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Surface instability of a semi-infinite isotropic laminated plate

under surface van der Waals forces
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By means of complex variable method, the present work demonstrates that the
surface of a semi-infinite isotropic laminated plate that is being attracted to a rigid
contactor through van der Waals forces is always unstable. Two distinct surface insta-
bility modes are identified, and their wavenumbers and wavelengths are presented in
concise and simple expressions. Furthermore, the two wavenumbers and wavelengths
are completely determined by three elastic parameters of the laminated plate, three
parameters related to the interactions between the surface and the contactor, and
three parameters related to surface energy.
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1. Introduction

When a rigid contactor is in close proximity to a compliant solid, the van
der Waals forces come into play. It has been demonstrated both experimentally
and theoretically that the surface of an elastic film will become unstable when
it is subject to van der Waals forces [1–11]. In particular, the wavelength of
the surface instability is nearly independent of the nature and magnitude of the
external force (or the interaction) but proportional to the film thickness [4, 5].
Apparently, the results for thin films are not directly applicable to a semi-infinite
elastic body because an infinite wavelength will be predicted if the film thickness
approaches infinity.

By using the complex variable technique, Ru [12] analyzed the surface in-
stability of a semi-infinite elastic body under plane strain condition in which
the thickness in the x3-direction approaches infinity. By using a similar method,
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Wang et al. [13] investigated the surface instability of a semi-infinite harmonic
solid under finite plane strain deformation. By using the Stroh method,
Wang [14] analyzed the surface instability of a semi-infinite anisotropic elastic
body under two-dimensional deformation (or the generalized plane strain con-
dition). These studies have demonstrated that the surface of the semi-infinite
elastic body attracted by van der Waals forces is always unstable, and a unique
surface instability mode exists. Fried and Todres [15] investigated the com-
bined effects of surface prestress, curvature dependence of the surface free-energy
density and interactions between the surface and rigid contactor on the wrin-
kling instability of an incompressible half-space. Their results showed that the
combined effects will lead to an increased number of linearly stable wrinkled
configurations.

The present work aims to analyze the surface instability of a semi-infinite
isotropic laminated thin plate under stretching and bending deformations due
to van der Waals attraction. The surface instability studied in this work is quite
different from other known wrinkling patterns in thin elastic sheets due to small
compressive stress [16] or significant stretching [17–19].

2. Basic formulation

Consider an undeformed plate of uniform thickness h, to which a Cartesian
coordinate system {xi} (i = 1, 2, 3) is attached and of which the main plane
is located at x3 = 0. The plate is composed of an isotropic, linearly elastic
material that can be inhomogeneous and laminated in the thickness direction.
In this work, Greek subscripts take the values 1, 2. Summation over repeated
subscripts is understood. The coordinate system is chosen in such a way that
the two in-plane displacements uα and the out-of-plane deflection w on the main
plane are decoupled in the equilibrium equations [20]. We denote by h0 the
distance between the main plane and the lower surface of the plate [20] and
introduce the integral operator

Q(· · · ) =

h−h0
∫

−h0

(· · · ) dx3.

Consequently, the membrane stress resultants and bending moments defined by
Nαβ = Qσαβ , Mαβ = Qx3σαβ with σαβ being the in-plane stress components,
transverse shearing forces Rβ = Mαβ,α, in-plane displacements, deflection and
slopes ϑα = −w,α on the main plane of the plate, and the four stress functions
ϕα and ηα can be concisely expressed in terms of four complex potentials φ(z),
ψ(z), Φ(z) and Ψ(z) of the complex variable z = x1 + ix2 [20–22]:
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(2.1)

N11 +N22 = 4Re
{

φ′(z) +BΦ′(z)
}

,

N22 −N11 + 2iN12 = 2
[

z̄φ′′(z) + ψ′(z) +Bz̄Φ′′(z) +BΨ ′(z)
]

,

M11 +M22 = 4D(1 + νD)Re
{

Φ′(z)
}

+
B(κA − 1)

µ
Re

{

φ′(z)
}

,

M22 −M11 + 2iM12 = − 2D(1 − νD)
[

z̄Φ′′(z) + Ψ ′(z)
]

− B

µ

[

z̄φ′′(z) + ψ′(z)
]

,

R1 − iR2 = 4DΦ′′(z) +
B(κA + 1)

2µ
φ′′(z),

(2.2)

2µ(u1 + iu2) = κAφ(z) − zφ′(z) − ψ(z),

ϑ1 + iϑ2 = Φ(z) + zΦ′(z) + Ψ(z),

w = − Re {z̄Φ(z) + χ(z)} ,

ϕ1 + iϕ2 = i
[

φ(z) + zφ′(z) + ψ(z)
]

+ iB
[

Φ(z) + zΦ′(z) + Ψ(z)
]

,

η1 + iη2 = iD(1 − νD)
[

κDΦ(z) − zΦ′(z) − Ψ(z)
]

+ i
B

2µ

[

κAφ(z) − zφ′(z) − ψ(z)
]

,

where Ψ(z) = χ′(z), and

(2.3)

µ =
1

2
(A11 −A12), B = B12, D = D11, νA =

A12

A11
, νD =

D12

D11
,

κA =
3A11 −A12

A11 +A12
=

3 − νA

1 + νA
, κD =

3D11 +D12

D11 −D12
=

3 + νD

1 − νD
.

Detailed definitions of the five elastic constants A11, A12, B12, D11 and D12

can be found in Beom and Earmme [20]. Moreover, the membrane stress re-
sultants, bending moments, transverse shearing forces, and modified Kirchhoff
transverse shearing forces V1 = R1 +M12,2 and V2 = R2 +M21,1, that exclusively
apply to free edges, can be expressed in terms of the four stress functions ϕα

and ηα [21]:

(2.4)

Nαβ = −ǫβωϕα,ω,

Mαβ = −ǫβωηα,ω − 1

2
ǫαβηω,ω,

Rα = −1

2
∈αβ ηω,ωβ , Vα = −ǫαωηω,ωω,

where ǫαβ are the components of the two-dimensional permutation tensor.
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In addition, the explicit expressions of the 4 × 4 real matrices H, L and S and
the 4 × 4 impedance matrix M introduced in [21] for an isotropic laminated plate
have been obtained in [23]. H, L and S can be considered as the counterparts
of Barnett–Lothe tensors in the Stroh sextic formalism for generalized plane
strain elasticity [24]. In particular, H and L are positive definite real symmetric
matrices and M is a positive definite Hermitian matrix [25].

3. Surface instability

Now we consider a semi-infinite isotropic laminated plate (x2 > 0 and −h0 <
x3 < h − h0) attracted to a rigid contactor through van der Waals forces, as
illustrated in Fig. 1.

Semi−infinite isotropic
laminated plate

Surface van der Waals forces

x
2

x
1

↓↓↓↓↓

↑ ↑ ↑ ↑ ↑

Fig. 1. A semi-infinite isotropic laminated plate (x2 > 0 and −h0 < x3 < h − h0) interacting
with a rigid contactor through van der Waals-like forces.

The original surface conditions for the perturbed semi-infinite elastic body
are given by [12]

(3.1)
σ22 = −βũ2 − γũ2,11 = −β(u2 + x3ϑ2) − γ(u2,11 + x3ϑ2,11),

σ12 = 0, x2 = 0+, −h0 < x3 < h− h0,

where σ22 and σ12 are the perturbed surface normal and shear stresses, ũ2 is the
perturbed surface normal displacement, β (> 0) is the interaction coefficient [12],
γ (> 0) is the surface energy of the semi-infinite plate [12]. Here, it is assumed
that β and γ can be inhomogeneous in the plate thickness direction (i.e., β and
γ are functions of x3) to reflect the realistic scenario that the van der Waals
interaction energy and the surface energy are material dependent.

Through integrating the stresses in Eq. (3.1), the surface conditions for the
perturbed semi-infinite laminated plate take the following form:



Surface instability of a semi-infinite isotropic laminated plate. . . 141

(3.2)

N22 = −β11u2 − β12ϑ2 − γ11u2,11 − γ12ϑ2,11,

M22 = −β12u2 − β22ϑ2 − γ12u2,11 − γ22ϑ2,11,

N12 = V2 = 0, x2 = 0+,

where

(3.3)
β11 = Qβ > 0, β12 = Qx3β, β22 = Qx2

3β > 0,

γ11 = Qγ > 0, γ12 = Qx3γ, γ22 = Qx2
3γ > 0.

The Schwarz integral inequality gives rise to β11β22 > β2
12 and γ11γ22 > γ2

12.
It is stressed that the surface conditions in Eq. (3.2) are perturbed ones. It is

enough to assume that there is a homogeneous deformation with flat surface due
to remote tension and bending N22 = N∞

22 and M22 = M∞
22 , and then examine

if there exists a perturbed solution which can satisfy Eq. (3.2). The solution to
the homogeneous deformation is simply given below:

φ(z) = χ1z, ψ(z) = χ2z, Φ(z) = η1z, Ψ(z) = η2z,

where the four real coefficients χ1, χ2, η1 and η2 are

χ1 =
µD(1 + νD)N∞

22 −BµM∞
22

4µD(1 + νD) −B2(κA − 1)
, η1 =

4µM∞
22 −B(κA − 1)N∞

22

16µD(1 + νD) − 4B2(κA − 1)
,

χ2 =
µD(1 − νD)N∞

22 +BµM∞
22

2µD(1 − νD) −B2
, η2 = − 2µM∞

22 +BN∞
22

4µD(1 − νD) − 2B2
.

In view of Eq. (2.4), the condition of N12 = V2 = 0 on the surface x2 = 0 is
equivalent to ϕ1 = η1 = 0 on x2 = 0. By using Eq. (2.2), this condition can be
expressed in terms of the four complex potentials φ(z), Φ(z),Θ(z) = zφ′(z)+ψ(z)
and Ω(z) = zΦ′(z) + Ψ(z) as

(3.4)

φ+(z)−Θ+(z)−φ̄−(z)+Θ̄−(z)+B
[

Φ+(z)−Ω+(z)−Φ̄−(z)+Ω̄−(z)
]

= 0,

2µD(1−νD)
[

κDΦ+(z)+Ω+(z)−κDΦ̄−(z)−Ω̄−(z)
]

+B
[

κAφ+(z)+Θ+(z)−κAφ̄−(z)−Θ̄−(z)
]

= 0,

Im {z} = 0.

It can be conveniently derived from the above expressions that Θ(z) and
Ω(z) can be given in terms of φ(z) and Φ(z) as

(3.5)

Θ(z) =

[

2µD(1 − νD) +B2κA
]

φ(z) + 8BµDΦ(z)

2µD(1 − νD) −B2
,

Ω(z) =
−B(κA + 1)φ(z) −

[

2µD(3 + νD) +B2
]

Φ(z)

2µD(1 − νD) −B2
.
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Consequently, ϕ2, η2, u1, u2, ϑ1 and ϑ2 on the surface x2 = 0 can be expressed
in terms of φ(z) and Φ(z) as

(3.6)

ϕ2 = φ(z) +BΦ(z) + φ̄(z) +BΦ̄(z),

η2 =
BκA

2µ
φ(z) +D(3 + νD)Φ(z) +

BκA

2µ
φ̄(z) +D(3 + νD)Φ̄(z),

u1 =

[

µD(1 − νD)(κA − 1) −B2κA
]

φ(z) − 4BµDΦ(z)

4µ2D̃(1 − ν̃D)

+

[

µD(1 − νD)(κA − 1) −B2κA
]

φ̄(z) − 4BµDΦ̄(z)

4µ2D̃(1 − ν̃D)
,

u2 = − i
D(1 − νD)(κA + 1)φ(z) + 4BDΦ(z)

4µD̃(1 − ν̃D)

+ i
D(1 − νD)(κA + 1)φ̄(z) + 4BDΦ̄(z)

4µD̃(1 − ν̃D)
,

ϑ1 = − B(κA + 1)φ(z) + 2
[

2µD(1 + νD) +B2
]

Φ(z)

4µD̃(1 − ν̃D)

− B(κA + 1)φ̄(z) + 2
[

2µD(1 + νD) +B2
]

Φ̄(z)

4µD̃(1 − ν̃D)
,

ϑ2 = − i
B(κA + 1)φ(z) + 8µDΦ(z)

4µD̃(1 − ν̃D)
+ i

B(κA + 1)φ̄(z) + 8µDΦ̄(z)

4µD̃(1 − ν̃D)
,

Im {z} = 0,

where ν̃D and D̃ are defined by [20]

(3.7) ν̃D =
D̃12

D̃11

, D̃ = D̃11 = D11 −
A11B

2
12

A2
11 −A2

12

, D̃12 = D12 +
A12B

2
12

A2
11 −A2

12

.

Thus, the first two conditions in Eq. (3.2) can be expressed in terms of φ(z)
and Φ(z) as

(3.8) 2iµD̃(1 − ν̃D)

[

2 2B
BκA 2µD(3 + νD)

] [

φ′(z)
Φ′(z)

]+

+

[

(κA + 1)
[

β11D(1 − νD) + β12B
]

4D(β11B + 2β12µ)
µ(κA + 1)

[

β12D(1 − νD) + β22B
]

4µD(β12B + 2β22µ)

] [

φ(z)
Φ(z)

]+

+

[

(κA + 1)
[

γ11D(1 − νD) + γ12B
]

4D(γ11B + 2γ12µ)
µ(κA + 1)

[

γ12D(1 − νD) + γ22B
]

4µD(γ12B + 2γ22µ)

] [

φ′′(z)
Φ′′(z)

]+
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= −2iµD̃(1 − ν̃D)

[

2 2B
BκA 2µD(3 + νD)

] [

φ̄′(z)
Φ̄′(z)

]−

+

[

(κA + 1)
[

β11D(1 − νD) + β12B
]

4D(β11B + 2β12µ)
µ(κA + 1)

[

β12D(1 − νD) + β22B
]

4µD(β12B + 2β22µ)

] [

φ̄(z)
Φ̄(z)

]−

+

[

(κA + 1)
[

γ11D(1 − νD) + γ12B
]

4D(γ11B + 2γ12µ)
µ(κA + 1)

[

γ12D(1 − νD) + γ22B
]

4µD(γ12B + 2γ22µ)

] [

φ̄′′(z)
Φ̄′′(z)

]−

,

Im {z} = 0.

The left-hand side of Eq. (3.8) is analytic in the upper half-plane including
the point at infinity, whilst its right-hand side is analytic in the lower half-plane
including the point at infinity. By using Liouville’s theorem, we arrive at the
following set of coupled second-order differential equations:

(3.9) 2iµD̃(1 − ν̃D)

[

2 2B
BκA 2µD(3 + νD)

] [

φ′(z)
Φ′(z)

]

+

[

(κA + 1)
[

β11D(1 − νD) + β12B
]

4D(β11B + 2β12µ)
µ(κA + 1)

[

β12D(1 − νD) + β22B
]

4µD(β12B + 2β22µ)

] [

φ(z)
Φ(z)

]

+

[

(κA + 1)
[

γ11D(1 − νD) + γ12B
]

4D(γ11B + 2γ12µ)
µ(κA + 1)

[

γ12D(1 − νD) + γ22B
]

4µD(γ12B + 2γ22µ)

] [

φ′′(z)
Φ′′(z)

]

=

[

0
0

]

.

To solve the above set of equations, the unknown φ(z) and Φ(z) are assumed
to take the following forms:

(3.10)
φ(z) = δ1 exp(iλz),

Φ(z) = δ2 exp(iλz),

where λ is a wavenumber. The real part of λ should be positive in order to ensure
that φ(z) and Φ(z) are bounded as x2 → +∞.

Substitution of Eq. (3.10) into Eq. (3.9) yields the following eigenvalue
problem:

(3.11) − 2λµD̃(1 − ν̃D)

[

2 2B
BκA 2µD(3 + νD)

] [

δ1
δ2

]

+

[

(κA + 1)
[

β11D(1 − νD) + β12B
]

4D(β11B + 2β12µ)
µ(κA + 1)

[

β12D(1 − νD) + β22B
]

4µD(β12B + 2β22µ)

] [

δ1
δ2

]

− λ2

[

(κA + 1)
[

γ11D(1 − νD) + γ12B
]

4D(γ11B + 2γ12µ)
µ(κA + 1)

[

γ12D(1 − νD) + γ22B
]

4µD(γ12B + 2γ22µ)

] [

δ1
δ2

]

=

[

0
0

]

,



144 X. Wang, Y. Xu, K. Zhou

which leads to a quartic equation in λ given by

(3.12) (γ11γ22 − γ2
12)λ

4 + (γ11L33 + γ22L11 − 2γ12L13)λ
3

+
[

L11L33 − L2
13 − (β22γ11 + β11γ22 − 2β12γ12)

]

λ2

− (β11L33 + β22L11 − 2β12L13)λ+ β11β22 − β2
12 = 0,

where L11, L33 and L13 are defined as

(3.13)

L11 = µ(1 + νA) − B2

2D
,

L33 =
D(1 − νD)(3 + νD)

2
− B2(3 − νA)

4µ
,

L13 = −B(νD + νA)

2
.

It is noted that L11, L33 and L13 are elements of the following 4× 4 positive
definite real symmetric matrix L [23]

(3.14) L =









L11 0 L13 0
0 L11 0 L13

L13 0 L33 0
0 L13 0 L33









.

The wavenumber λ can also be determined by solving the following eigenvalue
problem:

(3.15) (P − λM − λ2Q)v = 0,

where v is the eigenvector associated with the eigenvalue λ, and

M =

















4µ

3 − νA
−2iµ(1 − νA)

3 − νA
0 iB

2iµ(1 − νA)

3 − νA

4µ

3 − νA
−iB 0

0 iB 2D iD(1 + νD)
−iB 0 −iD(1 + νD) 2D

















,(3.16)

P =









0 0 0 0
0 β11 0 β12

0 0 0 0
0 β12 0 β22









, Q =









0 0 0 0
0 γ11 0 γ12

0 0 0 0
0 γ12 0 γ22









.(3.17)

It is deduced from Eq. (3.15) that for a nontrivial solution of v,

(3.18)
∣

∣P − λM − λ2Q
∣

∣ = 0,



Surface instability of a semi-infinite isotropic laminated plate. . . 145

which is a sextic equation in λ. There are six roots of λ in Eq. (3.18): two are
zero, and the rest four nonzero eigenvalues are determined by Eq. (3.12).

The 4 × 4 Hermitian matrix M (or the so called edge-impedance matrix) is
positive definite [25] and the 4 × 4 real symmetric matrices P and Q are both
positive semi-definite in view of the fact that β11 > 0, β22 > 0, β11β22 > β2

12 and
γ11 > 0, γ22 > 0, γ11γ22 > γ2

12. If v is an eigenvector associated with a nonzero
eigenvalue λ of Eq. (3.15), we will have v̄TPv > 0, v̄TQv > 0 and v̄TMv > 0
(if v̄TPv = 0, we then have v̄TQv = 0, as a result λ = 0, which violates the
assumption that λ is nonzero). Pre-multiplying Eq. (3.15) by v̄T, we obtain

(3.19) λ2v̄TQv + λv̄TMv − v̄TPv = 0,

from which we arrive at

(3.20) λ =
−v̄TMv ±

√

(v̄TMv)2 + 4(v̄TPv)(v̄TQv)

2v̄TQv
.

The above expression together with Eq. (3.12) clearly indicates that the
nonzero λ is always real, and the four real-valued nonzero λ contain both positive
and negative numbers. It is further observed from Eq. (3.12) that two eigenvalues
are positive, and the remaining two are negative because the product of the four
eigenvalues (β11β22 − β2

12)/(γ11γ22 − γ2
12) is positive. This fact implies that there

always exist two distinct surface instability modes whenever β > 0 and γ > 0.
In addition, it is observed from Eq. (3.12) that the two wavenumbers λ1, λ2,
(λ1 > λ2 > 0) or the two wavelengths 2π/λ1, 2π/λ2 are completely determined
by nine parameters: (β11, β22, β12), (γ11, γ22, γ12) and (L11, L33, L13).

Meanwhile, it is obtained from Eq. (3.11) that δ1 and δ2 should satisfy the
following restriction:

(3.21)
δ1
δ2

=

4λBµD̃(1−ν̃D)−4D(β11B+2β12µ)+4λ2D(γ11B+2γ12µ)

(κA+1) [β11D(1−νD)+β12B]−4λµD̃(1−ν̃D)−λ2(κA+1) [γ11D(1−νD)+γ12B]
,

with (λ = λ1, λ2).
The stretching and bending deformations of the laminated semi-infinite plate

cannot be uniquely determined because δ1 or δ2 can still be arbitrary even though
the ratio δ1/δ2 is uniquely determined from Eq. (3.21) for a given wavenumber.
The decay rate of surface perturbation in the x2-direction is determined by

(3.22) min {λ1, λ2} = λ2.

In the following, we present five special cases to demonstrate the obtained
solution.
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Case I. When the plate is relatively stiff such that λQM−1 → 0, Eq. (3.15)
reduces to

(3.23) (P− λM)v = 0,

which is independent of the surface energy. In this case, Eq. (3.12) becomes

(3.24) (L11L33 − L2
13)λ

2 − (β11L33 + β22L11 − 2β12L13)λ+ β11β22 − β2
12 = 0.

The two wavenumbers λ1 and λ2 can then be determined from Eq. (3.24) as

(3.25)

λ1 =
β11L33+β22L11−2β12L13+

√
(β11L33−β22L11)2+4(β11L13−β12L11)(β22L13−β12L33)

2(L11L33−L2
13)

,

λ2 =
β11L33+β22L11−2β12L13−

√
(β11L33−β22L11)2+4(β11L13−β12L11)(β22L13−β12L33)

2(L11L33−L2
13)

.

If v is an eigenvector associated with a nonzero eigenvalue λ of Eq. (3.23),
then

λ =
v̄TPv

v̄TMv
> 0.

Consequently the two nonzero wavenumbers given by Eq. (3.24) are indeed pos-
itive. Considering the fact that

(3.26) (β11L33 − β22L11)
2 + 4(β11L13 − β12L11)(β22L13 − β12L33)

= (β11L33 + β22L11 − 2β12L13)
2 − 4(β11β22 − β2

12)(L11L33 − L2
13),

the following inequalities can then be established from Eqs. (3.25) and (3.26):

(3.27) β11L33 + β22L11 − 2β12L13 ≥ 2
√

(β11β22 − β2
12)(L11L33 − L2

13) > 0.

In addition, the two wavenumbers given by Eq. (3.25) are completely deter-
mined by six parameters: (β11, β22, β12) and (L11, L33, L13). The wavelengths of
the two instability modes are given by

(3.28)

2π

λ1
=

π
h

β11L33+β22L11−2β12L13−
√

(β11L33−β22L11)2+4(β11L13−β12L11)(β22L13−β12L33)
i

β11β22−β2
12

,

2π

λ2
=

π
h

β11L33+β22L11−2β12L13+
√

(β11L33−β22L11)2+4(β11L13−β12L11)(β22L13−β12L33)
i

β11β22−β2
12

.
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When B = 0 for a homogeneous plate, β12 = L13 = 0. In this case, it is
deduced from Eq. (3.25) that

(3.29) λ1 =
β11

L11
=
β11(κ

A + 1)

4µ
, λ2 =

β22

L33
=

2β22

D(1 − νD)(3 + νD)
.

In Eq. (3.29), λ1 is just the one derived by Ru [12] when the surface energy γ
is ignored. Equation (3.29) implies that there exist two distinct instability modes
even when the thin plate is homogeneous in the thickness direction. The ratio of
the two wavenumbers in Eq. (3.29) is

λ1

λ2
=

3 + ν

1 + ν

where ν is the Poisson’s ratio of the homogeneous plate. For example, if ν=1/3,
this ratio gives λ1/λ2 = 2.5.

Case II. If the plate is extremely compliant such that λQM−1 → ∞,
Eq. (3.15) reduces to

(3.30) (P − λ2Q)v = 0,

which is independent of the elastic properties of the plate. In this case, Eq. (3.12)
becomes

(3.31) (γ11γ22 − γ2
12)λ

4 − (β22γ11 + β11γ22 − 2β12γ12)λ
2 + β11β22 − β2

12 = 0.

The two wavenumbers λ1 and λ2 are then determined from Eq. (3.31) as

(3.32)

λ2
1 =

β11γ22+β22γ11−2β12γ12+
√

(β11γ22−β22γ11)2+4(β11γ12−β12γ11)(β22γ12−β12γ22)

2(γ11γ22−γ2
12)

> 0,

λ2
2 =

β11γ22+β22γ11−2β12γ12−
√

(β11γ22−β22γ11)2+4(β11γ12−β12γ11)(β22γ12−β12γ22)

2(γ11γ22−γ2
12)

> 0.

The positive values on the right-hand side of Eq. (3.32) are due to the fact
that both

[

β11 β12

β12 β22

]

and

[

γ11 γ12

γ12 γ22

]

are positive definite. The two wavenumbers given by Eq. (3.32) are completely
determined by six parameters: (β11, β22, β12) and (γ11, γ22, γ12). In addition, the
following inequality can be easily established from Eq. (3.32):

(3.33) β22γ11 + β11γ22 − 2β12γ12 ≥ 2
√

(β11β22 − β2
12)(γ11γ22 − γ2

12) > 0.



148 X. Wang, Y. Xu, K. Zhou

Case III. If γωρ and βωρ satisfy the following restriction:

(3.34)
γ11

β11
=
γ12

β12
=
γ22

β22
= k > 0,

the two wavenumbers (denoted as λ̃1 and λ̃2) can be simply obtained from λ1

and λ2 given by Eq. (3.25) in the absence of the surface energy as follows:

(3.35)

λ̃1 =
2λ1

1 +
√

1 + 4kλ2
1

< λ1,

λ̃2 =
2λ2

1 +
√

1 + 4kλ2
2

< λ2,

which indicates that the surface energy will lower the values of the wavenumbers.

Case IV. If the plate is homogeneous in the thickness direction, we have

β12 = γ12 = L13 = 0, L11 = µ(1 + νA), L33 =
D(1 − νD)(3 + νD)

2
.

In this case, Eq. (3.12) becomes

(3.36) γ11γ22λ
4 + (γ11L33 + γ22L11)λ

3 + (L11L33 − β22γ11 − β11γ22)λ
2

− (β11L33 + β22L11)λ+ β11β22 = 0,

or equivalently

(3.37) (γ11λ
2 + L11λ− β11)(γ22λ

2 + L33λ− β22) = 0.

The two wavenumbers can be determined as

(3.38)

λ1 =
−L11 +

√

L2
11 + 4β11γ11

2γ11
,

λ2 =
−L33 +

√

L2
33 + 4β22γ22

2γ22
.

It is easily checked that λ1 in Eq. (3.38) is just the one derived by Ru [12]. In
the presence of surface energy, there are two instability modes for a homogeneous
plate given by Eq. (3.38): one is the in-plane mode observed in [12], the other
one is the out-of-plane mode.

Case V. In the final example, we assume that the plate is made of two
homogeneous layers of equal thickness. In addition, the Young’s modulus of
the top layer is just double that of the bottom layer, and the two layers have
a constant Poisson’s ratio ν = 0.25. Both β and γ are constant in the thickness
direction. In this example, it is calculated that h0 = 7h/12, and that
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(3.39)

γ11γ22 − γ2
12 =

γ2h4

12
,

γ11L33 + γ22L11 − 2γ12L13 =
13 × 71

16 × 64
h4γC11,

L11L33 − L2
13 − (β22γ11 + β11γ22 − 2β12γ12) =

45 × 429

64 × 512
h4C2

11 −
h4βγ

6
,

− (β11L33 + β22L11 − 2β12L13) = −13 × 71

16 × 64
h4βC11,

β11β22 − β2
12 =

β2h4

12
,

where C11 = E/(1 − ν2) with E being the Young’s modulus of the bottom layer.
The two wavenumbers can then be determined from Eq. (3.12). The depen-

dence of the two wavelengths on both β and γ is shown in Fig. 2 for two values of
β = 1011, 2 × 1011 J/m4 with E = 0.5 Mpa. First, it is clearly demonstrated in
Fig. 2 that our theoretical prediction of the existence of two instability modes is
numerically verified in this example. In addition, the two wavelengths of surface
wrinkling are very sensitive to the interaction coefficient β but not to the surface
energy γ. An increase in the interaction coefficient β will lower the values of
the two wavelengths of surface wrinkling. This trend is in agreement with that
observed by Ru [12].
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β=2×1011 J/m4

β=2×1011 J/m4

Fig. 2. The dependence of the two wavelengths of surface wrinkling on the interaction
coefficient β and the surface energy γ for two values of β = 1011, 2 × 1011 J/m4 with

E = 0.5 Mpa.

4. Further discussions

In Section 3, the results are obtained in the Cartesian coordinate system that
is chosen such that x3 = 0 is on the main plane. Next, the surface instability
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problem will be discussed by choosing a new coordinate system {x̂i} (i = 1, 2, 3)
in which x̂3 = 0 is at an arbitrary distance of h1 above the lower surface of the
plate and x̂α = xα.

In the new coordinate system, the surface conditions for the perturbed semi-
infinite laminated plate take the following form:

(4.1)

N̂22 = −β̂11û2 − β̂12ϑ̂2 − γ̂11û2,11 − γ̂12ϑ̂2,11,

M̂22 = −β̂12û2 − β̂22ϑ̂2 − γ̂12û2,11 − γ̂22ϑ̂2,11,

N̂12 = V̂2 = 0, x2 = 0+,

where the symbol ˆ indicates the quantities in the new coordinate system, and

(4.2)
β̂11 = Q̂β > 0, β̂12 = Q̂x̂3β, β̂22 = Q̂x̂2

3β > 0,

γ̂11 = Q̂γ > 0, γ̂12 = Q̂x̂3γ, γ̂22 = Q̂x̂2
3γ > 0,

with Q̂(· · · ) =
∫ h−h1

−h1
(· · · ) dx̂3.

It can be conveniently proved that

(4.3)
β̂11 = β11, β̂12 = β12 + ĥβ11, β̂22 = β22 + 2ĥβ12 + ĥ2β11,

γ̂11 = γ11, γ̂12 = γ12 + ĥγ11, γ̂22 = γ22 + 2ĥγ12 + ĥ2γ11,

where ĥ = h1 − h0.
In addition, ûα and ϑ̂α are related to uα and ϑα, ϕ̂α and η̂α are related to

ϕα and ηα through the following relationships:

(4.4)









û1

û2

ϑ̂1

ϑ̂2









=

[

I −ĥI
0 I

]









u1

u2

ϑ1

ϑ2









,









ϕ̂1

ϕ̂2

η̂1

η̂2









=

[

I 0

ĥI I

]









ϕ1

ϕ2

η1

η2









, I =

[

1 0
0 1

]

.

Thus, the impedance matrix M̂ = Ĥ−1 + iĤ−1Ŝ and its inverse M̂−1 =

L̂−1 − iŜL̂
−1

in the new coordinate system can be obtained from M =
H−1 + iH−1S and its inverse M−1 = L−1 − iSL−1 in the original coordinate
system as follows:

(4.5) M̂ =

[

I 0

ĥI I

]

M

[

I ĥI
0 I

]

, M̂−1 =

[

I −ĥI
0 I

]

M−1

[

I 0

−ĥI I

]

.

Therefore, the three real matrices Ĥ, L̂ and Ŝ in the new coordinate system
{x̂i} can be obtained from H, L and S in the original coordinate system {xi} as
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(4.6)
Ĥ =

[

I −ĥI
0 I

]

H

[

I 0

−ĥI I

]

, L̂ =

[

I 0

ĥI I

]

L

[

I ĥI
0 I

]

,

Ŝ =

[

I −ĥI
0 I

]

S

[

I ĥI
0 I

]

.

As a result, Ĥ, L̂ and Ŝ can be derived as

(4.7)

Ĥ =











Ĥ11 0 Ĥ13 0

0 Ĥ11 0 Ĥ13

Ĥ13 0 Ĥ33 0

0 Ĥ13 0 Ĥ33











, L̂ =











L̂11 0 L̂13 0

0 L̂11 0 L̂13

L̂13 0 L̂33 0

0 L̂13 0 L̂33











,

Ŝ =











0 −Ŝ21 0 Ŝ14

Ŝ21 0 −Ŝ14 0

0 Ŝ32 0 Ŝ34

−Ŝ32 0 −Ŝ34 0











,

where

(4.8)

Ĥ11 = H11 + ĥ2H33, Ĥ13 = −ĥH33, Ĥ33 = H33,

L̂11 = L11, L̂13 = L13 + ĥL11, L̂33 = L33 + 2ĥL13 + ĥ2L11,

Ŝ21 = S21 + ĥS32, Ŝ14 = S14 − ĥ(S21 + S34) − ĥ2S32,

Ŝ32 = S32, Ŝ34 = S34 + ĥS32.

In Eq. (4.8), L11, L33 and L13 have been defined in Eq. (3.13), and

(4.9)

H11 =
3 − νA

4µ
, H33 =

1

2D
,

S21 =
1 − νA

2
, S14 =

B(3 − νA)

4µ
, S32 =

B

2D
, S34 =

1 + νD

2
.

It is observed from Eq. (4.8) that H33, L11 and S32 are invariants. Moreover,
it is also found that the following quantities are invariants:

β̂11Ĥ11 + β̂22Ĥ33 + 2β̂12Ĥ13 = β11H11 + β22H33,

β̂11L̂33 + β̂22L̂11 − 2β̂12L̂13 = β11L33 + β22L11 − 2β12L13,

β̂11Ŝ14 + β̂12(Ŝ21 + Ŝ34) − β̂22Ŝ32 = β11S14 + β12(S21 + S34) − β22S32,

Ĥ11L̂11 + Ĥ33L̂33 + 2Ĥ13L̂13 = H11L11 +H33L33,

Ĥ11Ŝ32 − Ĥ33Ŝ14 + Ĥ13(Ŝ21 + Ŝ34) = H11S32 −H33S14,

L̂33Ŝ32 − L̂11Ŝ14 + L̂13(Ŝ21 + Ŝ34) = L33S32 − L11S14 + L13(S21 + S34),

L̂11L̂33 − L̂2
13 = L11L33 − L2

13, Ĥ11Ĥ33 − Ĥ2
13 = H11H33,

Ŝ21Ŝ34 + Ŝ32Ŝ14 = S21S34 + S32S14, β̂11β̂22 − β̂2
12 = β11β22 − β2

12,

(4.10)
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β̂11γ̂22 + β̂22γ̂11 − 2β̂12γ̂12 = β11γ22 + β22γ11 − 2β12γ12.(4.11)

More invariants can be obtained if β is replaced by γ in Eq. (4.10). Conse-
quently Eq. (3.12) can also be expressed in terms of β̂11, β̂22, β̂12, γ̂11, γ̂22, γ̂12

and L̂11, L̂33, L̂13 in the new coordinate system as

(4.12) (γ̂11γ̂22 − γ̂2
12)λ

4 + (γ̂11L̂33 + γ̂22L̂11 − 2γ̂12L̂13)λ
3

+
[

L̂11L̂33 − L̂2
13 − (β̂22γ̂11 + β̂11γ̂22 − 2β̂12γ̂12)

]

λ2

− (β̂11L̂33 + β̂22L̂11 − 2β̂12L̂13)λ+ β̂11β̂22 − β̂2
12 = 0.

In the following we confine our attention to Case I discussed in Section 3.
The two wavenumbers given by Eq. (3.25) can now be expressed in terms of β̂11,
β̂22, β̂12 and L̂11, L̂33, L̂13 in the new coordinate system as

(4.13)

λ1 =
β̂11L̂33+β̂22L̂11−2β̂12L̂13+

√
(β̂11L̂33−β̂22L̂11)2+4(β̂11L̂13−β̂12L̂11)(β̂22L̂13−β̂12L̂33)

2(L̂11L̂33−L̂2
13)

,

λ2 =
β̂11L̂33+β̂22L̂11−2β̂12L̂13−

√
(β̂11L̂33−β̂22L̂11)2+4(β̂11L̂13−β̂12L̂11)(β̂22L̂13−β̂12L̂33)

2(L̂11L̂33−L̂2
13)

.

If the coordinate system is chosen such that L̂13 = 0, h1 can then be deter-
mined as

(4.14) ĥ = h1 − h0 = −L13

L11
=

BD(νD + νA)

2µD(1 + νA) −B2
.

In this special coordinate system, the two wavenumbers can be more concisely
given by

(4.15)

λ1 =
β̂11L̂33 + β̂22L̂11 +

√

(β̂11L̂33 − β̂22L̂11)2 + 4β̂2
12L̂11L̂33

2L̂11L̂33

,

λ2 =
β̂11L̂33 + β̂22L̂11 −

√

(β̂11L̂33 − β̂22L̂11)2 + 4β̂2
12L̂11L̂33

2L̂11L̂33

.

Furthermore, the following inequalities are established from the above expression:

(4.16) λ1 ≥ max

{

β̂11

L̂11

,
β̂22

L̂33

}

> min

{

β̂11

L̂11

,
β̂22

L̂33

}

≥ λ2.

The two equalities in Eq. (4.16) are valid only when β̂12 = 0 in this special
coordinate system, or more specifically when

(4.17)
β12

β11
=
L13

L11
.
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5. Conclusions

This work considers the surface instability of a semi-infinite isotropic lami-
nated plate under surface van der Waals forces. The analytical results demon-
strate that the surface of the semi-infinite isotropic laminated plate is always
unstable whenever the van der Waals interaction coefficient β > 0. Furthermore,
two distinct surface instability modes characterized by two positive wavenumbers
λ1 and λ2 (or two wavelengths 2π/λ1 and 2π/λ2) are identified.

In general, the two wavenumbers are completely determined by (β11, β22, β12),
(γ11, γ22, γ12) and (L11, L33, L13). Interestingly, the two wavenumbers are com-
pletely determined by (β11, β22, β12) and (L11, L33, L13) when the plate is rela-
tively stiff (in this case, the contribution from surface energy is ignored); and
they are completely determined by (β11, β22, β12) and (γ11, γ22, γ12) if the plate is
extremely compliant (in this case, the contribution from the elastic properties of
the plate is ignored). The observation of two instability modes is quite different
from the uniqueness of the surface instability mode observed for a semi-infinite
elastic body under plane strain or generalized plane strain conditions [12–14]. It
is pointed out that the observations of two surface instability modes by Ru [6]
and Yoon et al. [8] are conditional: either when the thickness ratio exceeds a
critical value for two mutually attracting films [6] or when the top layer is more
compliant and much thinner than the bottom layer for a bilayer film interacting
with another rigid contactor [8].

It is expected that these theoretical results can find application in the study
of elastic behaviors of membranes [26].
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