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An analytic solution of a stationary heat conduction problem in an
unbounded doubly periodic 2D composite whose matrix and inclusions consist of
isotropic temperature-dependent materials is given. Each unit cell of the composite
contains a finite number of circular non-overlapping inclusions. The corresponding
nonlinear boundary value problem is reduced to a Laplace equation with nonlinear
interface conditions. In the case when the conductive properties of the inclusions
are proportional to that of the matrix, the problem is transformed into a fully lin-
ear boundary value problem for doubly periodic analytic functions. This allows one
to solve the original nonlinear problem and reconstruct temperature and heat flux
throughout the entire plane. The solution makes it possible to calculate the average
properties over the unit cell and discuss the effective conductivity of the composite.
We compare the outcomes of the present paper with a few results from literature and
present numerical examples to indicate some peculiarities of the solution.
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1. Introduction

The present paper is devoted to analysis of a steady-state heat conduction
problem in 2D unbounded doubly periodic composite materials with tempera-
ture dependent conductivities. Our primary goal is to find an exact solution to
the problem. Then we try to utilize this solution to make some conclusions on
the effective properties of the nonlinear composite. Note that two problems, i.e.,
reconstruction of the exact solution (temperature and flux) at each point of the
composite material and the evaluation of its effective properties, are mutually
related but completely different problems. It is clear that, knowing an exact so-
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lution for periodic composite, one can provide the standard averaging procedure
over the unit cell and thus obtain some estimate for the effective properties of
the entire composite. On the other hand, having effective properties of a com-
posite, one can solve the respective boundary value problem for that averaged
material and then compute the respective solution. However this information is
not sufficient to reconstruct the mechanical/physical fields at each specific point
of the original composite.

Moreover, depending on the assumptions made during an averaging process
(which effectively means searching for different basic cell solutions), different
approximate formulae for the effective properties can be delivered. There are
several justified methods for doing so in the case of linear composite [1]. In those
cases the relation between the two problems (solving the problem for composite
and estimation of its effective properties) are well-developed. Unfortunately, in
the case of composites with components depending on the solution it still remains
a challenging problem. In this paper we deliver not only an exact solution to the
specific nonlinear 2D unbounded doubly periodic composite but also indicate
some open questions related to the evaluation of the effective properties of such
composites.

The theory and technique of finding the solution to linear boundary value
problems for 2D unbounded doubly periodic composite materials with constant
conductivities of their components are well-developed. The multipole expansion
method provides an efficient analysis of properties of different complex heteroge-
neous structures (see, for example, [1] where a history of the multipole expansion
method development is also given in detail). This method is efficient in both 2D
and 3D cases and an arbitrary shape of inclusions. Another method utilising
complex analysis techniques and functional equations was proposed in [2] and
further developed in [3]–[5]. It allows the finding of temperature and flux dis-
tributions in composites with an arbitrary number of circular non-overlapping
inclusions of different size in the periodicity cell and to determine in an explicit
form the effective conductivity of such composite materials. Composites with
a rectangular checkerboard structure were analytically investigated using the
methods of complex analysis in [6].

General methods to deduce approximate formulae for effective properties of
heterogeneous media were presented in [7] and [8]. Effective properties of ma-
terials with complicated macrostructure are usually studied on the basis of the
asymptotic homogenization method stated in [9]–[13] and others. Solutions to the
problems with multicracks (which is different in comparison with the inclusions)
were discussed in [14]. Important cross-section relationships between elastic and
conductive properties of heterogeneous materials were given in [15]. Essential
progress in obtaining properties of composites has already been achieved utiliz-
ing numerical analysis. We refer the prospective reader to the papers (and the
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literature therein) for finite element method (cf. [16], [17]) and boundary element
method (cf. [18]).

Problems involving nonlinear heat conduction can be divided into two major
classes. The first one is when the material parameters depend on the gradient of
the temperature, and the second one is when the parameters are functions of the
temperature itself. The problems of the first class are close to the problems for
nonlinear dielectrics and discussed in the series of works [19]–[25], and others.
The respective theory is well-developed.

In contrast, the theory of composite materials with temperature-dependent
properties is still under development. Homogenization theory for random com-
posites is studied in [26]. For periodic media, there are several attempts to eval-
uate the thermal conductivity of thermo-sensitive heterogeneous materials. The
asymptotic homogenization technique for periodic microstructure with temper-
ature independent thermal conductivities is used and extended in [27]. Authors
also derived Hashin-Shtrikman type bounds for the effective conductivity of cer-
tain types of nonlinear composites. In [28] and [29], the authors revisited the
homogenization problem for a nonlinear composite in terms of Padé approxi-
mation evaluating the effective conductivity of a square array of densely packed
cylinders. Recently, based upon classical approaches, the homogenization pro-
cedure for a random composite with conductivities dependent on temperature
in a partial case was developed in [30]. The authors proved that the Eshelby
inclusion approach is not valid when the material parameters are functions of
temperature and explained why problems for nonlinear composite materials from
the second class are particularly difficult, as this drastically reduces the number
of methods (discussed above for linear case) which researchers could use.

In the present paper, we construct an exact solution for the unbounded dou-
bly periodic nonlinear composite under specific assumptions on material prop-
erties of the components. Namely, we consider the static thermal conductivity
problem of unbounded 2D anisotropic composite materials with circular non-
overlapping inclusions in the square unit periodicity cell geometrically forming
a doubly periodic structure. We suppose that each component of the composite
is perfectly embedded in the matrix. Conductivities of the matrix and the in-
clusions depend on the temperature. The key assumption is that ratios of the
component conductivities are independent of the temperature. The external flux
is assumed to be arbitrarily oriented with respect to the composite symmetry.
We determine the temperature and flux distributions and derive the effective
conductivity of such composites.

The paper is organized as follows. An accurate formulation of the problem is
given in Section 2. In Section 3, we reduce the given nonlinear boundary value
problem defined by nonlinear partial differential equations and linear interface
conditions to an equivalent, generally speaking, nonlinear boundary problem
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for Laplace equations with nonlinear interface conditions. Then we formulate
conditions for which the transformed problem becomes linear and thus can be
effectively solved using the technique developed by the authors elsewhere. Nu-
merical calculations are performed and discussed in Section 5. In this section,
we present effective properties of the composite and discuss the obtained re-
sults. Comparison of the results for periodic and random composites from [30]
is performed in Section 6. The paper is finished by discussions and conclusions.

2. Statement of the problem

We consider a lattice L which is defined by the two fundamental translation
vectors 1 and ı (where ı2 = -1) in the complex plane C ∼= R

2 of the complex
variable z = x + ıy. Here, the representative cell is the unit square

Q(0,0) :=

{

z = t1 + ıt2 ∈ C : −1

2
< tp <

1

2
, p = 1, 2

}

.

Let E :=
⋃

m1,m2
{m1 + ım2} be the set of the lattice points, where m1,m2 ∈ Z.

The cells corresponding to the points of the lattice E are denoted by

Q(m1,m2) = Q(0,0) + m1 + ım2 := {z ∈ C : z − m1 − ım2 ∈ Q(0,0)}.

The situation under consideration is when mutually non-overlapping disks (in-
clusions) of different radii Dk := {z ∈ C : |z − ak| < rk} with boundaries
∂Dk := {z ∈ C : |z−ak| = rk} (k = 1, 2, . . . , N) are located inside the cell Q(0,0)

and periodically repeated in all cells Q(m1,m2). We denote by

D0 := Q(0,0) \
(

N
⋃

k=1

Dk ∪ ∂Dk

)

the connected domain obtained by removing of the inclusions from the cell Q(0,0).
Discussing the entire infinite composite, the matrix and inclusions occupy

domains
Dmatrix =

⋃

m1,m2

((D0 ∪ ∂Q(0,0)) + m1 + ım2)

and

Dinc =
⋃

m1,m2

N
⋃

k=1

(Dk + m1 + ım2)

with thermal conductivities λ = λ(T ) and λk = λk(T ), respectively. Here,
temperature T is defined in the whole R2. We assume that the conductivities
λ, λk (k = 1, . . . , N) are continuous, bounded, positive functions on R.
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Fig. 1. 2D doubly periodic composite with inclusions.

We search for the steady-state distribution of the temperature and heat flux
within such a composite. The problem is equivalent to determining the function
T = T (x, y) satisfying the nonlinear differential equations

∇(λ(T )∇T ) = 0, (x, y) ∈ Dmatrix,(2.1)

∇(λk(T )∇T ) = 0, (x, y) ∈ Dinc.(2.2)

We assume that the perfect (ideal) contact conditions on the boundaries
between the matrix and inclusions are satisfied:

T (s) = Tk(s), s ∈
⋃

m1,m2

(∂Dk + m1 + ım2),(2.3)

λ(T (s))
∂T (s)

∂n
= λk(Tk(s))

∂Tk(s)

∂n
, s ∈

⋃

m1,m2

(∂Dk + m1 + ım2).(2.4)

Here, the vector n is the outward unit normal vector to ∂Dk. According to the
formulation, the flux and the temperature are continuous functions throughout
the entire structure.

We assume that the average flux vector of intensity A is directed at an angle
θ to axis Ox (see Fig. 1) which does not coincide, in general, with the orientation
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of the periodic cell. This gives the following conditions
∫

∂Q
(top)
(m1,m2)

λ(T )Ty ds = −A sin θ,(2.5)

∫

∂Q
(right)
(m1,m2)

λ(T )Tx ds = −A cos θ.(2.6)

Note that, in general, the flux is not periodic. However, since there are no
sources and sinks in the composite, the energy conservation law dictates

(2.7)

∫

∂Q(m1,m2)

λ(T )
∂T

∂n
ds = 0.

This, in turns, allows us to replace conditions (2.5) and (2.6) with those defined
on the opposite sides of the cell.

3. Reformulation of the problem

To solve the problem, we use the Kirchhoff transformation (cf. [31]) and
introduce new continuous functions f and fk (k = 1, . . . , N)

(3.1) f(T ) =

T
∫

0

λ(ξ) dξ, fk(T ) =

T
∫

0

λk(ξ) dξ.

Then, using representations (3.1) and changing the dependent variables in the
following manner:

(3.2) u(x, y) = f(T (x, y)), uk(x, y) = fk(Tk(x, y)),

we transform the original equations (2.1) and (2.2) into the Laplace equations

∆u = 0, (x, y) ∈ Dmatrix,(3.3)

∆uk = 0, (x, y) ∈ Dinc.(3.4)

Note that f and fk are monotonic increasing functions of temperature and,
therefore, there exist their inverses f−1 and f−1

k . The contact conditions (2.3)
and (2.4) can be rewritten now as follows:

u = Fk(uk), (x, y) ∈
⋃

m1,m2

(∂Dk + m1 + ım2),(3.5)

∂u

∂n
=

∂uk

∂n
, (x, y) ∈

⋃

m1,m2

(∂Dk + m1 + ım2),(3.6)
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where the functions

(3.7) Fk(ξ) := f(f−1
k (ξ))

are defined for all ξ ∈ R. Note that in general the functions u and uk may have
different values on the interface ∂Dk. The derivative of Fk can be computed as
follows:

(3.8) F ′
k(ξ) =

f ′(f−1
k (ξ))

f ′
k(f

−1
k (ξ))

=
λ(Tk)

λk(Tk)
,

where ξ = fk(Tk). Now we use the basic assumption of the paper on the nonlinear
conduction coefficients

(3.9) λ(T ) = Ckλk(T ).

This property is satisfied for any T ∈ R by some positive real constants Ck.
Then, one can immediately conclude that all functions Fk are linear:

(3.10) Fk(ξ) = Dk + Ckξ.

From (3.1) we have f(0) = 0 and fk(0) = 0, and, therefore, Dk = 0. Note that

(3.11)

∫

Γ

∂u

∂n
ds = 0, Γ ⊂ Dmatrix,

for any closed curve Γ in the matrix. Moreover, since there is no source (sink)
inside the composite (neither in the matrix nor in any inclusion), the same con-
dition is satisfied for any closed simply connected curve within the inclusion

(3.12)

∫

Γk

∂uk

∂n
ds = 0, Γk ⊂ Dk.

Finally, the conditions (2.5) and (2.6) transform into the following:
∫

∂Q
(top)
(m1,m2)

uy ds = −A sin θ,(3.13)

∫

∂Q
(right)
(m1,m2)

ux ds = −A cos θ.(3.14)

Let us introduce inside the inclusions new harmonic functions:

(3.15) ũk(x, y) = Ckuk(x, y).
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Then the transmission conditions (3.5) and (3.6) become

u = ũk, (x, y) ∈
⋃

m1,m2

(∂Dk + m1 + ım2),(3.16)

∂u

∂n
=

1

Ck

∂ũk

∂n
, (x, y) ∈

⋃

m1,m2

(∂Dk + m1 + ım2).(3.17)

A new improved algorithm for solving such a linear boundary value problem is de-
veloped and described in detail in [5]. We use this approach in our computations.

4. Effective properties of the composite

This section is devoted to evaluation of the effective properties of a nonlin-
ear composite. We assume that the effective conductivity tensor Λe depends on
average temperature 〈T 〉 and is defined in the following way:

(4.1) 〈λ(T )∇T 〉 = Λe(〈T 〉)〈∇T 〉 or Re(〈T 〉)〈λ(T )∇T 〉 = 〈∇T 〉,

where Re = Λ−1
e is the effective resistance tensor. A similar definition to (4.1)

has been used in [25]. Here, the operator 〈·〉 is defined as

〈f〉 =

∫∫

Q(m1,m2)

f(x, y) dx dy.

Note that definition (4.1) needs further justification as the question arises
whether the approach is invariant with respect to the averaging cell. We will
discuss this issue later during the computations.

We represent all elements involved in (4.1) in terms of a solution u and uk of
the problem (3.3)–(3.6). For the total flux in the x-direction, we have

(4.2)

∫∫

Q(m1,m2)

λ(T )
∂T

∂x
dx dy

=

∫∫

D0+m1+ım2

λ(T )
∂T

∂x
dx dy +

N
∑

k=1

∫∫

Dk+m1+ım2

λk(Tk)
∂Tk

∂x
dx dy

=

∫∫

Q(m1,m2)

(f(T ))x dx dy +

N
∑

k=1

∫∫

Dk+m1+ım2

(fk(Tk))x dx dy

=

∫∫

D0+m1+ım2

∂u

∂x
dx dy +

N
∑

k=1

∫∫

Dk+m1+ım2

∂uk

∂x
dx dy.
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Using the first Green’s formula and formulas (3.3), (3.4) and (3.6), we obtain
∫∫

Q(m1,m2)

λ(T )
∂T

∂x
dx dy = −A cos θ,

and similarly
∫∫

Q(m1,m2)

λ(T )
∂T

∂y
dx dy = −A sin θ.

Thus, one can write

(4.3) 〈λ(T )∇T 〉 = −A[cos θ, sin θ]⊤.

Note that this relationship is a direct consequence of the absence of sources or
sinks inside the composite.

Due to Gauss–Ostrogradsky formula and the boundary condition (2.3), the
components of the term 〈∇T 〉 in (4.1) are defined as

∫∫

Q(m1,m2)

∂T

∂x
dx dy =

∫∫

D0+m1+ım2

∂T

∂x
dx dy +

N
∑

k=1

∫∫

Dk+m1+ım2

∂Tk

∂x
dx dy

=

∮

∂D0+m1+ım2

T (s) cos(ns, ei) ds +
N

∑

k=1

∮

∂Dk+m1+ım2

[Tk(s) − T (s)] cos(nk
s , ei) ds

=

∮

∂D0+m1+ım2

T (s) cos(ns, ei) ds =

∮

∂D0+m1+ım2

f−1(u(x, y)) cos(ns, ei) ds,

where ns and nk
s are the outward unit normal vectors to ∂D0 + m1 + ım2 and

∂Dk + m1 + ım2, respectively, and ei is the basis vector. Analogously,
∫∫

Q(m1,m2)

∂T

∂y
dx dy =

∮

∂D0+m1+ım2

f−1(u(x, y)) cos(ns, ej) ds.

Finally, the average temperature is

〈T 〉 =

∫∫

Q(m1,m2)

T (x, y) dx dy(4.4)

=

∫∫

D0+m1+ım2

f−1(u(x, y)) dx dy +

N
∑

k=1

∫∫

Dk+m1+ım2

f−1
k (uk(x, y)) dx dy.

It is more convenient to first compute the components of the effective resistance
tensor Re from the second formula in (4.1) and then find the effective conduc-
tivity tensor Λe = R−1

e .
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5. Numerical examples

5.1. Description of the periodic composite

In our computations we consider a composite where four inclusions are sit-
uated inside the cell Q(0,0) with the centers (defined in the notations of com-
plex variables): a1 = −0.18 + 0.2ı, a2 = 0.33 − 0.34ı, a3 = 0.33 + 0.35ı,
a4 = −0.18− 0.2ı. The radii of the inclusions are the same rk = R = 0.145, thus
the volume fraction of the inclusions for such composite is ν = 4πR2 = 0.2642.
With such a choice of the positions of the inclusions, one can expect that the
composite exhibits anisotropic properties and we will observe this fact. Moreover,
apart from the fact that the volume fracture is not particularly high, the inclu-
sion boundaries are situated very close to each other (the minimal distance 0.02).
Thus, the far field approach in defining the effective properties of such composite
is rather problematic.

Fig. 2. Configuration of the unit cell with four inclusions considered in computation.

Further, we suppose that the heat flows in x-direction (θ = 0) with the
intensity A = −1. We choose the conductivity of the matrix λ(T ) to be defined
in the following form:

(5.1) λ(T ) =



































y1, T < x1,

y2 +
y1 − y2

x1
T, x1 ≤ T ≤ 0,

y2 +
y1 − y2

x2
T, 0 ≤ T ≤ x2,

y1, T > x2,
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where y1, y2 are positive constants, and x1 < x2. We take for the calculations
x1 = −2, x2 = 2, y1 = 4.5, y2 = 13.5, and define the conductivities of the matrix
λ from the condition (3.9) with Ck = 0.09 (k = 1, ..., 4). In Fig. 3, we represent
the conductivity function λ. The function λk has the identical shape with the
pike taking value λk(0) = λ(0)/Ck = 150.

Fig. 3. The function λ.

For computations, we use the algorithm described in [5]. For the chosen
configuration it guarantees a computational error less than 10−6.

5.2. Evaluation of the effective conductivity tensor

Note that in the linear case temperature is defined up to an arbitrary ad-
ditive constant, and this constant is not involved in the determination of the
effective conductivity of a composite material. This is not generally speaking the
case for nonlinear problems, and one needs to clarify how the additive constant,
appearing during the stage of solving the auxiliary linear problem (3.3)–(3.14),
influences (or not) the computation of the effective conductivity tensor of the
equivalent nonlinear composite. Two procedures can be suggested to evaluate
the effective conductivity.

• First, one can solve the auxiliary linear boundary value problem in a dou-
bly periodic domain preserving its uniqueness by any appropriately chosen
condition (for example, here we impose that the function u = u∗ satisfies
the condition u∗(0) = 0). Then, to evaluate the properties of the composite
material, one can compute the average temperature and the effective re-
sistivity for each particular unit cell presenting the data as the functional
relationship Re = Re(〈T 〉).
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It is clear from the character of the chosen nonlinearity of the conductivity
coefficients that the domain where the nonlinear behavior manifests itself
lies only inside an infinite strip of unknown finite thickness which depends
on the flux characteristics: intensity A and angle θ. Thus, it is obvious that
the effective conductivity tensor demonstrates nonlinear behavior within
a finite interval of temperatures, and thus, one does not need to trace
all cells. On the other hand, there is still an infinite number of the cells
belonging to the strip, therefore one can expect that the result of such
a procedure is representative enough to reconstruct a continuous function
using some smoothing procedure.

• One can suggest also another method for evaluation of the effective proper-
ties. Namely, we consider an arbitrary cell in the original domain and build
a set of solutions to the auxiliary problem in the form u = u∗ + C, where
C is an arbitrary constant. Then, for every constant C, the components
of the effective resistance tensor, Re, and the average temperature, 〈T 〉,
are functions of the parameter C. Changing the value of C continuously
from −∞ to ∞, one receives the sought for effective conductivity tensor of
the composite as a continuous function of the average temperature. Natu-
rally, for the conductivities of the composite components analyzed in this
example, the nonlinear character of the relationship will be observed only
within the finite interval of the parameter C. It is clear that this procedure
does not depend on the chosen cell.

Note that the both methods allow one to determine two components of the
effective resistance tensor Re for each of the two orthogonal flux directions. Thus
considering θ = 0, we define Re[1, j] = Re[1, j](〈T 〉) (j = 1, 2), and choosing
θ = π/2 we find Re[2, j] = Re[2, j](〈T 〉). As a result, the entire tensor Re(〈T 〉)
is defined.

To check whether and when the two aforementioned procedures are equiv-
alent, we use both of them in our computations. The respective components
of the effective resistance tensor are represented in Figs. 4 and 5. Dots on the
curves correspond to the second approach, while the continuous lines correspond
to values computed for consecutive unit cells. These continuous lines were ob-
tained by spline interpolation. Discrepancy between the methods is on the level
10−5 while the computational accuracy of the solution itself is 10−6. Taking into
account the fact that one needs to integrate and interpolate the data to compute
the effective properties, the revealed discrepancy can be considered as a perfect
evidence that the both methods provide the same result. However, an accurate
mathematical proof is still to be delivered.

Note also that due to the chosen functions determining the conductivities,
one can expect the effective conductivity to be an even function of the aver-
age temperature. This fact could be also taken into account to reconstruct the
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Fig. 4. Main diagonal elements of the effective resistance tensor Re (Re[1, 1] and Re[2, 2])
computed by each of the proposed methods.

Fig. 5. Components Re[1, 2] and Re[2, 1] of the effective resistance tensor Re computed by
each of the proposed methods.

properties. However, we do not use this argument in this study to eliminate
unnecessary assumptions.

Finally, having the effective resistance tensor Re(〈T 〉), we calculate the effec-
tive conductivity tensor Λe(〈T 〉) defined in (4.1). The respective results are pre-
sented in Figs. 6 and 7, respectively. One can see that the shape of the functions
are quite similar to that of the functions λ(〈T 〉) and λk(〈T 〉) for the composite
components. Only some deviations can be observed near the points where the
functions are not smooth.
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Fig. 6. Diagonal components Λe[1, 1], Λe[2, 2] of the effective conductivity tensor Λe.

Fig. 7. Components Λe[1, 2] and Λe[2, 1] of the effective conductivity tensor.

As one can expect from the very beginning, the composite demonstrates
anisotropic properties, that is the components on the main diagonals are not the
same in spite of the fact that the components are fully isotropic materials. This
follows from the irregular distribution of the inclusions in the cell. Additionally,
the main axes of the effective conductivity tensor do not coincide with the initial
x, y-axes. As a result, the resulted tensor is not a diagonal one. However, the
corresponding components (anti-diagonal tensor elements) are small and may
be comparable with the accuracy of the computations. This requires additional
verification, which will be carried out later.
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In the next section we evaluate known bounds for the effective properties
of the nonlinear composite in question. At first glance there is not much logic
in doing so. Indeed, since we constructed an analytical solution to the nonlinear
problem and then determined the effective conductivity of the composite directly,
it looks like there is no need for such estimate. On the other hand, since the
question “how should the effective properties of such composites be determined”
is still opened, we decided to demonstrate how our results fit into the general
framework.

5.3. Hashin–Shtrikman bounds and other estimates

The general estimates for the effective properties have been evaluated for
nonlinear composite in [27] and [32]. First, we start with more crude estimates,
giving straightforward elementary bounds of the effective conductivity tensor

(5.2) µ1(T )I ≤ Λe(T ) ≤ µ2(T )I,

where I is the unit tensor and

(5.3)
µ1(T ) =

(

1 − ν

λ(T )
+

ν

λk(T )

)−1

,

µ2(T ) = (1 − ν)λ(T ) + νλk(T ).

Here λ(T ) and λk(T ) are the conductivities of the matrix and the inclusions,
while ν is the volume fraction of the inclusions.

Inequalities (5.2) are the Reuss-type and Voigt-type bounds on the effective
coefficients (see [1], [27]).

Let us recall that the notation A ≥ B used in (5.2) for matrices means that
the inequality (Ax, x) ≥ (Bx, x) holds true for an arbitrary vector x ∈ R

n (n = 2
in our case). In other words, one needs to show that the following inequalities
are true:

m11(T ) = µ1 − λe
11 ≤ 0, m21(T ) = µ2 − λe

11 ≥ 0,(5.4)

m12(T ) = 4(µ1 − λe
11)(µ1 − λe

22) − (λe
12 + λe

21)
2 ≥ 0,(5.5)

m22(T ) = 4(µ2 − λe
11)(µ2 − λe

22) − (λe
12 + λe

21)
2 ≥ 0.(5.6)

In Figs. 8 and 9 we present the graphs of the minors from equalities (5.4)1,
(5.5), (5.4)2 and (5.6), respectively. It is clear that the equalities hold true in
a strict way.

Now we check feasibility of the Hashin-Shtrikman bounds extended in [27].
These estimates are more narrow than the elementary bounds (5.2) and can be
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Fig. 8. Verification of the Reuss-type inequality for the effective properties of the nonlinear
composite from (5.2).

Fig. 9. Verification of the Voigt-type inequality for the effective properties of the nonlinear
composite from (5.2).

written in our notations (compare with [27]):

(5.7) tr
[

(Λe(T ) − λ(T )I)−1
]

≤ 1

µ2(T ) − λ(T )
+

1

µ1(T ) − λ(T )
,

and

(5.8) tr
[

(λk(T )I − Λe(T ))−1
]

≤ 1

λk(T ) − µ2(T )
+

1

λk(T ) − µ1(T )
,

where trA = Ajj , (j = 1, 2). The left- and right-hand sides of the inequalities
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a) b)

Fig. 10. Verification of the Hashin–Shtrikman bounds (5.7) – Fig 10a and (5.8) – Fig 10b.
Solid (dash) lines correspond to the left (right)-hand sides of the inequalities.

(5.7) and (5.8) are presented in Fig. 10, where solid (dash) lines correspond to
the left (right)-hand side of the inequalities.

Let us note that the differences between the left (right)-hand sides in the
estimates are much smaller in comparison with the crude estimates (5.2). Besides,
it turns out that the differences are smaller in the region where the material
properties λ and λk depends on the temperature (|〈T 〉| < 2) than in the region
where the properties take constant values.

6. Comparison of the results for periodic and random composites

According to [30], the effective conductivity λe of a random composite with
temperature-dependent conductivities whose values are proportional to each
other may be computed by the standard homogenization techniques in the fol-
lowing manner:

(6.1) Λe(T ) = λ(T ) · Λe,

where Λe is the effective conductivity tensor of the linear problem with the same
constant ratios Ck between the conductivities of the matrix and the inclusions
as for the nonlinear case (see (3.9)).

Note that, in general, the formulae (4.1) and (6.1) can give different results.
However it turns out that, for the parameters chosen in Subsection 5.1, these
formulae give similar results.

To estimate how close the formulae (4.1) and (6.1) are, we use the following
two measures δl and δr:
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(6.2)
δl = (Λe(T ) − λ(T ) · Λe) · (Λe(T ))−1,

δr = (Λe(T ))−1 · (Λe(T ) − λ(T ) · Λe),

since the tensors given in (4.1) and (6.1) are not co-axial and do not necessarily
commute.

For the composite under consideration, we found with the same accuracy as
above (10−6) the effective conductivity tensor of the linear problem:

(6.3) Λe =

(

1.524131 0.000027
0.000027 1.650632

)

.

The components of the tensors of error δl and δr from (6.2) are presented in
Fig. 11. The curves are given using a logarithmic scale to clearly indicate the

Fig. 11. Relative difference between components of the tensors δl and δr from (6.2) showing
the perfect matching between the formulae for effective properties of the periodic and

random composites.
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order of component magnitudes. The dash line representees the components of δr

while the solid line corresponds to the components of δl.
We note that, although the result obtained in [30] are related to different

types of composite than that analyzed in this paper, our computations show
perfect correlation between the models. The largest deviations (near 2%) take
place near the points where the conductivities of the components as functions of
temperature are not smooth. Moreover, this difference is only observed for the
components of the main diagonal of the tensors (6.2). The other two components
are almost identical (taking into account the computational accuracy). The latter
allows us to conclude that the values of the non-diagonal elements (which are
on the level of the predicted computational accuracy) have been computed with
sufficient accuracy.

Fig. 12. Temperature distribution inside the cell Q(0,0) calculated during utilisation of the
second method described in the Subsection 5.2. The results correspond to the constants

C = 27 and C = 28, respectively.

Finally, we present in Fig. 12 the distribution of the temperature inside the
representative cell Q(0,0) calculated during utilisation of the second method to
determine the effective properties described in Subsection 5.2. One can observe
that, for the value of constant C = 27, the jump of the temperature along the
cell boundaries is not high, and the entire cell lies inside the region where the
conductivity exhibits nonconstant behaviour. However, for C = 28, the range of
the temperature inside the cell lies within the interval when both materials (ma-
trix and inclusions) have constant magnitudes, and thus the average properties
computed in this case coincide with the respective composite having constant
properties of its constituencies.
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7. Discussions and conclusions

As a result of our analysis the following conclusions can be formulated.
• An exact solution to the boundary value problem for the unbounded doubly

periodic nonlinear composite, with a special assumption that the compo-
nent conductivities are proportional, i.e., their ratios are independent of
the temperature, can be effectively found by transforming the problem to
the linear one.

• This allows, probably for the first time, the computation of components of
the effective conductivity tensor in explicit form.

• We show that the average properties of the composite with nonlinear prop-
erties satisfy the Reuss-Voigt types and Hashin-Shtrikman estimations.

• We give one example for which we perform numerical calculations and
obtain data for the effective conductivity, which allows us to compare for-
mulae (4.1) for the effective conductivity tensor for a doubly periodic com-
posite and (6.1) derived in [30] for random composites.

We should mention here that the problem of computation of the effective
properties of a doubly periodic composite with conductivities depending on tem-
perature in its general formulation remains open. It also refers to the accurate
proof of the Hashin-Shtrikman estimations (the proof provided in [27] requires
strong assumptions which cannot be verified directly from the problem formu-
lation). We also have not discussed here how the flux intensity may impact on
the results obtained in this paper. At first glance (as it follows from the linear
formulation), the flux intensity should not influence the results. On the other
hand, for a high flux intensity the temperature may change dramatically within
one cell, and only a small part of the cell may have the temperature in the range
where the conductivities exhibit nonlinear behaviour. All of these problems await
accurate analysis.
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