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A model of crack nucleation in a circular disk, based on consideration of crack-
ing process zone is suggested. It is assumed that the cracking process zone is a finite-
length layer containing a material with partially disturbed bonds between separate
structural elements. Existence of bonds between the pre-fracture zone faces (the area
of weakened interparticle bonds of the material) is simulated by application of cohe-
sive forces caused by the existence of bonds to pre-fracture area surfaces. Analysis of
limit equilibrium of the pre-fracture zone in a circular disk with mixed conditions on
the boundary are fulfilled on the basis of ultimate stretching of material’s bonds and
includes: 1) setting up the dependence of cohesive forces on opening of pre-fracture
area faces, 2) estimation of stress state near the pre-fracture zone with regard to ex-
ternal loads and cohesive forces, 3) determination of dependence of critical external
loads on geometrical parameters of the disk, under which the crack appears.
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1. Introduction

Circular disks are widely used in the latest implements, in steam and
gas turbines, in compressors, in chemical industry machines, etc. The disks are
subjected to loading and this causes their stretching. Study of crack nucleation
problem in circular disks is of great importance for engineering practice. Devel-
opment of design models of cracking investigation in circular disks is an urgent
problem of materials mechanics. Material constitutive equations and computa-
tional tools which have been recently developed to simulate ductile rupture are
reviewed in [1]. In [2] it was demonstrated that an initial stage of fatigue damage
can be described within the framework of model for fatigue-crack growth which
is based on generalization of energy approach to fracture mechanics with inclu-
sion of certain characteristics of the material’s microdamage in computational
scheme, and distribution functions of time to formation of a first macroscopic
crack in a body of given dimensions, obtained from the known distribution of
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nominal stresses and initial microdefects. Several issues in damage microme-
chanics for microcracked brittle or quasi-brittle solids are addressed in [3]. In
particular, the methods for characterizing evolutionary damage of microcracks
are discussed and concept of orientation domain of microcrack growth is intro-
duced. An evolutionary fiber cracking process, governed by the internal stresses
and fracture strength of fibers, is considered in [4], and Weibull’s probabilis-
tic distribution is used to describe the varying probability of fiber cracking. In
[5, 6] crack nucleation model with cohesive forces in the most loaded, but still
integrity zones of deformable solid is proposed. This initial fracture model was
used in the calculation of various constructions [7–12], with various force and
thermal-force effects. In [12] the model of crack nucleation in coating on an
elastic foundation is proposed. In [13], the computational model describing the
cracking in the brake drum during the car’s braking process is developed and
the effect of small deviations from the linear form of the zone of weakened in-
terparticle material bonds on the cracks nucleation in the drum is investigated.
Papers [14–21] are devoted to the study of fracture in composite materials and
adhesive joints. For engineering practice the research of crack formation is im-
portant. At present, the research on the crack nucleation in a circular disk is
practically absent. The development of computational models of the cracking
process in the disks is an important problem in mechanics of materials. The
development of investigation methods for cracking will be effective in improving
the disks serviceability as well as for evidence-based selection of disks parameters
at the design stage.

2. Formulation of the problem

Let the normal displacement υr(t) and tangential component of surface forces
Nθ(t) be given on the boundary of a circular disk. In the course of loading, in
the circular disk there will appear pre-fracture zones that will be modeled as
the areas of weakened interparticle bonds of the material. Interaction of the
faces of these areas is modelled by introducing the bonds possessing the given
deformation diagram between the pre-fracture zone faces. Physical nature of
such bonds and the sizes of pre-fracture areas where the interaction of the faces
of weakened interparticle bonds zones is completed depend on the form of the
material.

The embryonic crack is modelled by pre-fracture zones with interfacial bonds
that are considered to be an area of the weakened interparticle bonds of the
material. As the indicated zones (interlayers of overstrained material) are small
compared with the remaining part of the disk, we can “mentally” remove them
and replace with sections whose surfaces interact with each other by some rule
corresponding to the action of the removed material. In the considered case, the
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crack initiation is the process of passage of the pre-fracture zone to the area of
the broken bonds between the surfaces of the material. At that point, the size
of the pre-fracture zone is unknown beforehand and to be defined.

Investigations [22–24] of the onset of areas with disturbed structure of the
material show that at the initial stage the pre-fracture zone is a narrow-stretched
layer, and then by increasing the load, suddenly there appears the second system
of zones containing a material with partially disturbed bonds. For mathematical
description of crack nucleation in the disk, in the considered case we arrive at
the mixed static problem of the plane theory of elasticity for a disk when the
material has pre-fracture zones. The pre-fracture zone is oriented in the direction
of the maximal tensile stresses arising in the disk. We define the disk in reference
to the polar coordinates rθ with origin at the center of the circle L with radius R
(Fig. 1).

Fig. 1. Calculation scheme of fracture mechanics problem for a disk.

We will assume that the disk has N rectilinear pre-fracture zones of length
2ℓk (k = 1, 2, . . . , N). At the centers of the pre-fracture zones is located the
origin of the local systems of coordinates xkOkyk, whose axes xk coincide with
the lines of pre-fracture zones and form the angles αk with the axis x (Fig. 1).
The pre-fracture zone faces interact so that this interaction (interfacial bonds)
restrains the crack nucleation. Under the action of external loads on the disk, in
the bonds connecting the pre-fracture zone faces there will arise normal qyk

(xk)
and tangential qxkyk

(xk) stresses (k = 1, 2, . . . , N). Consequently, the normal
and tangential stresses numerically equal to qyk

(xk) and qxkyk
(xk), respectively

will be applied to the pre-fracture zone faces. The quantities of these stresses are
not known in advance.
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In the problem under consideration, the boundary conditions have the form:

τrθ = Nθ(θ), υr = fr(θ), on L,(2.1)

σyk
= qyk

(xk), τxkyk
= qxkyk

(xk), on Lk (k = 1, 2, . . . , N),(2.2)

where L is the circular bound of the disk and Lk are the faces of the k-th pre-
fracture zone.

The equations connecting the opening of the pre-fracture zone faces and
forces in the bonds may be represented in the form [6]:

(2.3) (υ+
k (xk, 0) − υ−k (xk, 0)) − i(u+

k (xk, 0) − u−k (xk, 0))

= C(xk, σk)[qyk
(xk) − iqxkyk

(xk)] (k = 1, 2, . . . , N),

where the functions C(xk, σk) are the effective compliances of corresponding

bonds that depend on the tension in the bonds, σk =
√

q2yk
+ q2xkyk

is the mod-

ulus of the vector of bond tractions, (υ+
k − υ−k ) are normal and (u+

k − u−k ) are
tangential components of the opening of pre-fracture zone faces.

3. The case of a single pre-fracture zone

Denote the considered domain enclosed between the circumference L of radius
R and rectilinear pre-fracture zone L1 = [a, b] (α1 = 0) along the abscissa axis
by S+, and the domain supplemented to the complete complex plane by S−

(Fig. 2).

Fig. 2. Calculation scheme of fracture mechanics problem for the case of a single
pre-fracture zone.

The stress-strain state of the disk under the plane problem conditions is
described by two analytic functions Φ(z) and Ω(z) of a complex variable [25]:
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(3.1)

σx + σy = 4ReΦ(z),

σy − iτxy = Φ(z) +Ω(z̄) + (z − z̄)Φ′(z),

2µ
∂

∂x
(u+ iυ) = κΦ(z) −Ω(z̄) − (z − z̄)Φ′(z),

Ω(z) = Φ(z) + zΦ′(z) + Ψ(z),

where κ = (3 − v)/(1 + v) stands for plane stress state, ν is the Poisson ratio of
the disk’s material and µ is the material’s shear modulus.

Under accepted assumptions, the problem is reduced to the definition of two
analytical, in the domain S+, functions of complex variables Φ(z) and Ψ(z),
satisfying the following boundary conditions on the contour L:

Re

{

κΦ(t) − Φ(t) +
R2

t2
[tΦ′(t) + Ψ(t)]

}

= 2µf ′r(t),(3.2)

Im

{

Φ(t) + Φ(t) − t2

R2
[t̄Φ′(t) + Ψ(t)]

}

= −Nθ(t).(3.3)

Here, t is affix of the points of the contour L.
The loading conditions on the pre-fracture zone faces L+

1 and L−
1 will be

(3.4)
Φ+(x) + Φ̄−(x) + xΦ̄−(x) + Ψ̄−(x) = q+y (x) − iq+xy(x) on L+

1 ,

Φ−(x) + Φ̄+(x) + xΦ̄+(x) + Ψ̄+(x) = q−y (x) − iq−xy(x) on L−
1 .

Applying relations (3.2) and (3.3) to conjugated values, after some transfor-
mations on the contour L we get the boundary conditions in the form:

(3.5) (κ− 1)[Φ(t) + Φ(t)] +
R2

t2

[

tΦ′(t) + Ψ(t)

]

+
t2

R2

[

R2

t
Φ′(t) + Ψ(t)

]

= 4µf ′r(t) on L,

(3.6) − R2

t2
[tΦ′(t) + Ψ(t)] +

t2

R2

[

R2

t
Φ′(t) + Ψ(t)

]

= 2iNθ(t) on L.

Based on (3.5) and (3.6) we have on the circumference L:

(3.7) (κ− 1)[Φ(t) + Φ(t)] +
2t2

R2

[

R2

t
Φ′(t) + Ψ(t)

]

= 2[2µf ′r(t) + iNθ(t)].

We substitute, into the equality (3.7), the functions fr(t) and Nθ(t) in the form
of Fourier series:

(3.8) fr(t) =
∞

∑

v=−∞

Vv

(

t

R

)v

, iNθ(t) =
∞
∑

v=−∞

Tv

(

t

R

)v

,
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where Vv, Tv (v = 0,±1,±2, . . .), generally speaking, are the known complex
coefficients and are defined by the formulas:

Vk =
1

2π

2π
∫

0

fr(θ)e
ikθdθ, Tk =

1

2π

2π
∫

0

iNθ(θ) e
ikθ dθ, k = 0,±1,±2, . . . .

As a result we get

(3.9) (κ− 1)[Φ(t) + Φ(t)] + 2
t2

R2

[

R2

t
Φ′(t) + Ψ(t)

]

= 2

{ ∞
∑

v=0

[

Tv +
2µ(v + 1)

R
Vv+1

](

t

R

)v

+

∞
∑

v=1

[

T−v −
2µ(v − 1)

R
V−v+1

](

R

t

)v}

.

Next, we introduce on L new unknown auxiliary function ω(t) ∈ H (the
Holder condition) in the form:

(3.10) 2ω(t) = (κ− 1)[Φ(t) + Φ(t)] − 2t2

R2

[

R2

t
Φ′(t) + Ψ(t)

]

.

Putting together relations (3.9) and (3.10), we have:

(3.11) Φ(t) =
ω(t)

κ− 1
+

1

κ− 1

∞
∑

v=0

[

2µ(v + 1)

R
Vv+1 + Tv

]

(
t

R
)v

+
1

κ− 1

∞
∑

v=1

[

T−v −
2µ(v − 1)

R
V−v+1

](

R

t

)v

on L.

Substituting (3.11) in (3.10), we get

Ψ(t) = Q(t)+R1(t)+R2(t) on L,(3.12)

Q(t) = −R
2

2t2
[ω(t)+ω(t)]− R2

(κ−1) t
ω′(t),(3.13)

R1(t) =
∞

∑

v=0

[

1

2

(

1−v−2

κ−1

)

Tv+2−
1

2
T̄−v−2+

µ(v+1)

R
V−v−1(3.14)

+
µ(v+3)

R

(

1−v−2

κ−1

)

Vv+3

](

t

R

)v

,

R2(t) = −
∞
∑

v=2

[

µ(v−1)

R
V̄v−1+

1

2
T̄v−2

](

R

t

)v

+

∞
∑

v=3

[

1

2

(

1+
v−2

κ−1

)

T−v+2

−µ(v−3)

R

(

1+
v−2

κ−1

)

V−v+3

](

R

t

)v

+

[

µ

R
V1+

1

2
T0

]

R2

t2

+

[

1

2

(

1− 1

κ−1

)

T1−
1

2
T̄−1−

µ

(κ−1)R
V1+

2µ

R
V2

]

R

t
.
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On the basis of the theorem on analytic continuation and properties of the
Cauchy type integral, from relations (3.11) and (3.12) we have:

Φ∗(z) =



































































Φ(z) − 1

κ− 1

1

2πi

∫

L

ω(t)

t− z
dt

− 1

κ− 1

∞
∑

v=0

[

2µ(v + 1)

R
Vv+1 + Tv

](

z

R

)v

, z ∈ S+,

− 1

κ− 1

1

2πi

∫

L

ω(t)

t− z
dt

+
1

κ− 1

∞
∑

v=1

[

T−v −
2µ(v − 1)

R
V−v+1

](

R

z

)v

, z ∈ S−,

(3.15)

Ψ∗(z) =



























Ψ(z) − 1

2πi

∫

L

Q(t)

t− z
dt−R2(z), z ∈ S+,

− 1

2πi

∫

L

Q(t)

t− z
dt+R2(z), z ∈ S−.

(3.16)

In relations (3.15) and (3.16) the functions Φ∗(z) and Ψ∗(z) are analytic in the
complete complex plane cut along the section L1 = [a, b] (the pre-fracture zone)
and vanish at infinity, i.e., Φ∗(∞) = 0, Ψ∗(∞) = 0.

We will look for the unknown function ω(t) ∈ H on L in the form of Fourier
series

(3.17) ω(t) = α∗
0 +

∞
∑

v=1

[

α∗
v

(

t

R

)v

+ α∗
−v

(

R

t

)v]

,

where α∗
v (v = 0,±1,±2, . . .) are the unknown complex coefficients.

Substituting relation (3.17) in the first formulas of (3.15) and (3.16), and
using the Cauchy integral theorem, we get general formulas for the desired func-
tions:

Φ(z) = Φ∗(z) +

∞
∑

v=0

Bv

(

z

R

)v

z ∈ S+,(3.18)

Ψ(z) = Ψ∗(z) +

∞
∑

v=0

Dv

(

z

R

)v

z ∈ S+,
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Bv =
1

κ− 1

[

α∗
ν + Tv +

2µ(v + 1)

R
Vv+1

]

,(3.19)

Dv = −
(

1

2
+
v + 2

κ− 1

)

α∗
v+2 −

1

2
ᾱ−v−2 +

1

2

(

1 − v + 2

κ− 1

)

Tv+2

− 1

2
T̄−v−2 +

µ(v + 3)

R

(

1 − v + 2

κ− 1

)

Vv+3 +
µ(v + 1)

R
V −v−1.

For determining the function Φ∗(z), and consequently the function Ψ∗(z) by
the known method [25], we arrive at the linear conjunction problem:

[Φ∗(t) −Ω∗(t)]
+ − [Φ∗(t) −Ω∗(t)]

− = 0,(3.20)

[Φ∗(t) +Ω∗(t)]
+ + [Φ∗(t) +Ω∗(t)]

− = f(t).

Here,

Ω∗(z) = Φ∗(z) + zΦ
′

∗(z) + Ψ∗(z),

f(t) = 2(qy − iqxy) +
∞
∑

k=0

(βk + pk)

(

t

R

)k

,

βk = −2

[

1

κ− 1
α∗

k +
k + 1

κ− 1
ᾱ∗

k − 1

2
α∗
−k−2 −

(

1

2
+
k + 2

κ− 1

)

ᾱ∗
k+2

]

,(3.21)

pk = −2

[

1

κ− 1
Tk +

k + 1

κ− 1
T k − 1

2
T−k−2 +

(

1

2
− k + 2

κ− 1

)

T k+2

+ +
2µ(k + 1)

(κ− 1)R
Vk+1 +

2µ(k + 1)2

(κ− 1)R
V k+1

+
µ(k + 1)

R
V−k−1 +

µ(k + 3)

R

(

1 +
k + 2

κ− 1

)

V k+3

]

.

Since the stresses in the disk are restricted, we should look for the solution
of boundary value problem (3.20) in the class of everywhere bounded functions.
The sought for solution to boundary value problem (3.20) is written in the form

(3.22) Φ∗(z) = Ω∗(z) =

√

(z − a)(z − b)

2πi

b
∫

a

f(t)dt
√

(t− a)(t− b)(t− z)
.

Moreover, all the following solvability conditions of the boundary value prob-
lem should be fulfilled:

(3.23)

b
∫

a

f(t)dt
√

(t− a)(b− t)
= 0,

b
∫

a

tf(t)dt
√

(t− a)(b− t)
= 0.
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These relations serve for determination of the unknown parameters a and b
of the pre-fracture zone.

The obtained relations contain unknown stresses in the pre-fracture zone.
Now, let’s move to formulate an integral equation for determining the unknown
forces qy − iqxy. The condition that determines the unknown stresses in the
bonds between the pre-fracture zone faces is the additional relation (2.3) for
k = 1, α1 = 0, x1 = x. In the considered problem it is more convenient to write
this additional condition for the derivative of opening of displacement of pre-
fracture zone faces. Taking into account formula (3.1) and the boundary values
of the functions Φ∗(z) and Ω∗(z), on the segment y = 0, a ≤ x ≤ b we get the
following equality:

(3.24) Φ+(x) − Φ−(x) =
2µ

1 + κ

[

∂

∂x
(u+ − u−) + i

∂

∂x
(υ+ − υ−)

]

.

Using the Sokhotski–Plemelj formulas [25] and taking into account formula
(3.22), we find

(3.25) Φ+(x) − Φ−(x) = − i
√

(x− a)(b− x)

π

[

b
∫

a

f(t)dt
√

(t− a)(b− t)(t− x)

]

.

We substitute the obtained expression (3.25) into the left side of (3.24), and by
taking into account relation (2.3) k = 1, α1 = 0, x1 = x, after some transforma-
tions we get the system of nonlinear integro-differential equations with respect
to the unknown functions qy and qxy:

− 1

π

√

(x−a)(b−x)
[

b
∫

a

qy(t)dt
√

(t−a)(b−t)(t−x)
+

b
∫

a

fy(t)dt
√

(t−a)(b−t)(t−x)

]

(3.26)

=
2µ

1+κ

d

dx
(C(x, σ)qy(x)),

− 1

π

√

(x−a)(b−x)
[

b
∫

a

qxy(t)dt
√

(t−a)(b−t)(t−x)
+

b
∫

a

fxy(t)dt
√

(t−a)(b−t)(t−x)

]

(3.27)

=
2µ

1+κ

d

dx
(C(x, σ)qxy(x)).

Here

fy(t) = Re f1(t), fxy(t) = Im f1(t),

f1(t) = −
∞

∑

k=0

[Bk + (k + 1)Bk +Dk]

(

t

R

)k

.
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Each of the equations (3.26) or (3.27) is a nonlinear integro-differential equa-
tion with the Cauchy kernel and may be solved only numerically. In order to
solve them one can use the collocation scheme with approximation of unknown
functions [22, 26, 27].

Using formulas (3.22) and (3.23), and equations (3.26) and (3.27), the ob-
tained relations (3.18) and (3.19) allow to get the terminal solution of the prob-
lem if the coefficients α∗

k (k = 0,±1,±2, . . .) will be determined.
In order to compose an infinite system of linear algebraic equations with

respect to the unknowns α∗
k, we substitute the relations (3.18) and (3.19) into

condition (3.10) with regard to (3.22) and the expansions

√

(t− a)(t− b) = t
∞
∑

r=0

Mr

(

R

t

)r

,
1

√

(t− a)(t− b)
=

∞
∑

r=0

M∗
r

(

R

t

)r+1

.

After several transformations, condition (3.10) is reduced to the form

(3.28)
∞
∑

m=0

Am

(

t

R

)m

+
∞
∑

m=0

A∗
m

(

R

t

)m

=
∞

∑

m=0

Cm

(

t

R

)m

+
∞
∑

m=0

C∗
m

(

R

t

)m

.

Because of awkwardness of expressions for Am, A∗
m, Cm, C∗

m (m = 0, 1, 2, . . .)
we do not cite them.

Making comparison in the both sides of the obtained relation (3.28) the
coefficients with identical powers t/R and R/t, we get the following infinite
systems of linear algebraic equations:

(3.29) A0+A∗
0 = C0+C∗

0 (m = 0), Am = Cm A∗
m = C∗

m (m = 1, 2, . . .).

Now let us conduct algebraization of integro-differential equations (3.26) and
(3.27) with additional conditions (3.23). At first, in equations (3.29) and (3.27)
and in additional conditions (3.23) all integration segments are reduced to one
interval [−1, 1].

First we make a change of variables

(3.30) t =
1

2
(a+ b) +

1

2
(b− a)τ, x =

1

2
(a+ b) +

1

2
(b− a)η.

At such a change of variables, the left side of integro-differential equation
(3.26) permits for the following form:

− 1

π

√

1 − η2

[

1
∫

−1

qy(τ)dτ√
1 − τ2(τ − η)

+

1
∫

−1

fy(τ)dτ√
1 − τ2(τ − η)

]

.
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Respectively, for the left side of equation (3.27) we get

− 1

π

√

1 − η2

[

1
∫

−1

qxy(τ)dτ√
1 − τ2(τ − η)

+

1
∫

−1

fxy(τ)dτ√
1 − τ2(τ − η)

]

.

By changing the derivative contained on the right side of equation (3.26) for
arbitrary internal node by finite-difference approximation we obtain:

d

dx
[C(x, σ)qy(x)]i =

C(xi+1, σ(xi+1))qy(xi+1) − C(xi−1, σ(xi−1))qy(xi−1)

2∆x
,

where ∆x = (b− a)/M .
We do the same with the right-hand side of equation (3.27). We take into

account boundary conditions for η = ±1, qy(a) = qy(b) = 0, qxy(a) = qxy(b) = 0
(this corresponds to the conditions υ+(a, 0)−υ−(a, 0) = 0, υ+(b, 0)−υ−(b, 0) =
0, u+(a, 0) − u−(a, 0) = 0, u+(b, 0) − u−(b, 0) = 0).

Using the quadrature formula

1

2π

1
∫

−1

g(τ)dτ√
1 − τ2(τ − η)

=
1

M sin θ

M
∑

k=1

gk

M−1
∑

m=0

cos θk sinmθ,

τ = cos θ, ηm = cos θm, θm =
2m− 1

2M
π (m = 1, 2, . . . ,M),

all the integrals in (3.26) and (3.27) are changed by finite sums, and the deriva-
tives on the right sides of equations (3.26) and (3.27) are changed by finite
difference approximations. The reduced formulas enable to change each integro-
differential equation by a system of algebraic equations with respect to approxi-
mate values of the sought for function, respectively at nodal points. As a result
we get

− 2

M

[

M
∑

v=1

qy,v

M−1
∑

k=0

cos kθk sin kθm +

M
∑

v=1

fy,v

M−1
∑

k=0

cos kθk sin kθm

]

(3.31)

= [C(xm+1, σ(xm+1))qy,m+1 − C(xm−1, σ(xm−1))qy,m−1]
(1 + κ)M

4µ(b− a)
,

− 2

M

[

M
∑

v=1

qxy,v

M−1
∑

k=0

cos kθk sin kθm +
M
∑

v=1

fxy,v

M−1
∑

k=0

cos kθk sin kθm

]

(3.32)

=
(1+κ)M

4µ(b−a) [C(xm+1, σ(xm+1))qxy,m+1−C(xm−1, σ(xm−1))qxy,m−1],

where m = 1, 2, . . . ,M .
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If we take into account the equality

2

M−1
∑

k=0

cos kθv sin kθm = cot
θm ∓ θv

2
,

the systems will take the following forms:

M
∑

v=1

Amv(qy,v + fy,v)(3.33)

=
(1 + κ)M

4µ(b− a)
[C(xm+1, σ)qy,m+1 − C(xm−1, σ)qy,m−1] ,

M
∑

v=1

Amv(qxy,v + fxy,v)(3.34)

=
(1 + κ)M

4µ(b− a)
[C(xm+1, σ)qxy,m+1 − C(xm−1, σ)qxy,m−1] ,

where m = 1, 2, . . . ,M , qy,v = qy(τv), qxy,v = qxy(τv), fy,v = fy(τv), fxy,v =
fxy(τv), xm+1 = a+b

2 + b−a
2 ηm+1, Amv = − 1

M cot θm∓θv

2 . The upper sign is taken
when the number |m− v| is odd, the lower sign when it is even.

Now let’s move to algebraization of the solvability conditions of boundary
value problem (3.23). Separating the real and imaginary parts in them and using
the change of variables and Gauss’ quadrature formula, we get the solvability
conditions of the problem in the following form:

M
∑

v=1

f∗y (cos θv) = 0,

M
∑

v=1

τvf
∗
y (τv) = 0,(3.35)

M
∑

v=1

f∗xy(cos θv) = 0,

M
∑

v=1

τvf
∗
xy(τv) = 0,(3.36)

where f∗y = qy + fy, f
∗
xy = qxy + fxy.

As a result of algebraization, instead of each integro-differential equation
with corresponding additional conditions, we get M + 2 algebraic equations
for determining stresses at nodal points and the pre-fracture zone sizes. Even
in the special case of linear elastic bonds, the obtained system of equations
becomes nonlinear because of unknown size of the pre-fracture zone. In this
connection, for solving the obtained systems, in the case of linear bonds the
successive approximations method was used.

In the case of nonlinear law of deformation of bonds, the iteration algorithm
similar to elastic solutions method [28] was also used to determine the forces in
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the pre-fracture zone. It is assumed that the law of deformation of interparticle
bonds (cohesive forces) is linear for V = |(u+ − u−) − i(υ+ − υ−)| ≤ V∗. The
first step of iterative calculation process consists of solving the combined system
for linear interparticle elastic bonds. The subsequent iterations are performed
only in the case when V (x) > V∗ holds on the parts of the pre-fracture zone,
where V∗ is the value of opening of pre-fracture zone faces, at which a tran-
sition from linear to non-linear bonds deformation law takes place. For such
iterations the system of resolving equations is solved at each approximation for
quasielastic bonds with effective compliance variable along the pre-fracture zone
and depending on the quantity of force vector modulus in bonds obtained in
previous calculation step. The calculation of effective compliance is conducted
as in definition of the secant modulus in the method of variable parameters of
elasticity [29]. It is accepted that the successive approximations process ends
once the forces along the pre-fracture zone obtained in two successive iterations
differ a little from each other.

The nonlinear part of the curve of bond deformation is represented in the form
of bilinear dependence whose upward segment corresponds to elastic deformation
of bonds (0 < V (xk) < V∗) with maximum tension of bonds. For V (xk) > V∗ the
deformation law was described by nonlinear dependence defined by two points
(V∗, σ∗) and (δc, σc), moreover for σc ≥ σ∗ we have an increasing linear depen-
dence (linear hardening corresponding to elastic-plastic deformation of bonds),
where σ∗ are maximum elastic stresses in bonds, δc is the characteristics of the
disk’s material resistance to cracking and σc is tension of bonds, corresponding
to limited opening of the pre-fracture zone faces.

For determining the ultimate equilibrium of the pre-fracture zone it is neces-
sary to introduce an additional critical condition. In place of such condition we
accept the condition of limit opening of the pre-fracture zone faces. It is assumed
that the breaking of bonds on the pre-fracture zone faces (x = x0) will happen
subject to the condition

(3.37) V (x0) =

√

[u+(x0, 0) − u−(x0, 0)]2 + [υ+(x0, 0) − υ−(x0, 0)]2 = δc.

The joint solution of the obtained equations and condition (3.37) allows to
determine the critical value of external loads, forces in bonds and the size of the
pre-fracture zone for the limit equilibrium state under the given characteristics
of bonds.

Distribution of normal stresses qy/N0 in the pre-fracture zone is depicted
in Fig. 3. Here N0 is the typical value of given external tangential load. In the
computations we used the dimensionless coordinates x = 1

2(a+ b) + 1
2x

′(b− a).
The compliances of bonds at normal and tangential directions were accepted

to be equal and constant along the pre-fracture zone. The law of variation of
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tangential forces along the pre-fracture zone is similar to the variation of normal
forces with a difference that the absolute values of tangential forces are substan-
tially lower and the maximum values of tangential forces are attained for small
sizes of the pre-fracture zone.

Fig. 3. Distribution of normal stresses qy/N0 in the pre-fracture zone.

The graph of dependence of relative length of the pre-fracture zone (b− a)/R
on the dimensionless load N0/σ∗ is given in Fig. 4.

Fig. 4. The graph of dependence of relative length of the pre-fracture zone (b − a)/R on the
dimensionless load N0/σ∗.

4. The case of an arbitrary number of prefracture zones

Now, let’s assume that in the disk’s operation process there existN rectilinear
pre-fracture zones of length 2ℓk (k = 1, 2, . . . N) (Fig. 1). It is assumed that
the pre-fracture zones are oriented in the direction of action of maximal tensile
stresses arising in the disk. The pre-fracture zone sizes are not known beforehand
and should be defined in the course of solution of the boundary value problem.
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The solution of the problem for this case is similar to the solution in the case
with a single pre-fracture zone with a difference that for finding the functions
Φ∗(z) and Ψ∗(z) the method with the explicit form of Kolosov–Muskheleshvili
potentials corresponding to unknown displacements along the pre-fracture zone
is used. The problem is reduced to definition of two analytic functions of complex
variables Φ(z) and Ψ(z) and satisfying boundary conditions (3.2), (3.3) and

(4.1) Φ(xk) + Φ(xk) + xkΦ′(xk) + Ψ(xk) = Fk, (k = 1, 2, . . . , N),

where Fk = qyk
(xk) − iqxkyk

(xk).
We look for the functions Φ∗(z) and Ψ∗(z) in the form [30, 31]

(4.2)

Φ∗(z) =
1

2π

N
∑

k=1

ℓk
∫

−ℓk

gk(t)

t− zk
dt,

Ψ∗(z) =
1

2π

N
∑

k=1

e−2iαk

ℓk
∫

−ℓk

[

gk(t)

t− zk
− Tke

iαk

(t− zk)2
gk(t)

]

dt,

Tk = teiαk + z0
k, z0

k = x0
k + iy0

k, zk = e−iαk(z − z0
k).

Here gk(xk) are the desired functions characterizing the opening of displacements
of pre-fracture zone faces

(4.3) gk(xk) =
2µ

i(1 + κ)

∂

∂x
[u+

k (xk, 0) − u−(xk, 0) + i(υ+
k (xk, 0) − υ−k (xk, 0))],

(k = 1, 2, . . . , N).

For determining the unknown functions gk(xk) we use the boundary condi-
tions (4.1) on the segments yk = 0, −ℓk ≤ xk ≤ ℓk (k = 1, 2, . . . , N).

Satisfying the boundary conditions (4.1) on the pre-fracture zone faces by the
functions (3.18) and (4.2), we get a system of N singular equations with respect
to the unknown functions gk(xk) (k = 1, 2, . . . , N):

(4.4)
N

∑

k−1

ℓk
∫

−ℓk

[Knk(t, x)gk(t) + Lnk(t, x)gk(t)]dt = π(Fn(x) + F ∗(x)),

|x| ≤ ℓn, n = 1, 2, . . . , N.

Here,

Knk(t, x) =
eiαk

2

[

1

Tk −Xn
+

e−2iαn

T k −Xn

]

,

Lnk(t, x) =
e−iαk

2

[

1

T k −Xn

− Tk −Xn

(T k −Xn)2
e−2iαn

]

,
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Fn = qyn(x) − iqxnyn(x), F ∗(x) = −[Φ0(x) + Φ0(x) + xΦ′
0(x) + Ψ0(x)],

Φ0(z) =
∞
∑

v=0

Bv

(

z

R

)v

, Ψ0(z) =
∞

∑

v=0

Dv

(

z

R

)v

.

To the system of singular integral equations (4.4) we should add additional
equalities expressing the condition of uniqueness of displacements in tracing the
pre-fracture zone contours

(4.5)

ℓk
∫

−ℓk

gk(t)dt = 0, k = 1, 2, . . . , N.

Under additional conditions (4.5), by means of procedure for converting
(see [22], appendix) a system to an algebraic system, the system of singular inte-
gral equations (4.4) is reduced to the system of N×M algebraic equations for de-
termining the N×M unknown values gk(tm) (k = 1, 2, . . . , N , m = 1, 2, . . . ,M):

1

M

M
∑

m=1

N
∑

k=1

ℓk
[

gk(tm)Knk(ℓktm, ℓnxr) + gk(tm)Lnk(ℓktm, ℓnxr)
]

(4.6)

= Fn(xr) + F ∗(xr), n = 1, 2, . . . , N, r = 1, 2, . . . ,M − 1,

M
∑

m=1

gn(tm) = 0,

where tm = cos 2m−1
2M π, m = 1, 2, . . . ,M , xr = cos πr

M , r = 1, 2, . . . ,M − 1.
If in algebraic equations (4.6) we pass to complexly- conjugated values, we

get one more N ×M algebraic equations. The right sides of algebraic systems
(4.6) contain the unknown values of normal qyn and tangential qxnyn forces at
the nodal points of appropriate pre-fracture zones.

Using the obtained solution, we find

(4.7) gk(xk) =
2µ

i(1 + κ)

d

dxk

[

C(xk, σk)(qyk
(xk) − iqxkyk

(xk))
]

,

k = 1, 2, . . . , N.

These complex equations help to find the forces qyk
and qxkyk

(k = 1, 2, . . . , N)
in the bonds between the appropriate pre-fracture zones. For obtaining missing
algebraic equations to determine approximate values of the forces qyk

(tm) and
qxkyk

(tm) (m = 1, 2, . . . ,M) at the nodal points it is required to fulfill condi-
tions (4.7) at the nodal points located in pre-fracture zones. Therefore, we use
the finite difference method. As a result we get a complex algebraic system of
N ×M equations to determine the values qyk

(tm), qxkyk
(tm) (k = 1, 2, . . . , N ;
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m = 1, 2, . . . ,M) at the nodal points of pre-fracture zones. Since the stresses
in the disk are restricted, we look for the solution of singular integral equations
in the class of everywhere bounded functions. Such a solution exists subject to
solvability conditions of integral equations. Therefore the obtained algebraic sys-
tems are not still closed. For accurateness of the obtained algebraic equations we
omit 2 ×N equations expressing the solvability conditions of integral equations
(the condition of finiteness of stresses in the vicinity of pre-fracture zone vertices
xk = ±ℓk (k = 1, 2, . . . , N). These conditions are in the form:

(4.8)

M
∑

m=1

(−1)M+mgk(tm) cot
2m− 1

4M
π = 0,

M
∑

m=1

(−1)mgk(tm) tan
2m− 1

4M
π = 0, (k = 1, 2, . . . , N).

The obtained relations (3.18), (3.19), (4.2), (4.6), (4.7), (4.8) allow to get the
final solution of the problem if the coefficients α∗

k (k = 0,±1, . . .) are determined.
To determine the system of infinite system of linear algebraic equations with
respect to the unknowns α∗

k, we behave similarly as in the case of a single pre-
fracture zone. As a result we get infinite linear algebraic systems of type (3.29).

Under the given characteristics of bonds, the obtained system of equations
with respect to gk(tm), qyk

(tm), qxkyk
(tm) (k = 1, 2, . . . , N ; m = 1, 2, . . . ,M), α∗

v

(v = 0,±1, . . .) enables to determine the stress strain state of the disk based on
the availability of arbitrary number of pre-fracture zones in the disk’s material.

The combined resolving system of equations became nonlinear even for linear-
elastic bonds because of unknown quantities ℓk (k = 1, 2, . . . , N). For solving it
we use the successive approximations method. We solve the combined system at
some definite values of ℓ∗k (k = 1, 2, . . . , N) with respect to the unknowns α∗

v,
gk(tm), qyk

, qxkyk
. The values of ℓ∗k and the found quantities are substituted into

(4.8), i.e., into the omitted equations of the combined system. The taken values
of the parameters of ℓ∗k and their respective values α∗

v, gk(tm), qyk
, qxkyk

will not,
generally speaking, satisfy equations (4.8). Therefore, choosing the values of the
parameters ℓ∗k, we will repeat the calculations until the equations (4.8) of the
combined system will be satisfied within a given accuracy. At each approximation
the combined system of equations was solved by the Gauss method choosing
the principal element for different values of M . In the case of nonlinear law
of deformation of bonds for determining the forces in pre-fracture zones the
iteration method similar to the method of elastic solutions [28] was used. It is
assumed that the law of deformation of interparticle bonds in pre-fracture zones
is linear for Vk = |(u+

k −u−k )− i(υ+
k −υ−k )| ≤ V∗. The first iteration step consists

of solving the system of resolving equations for interparticle linear-elastic bonds.
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The next iterations are fulfilled only in the case when Vk > V∗ holds on the parts
of the pre-fracture zone. For such iterations the system of resolving equations
is solved at each approximation for quasibrittle bonds (cohesive forces) with
effective compliance variable along the pre-fracture zone and dependent of the
size of the force vector modulus in bonds, obtained in the previous calculation
step. The effective compliance calculation is carried out similarly to finding of
the secant modulus in variable elasticity parameters [29]. It is assumed that the
successive approximations process comes to an end as the forces in pre-fracture
zones, obtained at two successive steps, differ a little from each other.

The nonlinear part of the bonds deformation curve was introduced in the
form of bilinear dependence whose ascending segment corresponded to elastic
deformation of bonds (0 < V (xk) < V∗) with maximal tension of bonds. For
V (xk) > V∗ the deformation law was described by nonlinear dependence de-
termined by two points (V∗, σ∗) and (δc, σc); moreover, for σc ≥ σ∗ we have the
increasing linear dependence (linear hardening corresponding to elastic-plastic
deformation of bonds).

The obtained solution of the problem permits to predict the occurrence of
cracks in a circular disk. For that the problem statement should be complemented
with a crack nucleation condition (a criterion, breaking of interparticle bonds of
the material). In place of such condition we accept the criterion of critical opening
of the pre-fracture zone faces

Vk(x
∗
k) =

∣

∣(υ+
k − υ−k ) − i(u+

k − u−k )
∣

∣ = δc, k = 1, 2, . . . , N,

where x∗k are the coordinates of the pre-fracture zone point where the breaking
of interparticle bonds of the material occurs.

Using the obtained solution, we can write the limit condition of crack nucle-
ation in the form:

(4.9) C(x∗k, σk(x
∗
k))σk(x

∗
k) = δc, k = 1, 2, . . . , N.

The results of calculations are depicted in Figs. 4, 5, 6 and 7.
The dependences of the length of the pre-fracture zone ℓk/R (k = 1, 2, 3) on

dimensionless value N0/σ∗ for different orientation angles (α1 = 15◦, α2 = 30◦,
α3 = 45◦ are represented in Fig. 5. The distribution graphs of normal qyk

/N0 and
tangential qxkyk

/N0 forces in pre-fracture zones are given in Figs. 6, 7 and 8. Here,
the curves indicated by 1 correspond to linear law of deformation of bonds, the
curves described by 2 to bilinear law of deformation of bonds. The dimensionless
coordinates x′k = xk/ℓk were used in calculations. While increasing the pre-
fracture zone size, the level of stresses qyk

and qxkyk
in the bonds decreases. The

location of the pre-fracture zone plays an important role on essential influence
on stresses qyk

and qxkyk
.
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Fig. 5. The dependence of the length of the pre-fracture zone ℓk/R (k = 1, 2, 3) on
dimensionless value N0/σ∗ for different orientation angles (α1 = 15◦, α2 = 30◦, α3 = 45◦).

Fig. 6. The graph of distribution of normal qy1
/N0 and tangential qx1y1

/N0 forces in
pre-fracture zones.

Fig. 7. The graph of distribution of normal qy2
/N0 and tangential qx2y2

/N0 forces in
pre-fracture zones.
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Fig. 8. The graph of distribution of normal qy3
/N0 and tangential qx3y3

/N0 forces in
pre-fracture zones.

When the pre-fracture zones are located close to each other, the calculations
show both an increase of the pre-fracture zones sizes and stresses in the bonds
and also decrease of forces in the bonds and the pre-fracture zone sizes. Difference
of the forms of mutual influence of damages (of the zones of material’s weakened
interparticle bonds) is explained by difference in their location. Thus, the joint
solution of the obtained algebraic systems and limit condition (4.9) enables (at
the given characteristics of the material) to determine the critical value of the
external load and the pre-fracture zone sizes for the limit equilibrium state at
which the crack occurs.

At some loading stage the simultaneous existence of pre-fracture zones and
the generated cracks in the disk is possible. The solution method in this case
combines the simultaneous consideration of damages and end zone cracks with
interfacial bonds.

5. Conclusions

The use of operation of circular disks in practice shows that at the design
stage it is necessary to take into account the cases when there may arise cracks
in the disk. In this connection it is necessary to realize the limit analysis of disks
in order to establish the ultimate loads at which the cracking in the disk occurs.
The size of the minimal zone of weakened interparticle bonds of the material
at which the cracking takes place, should be considered as the design char-
acteristics of the disk’s material. On the basis of the suggested design model,
taking into account the existence of damages (pre-fracture zones), a method
for calculation of the disks parameters at which the cracking appears, is devel-
oped.
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