =



















1

πi

1
∫

−1

ψ(t)

t− s
dt, |s| < 1,

2ψ(s), |s| > 1,

(4.13)

where superscripts ‘+’ and ‘−’ represent, respectively, the limits of Ψ(z). With
these relations, Eq. (4.8) can be written as the following Riemann–Hilbert prob-
lem:

(4.14) AΨ+(s) = BΨ−(s) + Λ(s),

where

(4.15) A = N12 · µf +N11 · i, B = N12 · µf −N11 · i.

Considering the corresponding homogeneous equation of Eq. (4.14), one may
find that the fundamental function that characterizes the nature of the contact
stress is the weight function of Jacobi polynomials [22]

(4.16) ̟(s) = (1 − s)α(1 + s)β , |s| < 1.

As a result, the solution to the singular integral equation can be expressed
in terms of the series expansion such that [23]

(4.17) ψ(s) = ̟(s)
∞
∑

j=0

cjP
(α,β)
j (s), |s| < 1,

where cj(j ≥ 0) are unknown coefficients to be determined, P
(α,β)
j (s) are Jacobi

polynomials, and

(4.18)

α = − ε

π
+N0, β =

ε

π
+M0,

ε = arctan

(

1

ξ

)

, ξ =
µfN12

N11
,

whereN0 andM0 are arbitrary integrals depending on the physics of the problem.
Substituting Eq. (4.17) into Eq. (4.8) and considering the following property

of Jacobi polynomials:

(4.19) N12 · µf · P (α,β)
j (s) ·̟(s) +

1

π

1
∫

−1

N11

t− s
P

(α,β)
j (t)̟(t)dt

= −2−κ0
N11

sin (πτ)
P

(−α,−β)
j−κ0

(s),
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where the index is κ0 = −(α+ β), one can obtain that

(4.20)
∞
∑

j=0

cj

[

−2−κ0
N11

sin(πα)
P

(−α,−β)
j−κ0

(s)

]

= Λ(s), |s| < 1.

By expanding Λ(s) in terms of Jacobi polynomials and comparing both sides
of Eq. (4.20), the unknown coefficients cj (j ≥ 0) can be determined. Once the
contact stress p(X) is obtained, the in-plane stress on the surface can be eval-
uated by Eq. (4.6). In what follows, analytical solutions of the singular integral
equation obtained above will be given for punches with various profiles.

5. Analytical solutions

5.1. For a frictional flat punch

Considering the first expression on the left-hand side of Eq. (2.6) and noting
that b = a, one can rewrite Eqs. (4.8) and (4.9) as

N12 · µf · ψ(s) +
1

π

1
∫

−1

N11

t− s
ψ(t)dt = 0, |s| < 1,(5.1)

1
∫

−1

ψ(s)ds =
P

a
.(5.2)

At both edges X = a and X = −a, the function p(X) has integrable singu-
larities, which require that both α and β be negative. By letting N0 = 0 and
M0 = −1, α and β defined in Eq. (4.18) can be written as

(5.3)

ξ > 0 : α = − ε

π
, β =

ε

π
− 1,

ξ = 0 : α = −1

2
, β = −1

2
,

ξ < 0 : α =
ε

π
− 1, β = − ε

π
.

Thus, the index κ0 in this case is

(5.4) κ0 = − (α+ β) = 1.

Substituting Eq. (4.17) into Eqs. (5.1) and (5.2), and using Eq. (4.20) and
the relation

(5.5)

1
∫

−1

̟(s)ds =
2α+β+1Γ (α+ 1)Γ (β + 1)

Γ (α+ β + 2)
,
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where Γ (·) is the Gamma function, one can obtain the only nonzero coefficient
c0 as follows:

(5.6) c0 = −2P0 sin(πα)

π
,

where

(5.7) P0 =
P

2a
.

Then, considering Eqs. (4.17), (4.10) and (2.7), one can get the surface normal
stress as

(5.8) σY Y (X, 0) =
2P0 sin(πα)

π

(

1 − X

a

)α(

1 +
X

a

)β

, |X| < a.

With consideration of Eqs. (5.8) and (2.7), the surface in-plane stress given
in Eq. (4.6) can be rewritten in the following closed-form in terms of elementary
functions:

(5.9) σXX(X, 0)

= −2P0 sin(πα)

π















N21

(

1 − X

a

)τ(

1 +
X

a

)ϑ

+
N22 · µf

π
Υf (X), |X| < a,

N22 · µf

π
Υf (X), |X| > a,

where Υf (X) is given as

(5.10) Υf (X) =
π

sin(πα)







































−
(

1 − X

a

)α(

−X
a

− 1

)β

, X < −a,
(

1 − X

a

)α(

1 +
X

a

)β

cos(πα), −a < X < a,

(

X

a
− 1

)α(

1 +
X

a

)β

, X > a.

The mode I stress intensity factors at the edges of the flat punch are defined
as

FI(a) = lim
X→a

p(X)

2β
(a−X)−α =

c0
aα
,(5.11)

FI(−a) = lim
X→−a

p(X)

2α
(a+X)−β =

c0
aβ
.(5.12)

In Eqs. (5.11) and (5.12), letting µf = 0 leads to the following expression:

(5.13) FI(a) = FI(−a) = c0
√
a =

P

π
√
a
.
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5.2. For a frictional triangular punch

Considering the second expression on the left-hand side of Eq. (2.6) and
noting that a = 0, one can rewrite Eqs. (4.8) and (4.9) as

N12 · µf · ψ(s) +
1

π

1
∫

−1

N11

t− s
ψ(t)dt = m0, |s| < 1,(5.14)

1
∫

−1

ψ(s)ds =
2P

b
.(5.15)

In this case, α is positive and β is negative since the triangular punch has a
sharp corner at X = 0 and smooth contact at X = b. By letting N0 = 1 and
M0 = −1, α and β defined in Eq. (4.18) can be presented as:

(5.16)

ξ > 0 : α = 1 − ε

π
, β = −1 +

ε

π
,

ξ = 0 : α =
1

2
, β = −1

2
,

ξ < 0 : α =
ε

π
, β = − ε

π
.

Thus, the index κ0 in this case is

(5.17) κ0 = − (α+ β) = 0.

Substituting Eq. (4.17) into Eq. (5.14), using Eq. (4.20) and considering Eq. (5.5)
produce the only nonzero coefficient c0 as follows:

(5.18) c0 =
m0 · sin(πα)

−N11
.

Then, considering Eqs. (4.17), (4.10) and (2.7), one can get the surface normal
stress as

(5.19) σY Y (X, 0) =
m0

N11
· sin(πα) ·

(

b−X

X

)α

, 0 < X < b.

The surface in-plane stress given Eq. (4.6) can be rewritten in the following
closed-form:

(5.20) σXX(X, 0)

=
m0

−N11
· sin(πα)















N21

(

b−X

X

)α

+
N22 · µf

π
Υt(X), 0 < X < b,

N22 · µf

π
Υt(X), X /∈ [0, b],
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where Υt(X) is given as

(5.21) Υt (X) =
π

sin(πα)



































(

X − b

X

)α

− 1, X < 0,

(

b−X

X

)α

cos(πα) − 1, 0 < X < b,

(

X − b

X

)α

− 1, X > b.

Besides, substituting Eq. (4.17) into Eq. (5.15) in view of Eqs. (5.18) and
(4.16) yields the following formula to determine the contact length:

(5.22) b =
−N11 · P
m0 · π · α.

The mode I stress intensity factor at the leading edge of the triangular punch
can be defined as follows:

(5.23) k1(0) = lim
X→0

Xαp(X) =
m0 · sin(πα) · bα

−N11
.

5.3. For a frictional parabolic punch

Considering the third expression on the left-hand side of Eq. (2.6) and noting
that a = 0, one can rewrite Eqs. (4.8) and (4.9) as

N12 · µf · ψ(s) +
1

π

1
∫

−1

N11

t− s
ψ(t)dt =

b (s+ 1)

2R
, |s| < 1,(5.24)

1
∫

−1

ψ(s)ds =
2P

b
.(5.25)

In this case α is positive and β is negative since the parabolic punch has a
sharp corner at X = 0 and smooth contact at X = b. By letting N0 = 1 and
M0 = −1, α and β are the same as those defined in Eq. (5.16) and the index is
κ0 = 0.

The left-hand side of Eq. (5.24) can be expanded into a series of Jacobi

polynomials P
(−α,−β)
j (·) [23]

(5.26)
b (s+ 1)

2R
=
b
[

P
(−α,−β)
1 (s) + (1 + α)P

(−α,−β)
0 (s)

]

2R
.



84 Y. T. Zhou, K. Y. Lee, Y. H. Jang

Substituting Eq. (4.17) into Eq. (5.24) in view of Eq. (5.26), using Eq. (4.20)
and considering Eq. (5.5) yield the nonzero coefficient as follows:

(5.27) c0 =
b(1 + α)

−2N11R
sin(πα), c1 =

b

−2N11R
sin(πα).

Thus, by considering Eqs. (4.17), (4.10) and (2.7), one can get the surface
normal stress as

(5.28) σY Y (X, 0) =
b sin(πα)

N11R

(

b−X

X

)α(

α+
X

b

)

, 0 < X < b.

The surface in-plane stress given in Eq. (4.6) can be rewritten in the following
closed-form:

(5.29) σXX(X, 0) =
b sin(πα)

−N11R

×















N21

(

b−X
X

)α(

α+
X

b

)

+
N22·µf

2π
[(1+α)Υ (0)

p (X)+Υ (1)
p (X)], 0 < X < b,

N22·µf

2π
[(1+α)Υ (0)

p (X)+Υ (1)
p (X)], X < 0, X > b,

where

Υ (0)
p (X) =

π

sin(πα)



































(

X − b

X

)α

− 1, X < 0,

(

b−X

X

)α

cos(πα) − 1, 0 < X < b

(

X − b

X

)α

− 1, X > b,

,(5.30)

Υ (1)
p (X) = P

(α,β)
1

(

2X

b
− 1

)

Υ (0)
p (X) +

2πα

sin(πα)
.(5.31)

Substituting Eq. (4.17) into Eq. (5.25) in view of Eqs. (5.27) and (4.16) yields
the following formula to determine the unknown contact length:

(5.32) b =

√

−2 ·N11 · P ·R
π · α · (1 + α)

.

Then, the mode I stress intensity factor at the edge X = 0 of the parabolic
punch can be defined as

(5.33) FI(0) = lim
X→0

Xαp(X) =
bα+1 · α · sin(πα)

−N11 ·R
.

Letting µf = 0 leads to

(5.34) FI(0) = b
3

2 /(−2 ·N11 ·R).



Indentation theory on orthotropic materials. . . 85

5.4. For a frictional cylindrical punch

In this case, considering the fourth expression on the left-hand side of
Eq. (2.6), one can rewrite Eqs. (4.8) and (4.9) as

N12 · µf · ψ(s) +
1

π

1
∫

−1

N11

t− s
ψ(t)dt = Λ(s) =

(b+ a)s+ b− a

2R
, |s| < 1,(5.35)

1
∫

−1

ψ(r)dr =
2P

a0
,(5.36)

where

(5.37) a0 = b+ a, a1 = b− a.

In this case α and β are positive since the cylindrical punch has smooth
contacts both at X = −a and X = b. By letting N0 = 1 and M0 = 0, α and β
defined in Eq. (4.18) can be obtained as

(5.38)

ξ > 0 : α = 1 − ε

π
, β =

ε

π
,

ξ = 0 : α =
1

2
, β =

1

2
,

ξ < 0 : α =
ε

π
, β = 1 − ε

π
.

Thus, the index κ0 in this case is

(5.39) κ0 = − (α+ β) = −1.

Due to κ0 = −(α+ β) = −1, the following consistency condition must be ful-
filled:

(5.40)

1
∫

−1

Λ(s)

̟(s)
ds = 0.

Expanding the left-hand side of Eq. (5.35) into the following series of Jacobi

polynomials P
(−α,−β)
j (·) [23]:

(5.41) [(b+ a)s+ b− a]/(2R)

=
{

2a0P
(−α,−β)
1 (s) + [a1 − (β − α)a0]P

(−α,−β)
0 (s)

}

/2R,
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and comparing both sides of Eq. (4.20) in view of Eq. (5.5), one arrives at the
only nonzero coefficient

(5.42) c0 =
a0

−2N11R
sin(πα) =

b+ a

−2N11R
sin(πα).

Thus, with consideration of Eqs. (4.17), (4.10) and (2.7), the surface normal
stress can be obtained as

(5.43) σY Y (X, 0) =
sin(πα)

N11R
(b−X)α (X + a)β , −a < X < b.

The surface in-plane stress given in Eq. (4.6) can be rewritten in the following
closed-form:

(5.44) σXX (X, 0)

=
sin(πα)

−N11R











N21 (b−X)α (X + a)β +
N22 · µf

2π
Υc(X), −a < X < b,

N22 · µf

2π
Υc(X), X /∈ [−a, b] ,

where Υc(X) is given as

(5.45) Υc(X) =
π

sin(πα)

×











−2(b−X)α(−X − a)β − 2X + b− a+ (α− β)(b+ a), X < −a,
2(b−X)α(X + a)β − 2X + b− a+ (α− β)(b+ a), −a < X < b,

2(X − b)α(X + a)β − 2X + b− a+ (α− β)(b+ a), X > b.

By considering Eqs. (5.42) and (4.16) and using the equilibrium equation
(5.36) yield the relationship between the load and the contact length

(5.46) P =
π · α · β

−2N11 ·R
(b+ a)2 .

Applying the consistency condition given in Eq. (5.40), one has the following
relationship to determine the unknown contact length:

(5.47) b =
β

α
a.

In this section, analytical solution of the singular integral equation is obtained
for punches with four different profiles; unconventional singularity, relationship
between the indentation load and the contact length, and explicit expression of
surface in-plane stress are presented.
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6. Numerical results and discussions

For numerical computations, the corresponding material properties are given
as follows: C11 = 159.7885 GPa, C12 = 5.2609 GPa, C22 = 15.4732 GPa and
G0 = 5.52 GPa.

6.1. Eigenvalue distribution

Table 1 demonstrates the eigenvalue distribution with varying relative mov-
ing velocity. Frictional elastic dynamic contact can be unstable. As the relative
moving velocity c increases, the following cases emerge: a) two pairs of opposite
real roots, b) a pair of opposite real roots and a pair of purely imaginary roots,
and c) two pairs of purely imaginary roots. In view of the regularity conditions
given in Eq. (2.11), instability occurs. Only case a, i.e., two pairs of opposite real
roots, is practicable for the semi-infinite composite. Thus, the c values are chosen
within the interval [0, 1) in the numerical computation. It is noted that though
even the value of the parameter c = 0.1 corresponds to the value of velocity
about V ≫ 100 m/s, the motion should be subsonic, i.e., the moving speed V
should not exceed the lowest bulk wave velocity cB =

√
C33ρ.

Table 1. Eigenvalue distribution with relative moving velocity (i2 = −1).

c η1 η2 η3 η4

0 5.2506 −5.2506 0.6120 −0.6120

0.1 5.2496 −5.2496 0.6090 −0.6090

0.2 5.2468 −5.2468 0.5997 −0.5997

0.3 5.2421 −5.2421 0.5839 −0.5839

0.4 5.2356 −5.2356 0.5610 −0.5610

0.5 5.2271 −5.2271 0.5301 −0.5301

0.6 5.2168 −5.2168 0.4897 −0.4897

0.7 5.2045 −5.2045 0.4372 −0.4372

0.8 5.1904 −5.1904 0.3674 −0.3674

0.9 5.1743 −5.1743 0.2669 −0.2669

1 0 0 5.1562 −5.1562

1.5 5.0359 −5.0359 0.6852i − 0.6852i

2 4.8626 −4.8626 1.0626i −1.0626i

10 8.5829i −8.5829i 5.8365i −5.8365i

6.2. Surface in-plane stress under a frictional flat punch

Figure 1 shows the effects of the relative moving velocity c and the fric-
tion coefficient µf on the normalized surface in-plane stress σXX(X, 0)/σ0
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(σ0 = P/2a) under a frictional flat punch. The surface in-plane stress is un-
bounded and discontinuous at both the trailing edge and the leading edge of
the flat punch. The stress concentrations of the surface in-plane stress may ex-
plain why the surface damage occurs under the action of the flat punch. When
the flat punch moves frictionally, the surface in-plane stress is compressive be-
fore the trailing edge (X < a), while tensile behind the trailing edge (X > a),
which agrees with the well-known experimental findings that the trailing edge
has a great potential to be a location of the surface crack initiation and propa-
gation in load transfer components [24].
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Fig. 1. The effects of: a) the relative moving velocity c and b) the friction coefficient µf on
the normalized surface in-plane stress σXX(X, 0)/σ0 (σ0 = P/2a) under a frictional flat

punch.

In addition, Fig. 1a presents the situation that when the flat punch moves
faster, the magnitudes of the surface in-plane stress intensify inside the contact
region, while they keep almost the same values outside the contact region.

Figure 1b depicts the scenario that when the sliding contact interface be-
comes more frictional, the surface in-plane stress beneath the punch (|X| < a)
intensifies around the trailing edge of the punch. With the increasing of friction
coefficient, the surface in-plane stress becomes more tensile behind the trailing
edge (X > a), while more compressive before the leading edge (X < −a).

It seems that the friction coefficient µf has a more significant influence on
the surface in-plane stress than the relative moving velocity c does when under
the action of the flat punch.

6.3. Surface in-plane stress under a frictional triangular punch

Figure 2 delineates the influences of the relative moving velocity c and the
friction coefficient µf on the normalized surface in-plane stress σXX(X, 0)/σ0

(σ0 = −m0/N11(0), where N11(0) is the value of N11 when c = 0) under a fric-
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tional triangular punch. The surface in-plane stress σXX(X, 0)/σ0 is discontin-
uous around the edge X = 0, while it has a tensile spike for nonzero values of
the friction coefficient µf at the edge X = b. The tensile spike as X → b under
a triangular punch has a relevance to the well-known experimental findings that
the surface crack initiation and propagation in load transfer components more
likely occur at the trailing edge [24].
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Fig. 2. The effects of: a) the relative moving velocity c and b) the friction coefficient µf on
the normalized surface in-plane stress σXX(X, 0)/σ0 (σ0 = −m0/N11(0)) under a frictional

triangular punch.

In addition, Fig. 2a shows that the relative moving velocity c has no that
pronounced influence on the surface in-plane stress under the triangular punch.
Figure 2b illustrates that the tensile spike of the surface in-plane stress increases
with the friction coefficient µf increasing. The magnitude of the surface in-plane
stress around the edge X = 0 decreases as the friction coefficient µf increases
when X > 0; while the opposite trend can be observed when X < 0.

The stress concentration of surface in-plane stress around the edge X = 0
and spike of the surface in-plane stress at the edge X = b may explain why the
surface damage occurs under the action of the triangular punch.

6.4. Surface in-plane stress under a frictional parabolic punch

Figure 3 demonstrates the influences of the relative moving velocity c and
the friction coefficient µf on the normalized surface in-plane stress σXX(X, 0)/σ0

(σ0 = P/R) under a frictional parabolic punch. The surface in-plane stress
σXX(X, 0)/σ0 is discontinuous around the edge X = 0, while it has a tensile
spike for nonzero values of the friction coefficient µf at the edge X = b. These
phenomena are the same as those under the triangular punch. The tensile spike
as X → b under a parabolic punch reaffirms that the surface crack initiation
and propagation in load transfer components more likely happen at the trailing
edge [24].
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Fig. 3. The effects of: a) the relative moving velocity c and b) the friction coefficient µf on
the normalized surface in-plane stress σXX(X, 0)/σ0 (σ0 = P/R) under a frictional parabolic

punch.

In addition, Fig. 3 shows that the tensile spike at the edge X = a increases
with either the relative moving velocity decreasing or the friction coefficient
increasing.

Like the triangular punch case, the stress concentration of the surface in-
plane stress and spike of the surface in-plane stress may explain why surface
damage occurs under the action of the parabolic punch.

6.5. Surface in-plane stress under a frictional cylindrical punch

Figure 4 illustrates the influences of the relative moving velocity c and the
friction coefficient µf on the normalized surface in-plane stress σXX(X, 0)/σ0

(σ0 = P/R) under a frictional cylindrical punch. The normalized surface in-
plane stress σXX(X, 0)/σ0 has a tensile spike at the edge X = b when µf > 0,
which may imply the initiation and sub-critical growth of surfaces crack under
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Fig. 4. The effects of: a) the relative moving velocity c and b) the friction coefficient µf on
the normalized surface in-plane stress σXX(X, 0)/σ0 (σ0 = P/R) under a frictional

cylindrical punch.
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repeated loadings and confirms the well-known experimental findings [24] like
those under a triangular or parabolic punch.

With the relative moving velocity c increasing, the spike value of surface in-
plane stress at X = b decreases and peak magnitude location becomes closer
to the edge X = −a as observed in Fig. 4a. Figure 4b demonstrates that with
the friction coefficient µf increasing, the spike value of surface in-plane stress
at X = b increases and peak magnitude location becomes closer to the edge
X = −a.

The spike of in-plane stress may explain why surface damage occurs under
the action of the cylindrical punch.

7. Conclusions

A general theory on orthotropic materials under a moving rigid punch is set
up. The punch moves to the right or left at a constant speed. The Coulomb
friction law is modeled inside the contact region. Galilean transformation and
Fourier transform are applied to obtain the appropriate fundamental solutions,
which can lead to real expressions of physical quantities in case of either real
or complex eigenvalues. Through an asymptotic analysis of the kernels, singular
integral equations of the second kind in terms of unknown contact stress beneath
the punch are obtained. Explicit formulae of various surface stresses are obtained
for four cases, including flat, triangular, parabolic and cylindrical punch, and
non-classical singularity is presented.

Numerical results show that the relative moving velocity affects the eigen-
value distribution, while the friction coefficient does not. The influences of rel-
ative moving velocity and the friction coefficient on the surface in-plane stress
are revealed in each case of the four types of punches, which delineate that the
surface crack initiation and propagation in load transfer components are more
likely to occur at the trailing edge.

Appendix

1. Expressions of Ωmn(ζ, Y ) (m = 1, 2, 3, n = 1, 2) appearing in Eq. (3.7):

Case A

(A.1)
Ωm1(ζ, Y ) = [∆m1 cos(|ζ|ϑY ) −∆m2 sin(|ζ|ϑY )] e|ζ|θY ,

Ωm2(ζ, Y ) = [∆m2 cos(|ζ|ϑY ) +∆m1 sin(|ζ|ϑY )] e|ζ|θY ,

where ∆mn (m = 1, 2, 3, n = 1, 2) are given as

∆11 = −i · sgn(ζ) {C11 + C12 [θ · Re (h(η1)) − ϑ · Im (h(η1))]} ,
∆12 = −i · sgn(ζ)C12 [θ · Im (h (η1)) + ϑ · Re (h (η1))] ,

(A.2)
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∆21 = −i · sgn(ζ) {C12 + C22 [θ · Re (h(η1)) − ϑ · Im (h(η1))]} ,
∆22 = −i · sgn(ζ)C22 [θ · Im (h (η1)) + ϑ · Re (h (η1))] ,

(A.3)

∆31 = C33 [θ − Re (h(η1))] ,

∆32 = C33 [ϑ− Im (h(η1))] .
(A.4)

Case B

(A.5) Ωmn(ζ, Y ) = Omne
|ζ|δnY ,

where Omn (m = 1, 2, 3, n = 1, 2) are given as

O1n = −i · sgn(ζ) [C11 + C12δnh(δn)] ,(A.6)

O2n = −i · sgn(ζ) [C12 + C22δnh(δn)] ,(A.7)

O3n = C33 [δn − h(δn)] .(A.8)

2. Expressions of Mmn (m,n = 1, 2) appearing in Eq. (4.4):

M11 =
Ω32(ζ, 0)

Ω21(ζ, 0)Ω32(ζ, 0) −Ω31(ζ, 0)Ω22(ζ, 0)
,

M12 =
Ω22(ζ, 0)

Ω21(ζ, 0)Ω32(ζ, 0) −Ω31(ζ, 0)Ω22(ζ, 0)
,

(A.9)

M21 =
Ω31(ζ, 0)

Ω21(ζ, 0)Ω32(ζ, 0) −Ω31(ζ, 0)Ω22(ζ, 0)
,

M22 =
Ω21(ζ, 0)

Ω21(ζ, 0)Ω32(ζ, 0) −Ω31(ζ, 0)Ω22(ζ, 0)
.

(A.10)

Acknowledgments

This work was supported by the National Natural Science Foundation of
China (11090334, 11362018 and 11261045) and the Fundamental Research Funds
for the Central Universities (1330219140).

References

1. S. Sampath, H. Herman, N. Shimoda, T. Saito, Thermal spray processing of FGMs,
MRS Bulletin, 20, 27–31, 1995.

2. W.A. Kaysser, B. Ilschner, FGM research activities in Europe, MRS Bulletin, 20,
22–26, 1995.



Indentation theory on orthotropic materials. . . 93

3. L.A. Galin, Contact problems in the theory of elasticity, Gostekhizdat, Moscow, 1953;
English transl.: 1961.

4. G.M. Gladwell, Contact Problems in the Classical Theory of Elasticity, Kluwer Aca-
demic Publishers, Dordrecht, 1980.

5. K.L. Johnson, Contact Mechanics, Cambridge University Press, London, 1985.

6. D.A. Hills, D. Nowell, A. Sackfield, Mechanics of Elastic Contacts, Butterworth-
Heinemann, Oxford, 1993.

7. D. Shi, Y. Lin, T.C. Ovaert, Indentation of an orthotropic half-space by a rigid ellip-
soidal indenter, Journal of Tribology, 125, 223–231, 2003.

8. S.R. Swanson, Hertzian contact of orthotropic materials, International Journal of Solids
and Structures, 41, 1945–1959, 2004.

9. S.R. Swanson, Contact deformation and stress in orthotropic plates, Composites: Part A,
36, 1421–1429, 2005.

10. G. Lykotrafitis, H.G. Georgiadis, P.A. Gourgiotis, Rapid sliding motion of a rigid
frictionless indenter with a flat base over a thermoelastic half-space, Archive of Applied
Mechanics, 82, 1481–1495, 2012.

11. J.W. Craggs, A.M. Roberts, On the motion of a heavy cylinder over the surface of
an elastic solid, ASME Journal of Applied Mechanics, 24, 207–209, 1967.

12. D.L. Clement, On the motion of a heavy cylinder over the surface of an anisotropic
elastic solid, SIAM Journal on Applied Mathematics, 19, 116–124, 1970.

13. H.G. Georgiadis, J.R. Barber, On the super-Rayleigh/subseismic elastodynamic in-
dentation problem, Journal of Elasticity, 31,141–161, 1993.

14. L.M. Brock, Exact analysis of dynamic sliding indentation at any constant speed on an
orthotropic or transversely isotropic half-space, ASME Journal of Applied Mechanics, 69,
340–345, 2002.

15. J.R. Baber, M. Cominon, Rolling of elastic cylinders with friction at supersonic speed,
International Journal of Solids and Structures, 18, 783–789, 1982.

16. L.M. Brock, Some analytical results for heating due to irregular sliding contact of ther-
moelastic solids, Indian Journal of Pure and Applied Mathematics, 27, 1257–1278, 1996.

17. L.M. Brock, Rapid sliding indentation with friction of a pre-stressed thermoelastic ma-
terial, Journal of Elasticity, 53, 161–188, 1999.

18. L.M. Brock, H.G. Georgiadis, Sliding contact with friction on a thermoelastic solid
at subsonic, transonic and supersonic speeds, Journal of Thermal Stresses, 23, 629–656,
2000.

19. L.M. Brock, H.G. Georgiadis, Multiple-zone sliding contact with friction on an
anisotropic thermoelastic half-space, Int. J. Solids & Structures 44, 2820–2836, 2007.

20. Y.T. Zhou, K.Y. Lee, Y.H. Jang, Influences of the moving velocity and material
property on frictionless contact problem of orthotropic materials indented by a moving
punch, Archives of Mechanics, 65, 195–217, 2013.

21. N.I. Muskhelishvili, Singular Integral Equations, P. Noordhoff, Groningen, 1953.



94 Y. T. Zhou, K. Y. Lee, Y. H. Jang

22. I.S. Gradshteyn, I.M. Ryzhik, Tables of Integrals, Series, and Products, 4th ed., Aca-
demic Press, New York, 1980.

23. F. Erdogan, Complex Function Technique, Academic Press, New York, 1975.

24. S. Suresh, M. Olsson, A.E. Giannakopoulos, N.P. Padture, J. Jitcharoen,
Engineering the resistance to sliding-contact damage through controlled gradients in elastic
properties at contact surfaces, Acta Materialia, 47, 3915–3926, 1999.

Received June 28, 2013; revised version December 6, 2013.


