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The paper is devoted to shells of revolution with positive and negative Gaussian
curvature. The meridian of shells is a plane curve in the Cassini oval form. Geometrical
properties of the middle surface of the shell of revolution based on this curve are
presented. The membrane state of stress of a family of shells with constant capacity
and mass under uniform pressure is described analytically and numerically with the
use of the FEM (the ANSYS system). The critical pressure, buckling modes and
equilibrium paths of analysed shells are calculated numerically. The advantages of
a pressure vessel made in the form of Cassini ovaloidal shell, such as the lack of
edge effect and a stable post-buckling behaviour, are pointed out. The results of the
analytical and numerical investigations are compared and presented in tables and
figures.
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1. Introduction

Shells of revolution are described in details in many monographs, e.g.,
by Timoshenko and Woinowsky-Krieger [1], Grigoluk and Kabanov [2],
Ventsel and Krauthammer [3], Tovstik and Smirnov [4]. Such shells are
basic components of thin-walled structures like pressure vessels, tanks, space
crafts or submersibles. This kind of structures is usually subjected to internal
or external pressure which, in most cases, acts uniformly on the whole surface
area. For such a load the most favourable shape is a shell with the positive Gaus-
sian curvature. Besides spherical shells, which are an ideal solution in this case,
barrelled shells are worthy of further consideration. They are cylindrical shells
with meridional curvature, positive or negative. Barrelled shells combine the
advantages of cylindrical and spherical shells. Details concerning geometry and
stability of barrelled shells can be found in papers by Jasion and Magnucki [5]
and Magnucki and Jasion [6]. Results of experiments on a number of barrelled
shells combined in one pressure hull are presented by Błachut and Smith [7].
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Analysis of a shell structure should cover three states: pre-buckling, buckling
and post-buckling state. When it comes to closed shells subjected to the external
or internal pressure, in the pre-buckling analysis the efforts should be focused on
the stress distribution. The edge effect, i.e., the stress concentration due to dis-
continuities of the curvature, should be avoided. This is possible if the meridional
curvature of a shell is continuous along the whole meridian of the shells. This
condition is fulfilled, for example, in the case of an ellipsoidal shell which can be
treated as a special case of a barrelled shell. Ellipsoidal shells are analysed, e.g.,
by Ma et.al [8]. The problem of closing of cylindrical shells with an ellipsoidal
shell is investigated by Magnucki et.al [9]. Also in the paper by Błachut and
Magnucki [10] ellipsoidal shells are mentioned as a closure for cylindrical shells.
Other problems in designing pressure vessels are discussed as well. Jasion and
Magnucki [11] proposed a closed shell of revolution composed of a clothoidal
and a spherical part. The meridian of this shell is distinguished by a continuous
curvature which ensures a smooth stress distribution. Non-conventional tanks
for storage of liquid materials are presented by Zingoni [12].

In the buckling analysis the goal is usually to increase the value of the buck-
ling load or to obtain the most favourable buckling shape. This can achieved by
bowing out the meridian – a higher meridional curvature corresponds usually to
a higher buckling load. This was shown by Błachut and Wang [13], among
others.

The last stage of the analysis – the post-buckling state – seems to be the
most important one in terms of safety. The reason for this is that, differently
than for bars and plates, the post-buckling behaviour of shells is often unstable.
In practise, it may mean a disaster if the load reaches the critical value. However,
at this stage of the design process there are possibilities to influence the behaviour
of a structure. One of the first works in which this issue is mentioned are the ones
by Reitinger and Ramm [14], Godoy [15], Bochenek [16] and Mróz and
Piekarski [17]. In the above papers authors discuss optimisation procedures in
which the stability criterion is included. Other works devoted to stabilisation of
a post-buckling behaviour of shells are by Bochenek [18], Król et.al [19] and
Krużelecki and Trybuła [20] in which authors achieve the goal by means
of pre-loading forces or special support conditions. Other possibility to obtain
a stable post-buckling behaviour is, again, the shaping of the meridian of a shell.
Such approach is presented, e.g., by Jasion [21] and Singh et.al [22].

Summing up the above considerations a perfect closed shell structure should
have a smooth meridian with a continuous curvature, should be characterised
by a high buckling load and should behave stably in the post-critical range.
Satisfying all the above requirements is usually impossible, especially in actual
structures. However, there are some theoretical solution in which at least two
requirements can be fulfilled. An example is a shell of revolution the meridian
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of which is a plane curve in the Cassini oval form. A family of such shells, called
Cassini ovaloidal shells, is analysed in this paper. The geometry of such structure
is described and the stress distribution is analysed analytically and numerically.
The behaviour of Cassini ovaloidal shell in the critical and post-critical state is
analysed with the use of the finite element method (FEM). It is pointed out that
for some geometrical parameters the post-critical behaviour of the shell can have
a stable character.

2. Geometry of the middle surface of the Cassini ovaloidal shell

The Cassini oval as a plane curve in Cartesian coordinate is defined in the
following form [23]:

(2.1) y(x) =
[

√

4c2x2 + a2 −
(

c2 + x2
)

]1/2
,

where a and c are the parameters of the above function.
The meridian shape of the middle surface of the barrelled shell is shown in

Fig. 1.

Fig. 1. The meridian of the shell – Cassini oval.

The radius of the parallel circle of the shell of revolution is as follows:

(2.2) r(x) = y(x) =
[

√

4c2x2 + a2 −
(

c2 + x2
)

]1/2
.

The value of the radius for x = 0 is equal to

(2.3) r0 = a
√

1 − k2
c

and the x-coordinate for the end of the shell (r = 0) equals

(2.4) xe = a
√

1 + k2
c ,
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where kc = c/a is a dimensional parameter. The meridian shape of the shell
depends on the value of this parameter. The following cases are possible:

• 0 < kc < 1/
√

2 – convex meridian,
• kc = 1/

√
2 – plano-convex meridian,

• 1/
√

2 < kc < 1 – concavo-convex meridian.
Knowing that (see Fig. 1)

tanα = − dr
dx

and cosα =
1√

1 + tan2 α

the middle surface of the shell of revolution can be characterised by principal
radius of the meridian

(2.5) R1 = −

[

1 +

(

dr

dx

)2]3/2

d2r

dx2

and principal radius of the parallel circle

(2.6) R2(x) =
r(x)

cosα
=

[

1 +

(

dr

dx

)2]1/2

r(x).

The principal radii (2.5) and (2.6) serve as a basis to determine the membrane
state of stress.

3. Capacity and mass of the Cassini ovaloidal shell

The capacity of the shell (Fig. 1) is

(3.1) Vs = 2π

xe
∫

0

[r(x)]2 dx

and after integration

(3.2) Vs = πa3fV ,

where

(3.3) fV =
1

2kc
ln

(

1 + 2k2
c + 2kc

√

1 + k2
c

)

+
1

3

(

1 − 2k2
c

)

√

1 + k2
c .

The mass of the shell made of a material of the mass density ρs and of the
thickness ts (Fig. 1) is

(3.4) ms = Astsρs,
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where lateral area

(3.5) As = 4π

∫ xe

0

√

1 +

(

dr

dx

)2

r(x)dx.

The integral (3.5) cannot be expressed by any analytical function, it may be
determined only numerically.

For special case (kc = 0) a spherical shell is obtained

lim
kc→0

(Vs) =
4

3
πa3 and lim

kc→0
(As) = 4πa2.

Taking into account the expressions (3.2) and (3.4) the following values are
determined:

• parameter of the oval

(3.6) a = 3

√

Vs

πfV

• thickness of the shell

(3.7) ts =
ms

Asρs
.

The assumption of the values of the capacity Vs [m3] and the mass ms [kg] of
a shell enables calculating the parameter a and thickness ts from (3.6) and (3.7).

The example calculations have been carried out for a Cassini ovaloidal steel
shell of the capacity Vs = 5 m3 and the mass ms = 500 kg. The following
parameters have been assumed: the mass density of a steel ρs = 7850 kg/m3 and
the dimensionless parameter kc = 0.60, 0.65, 1/

√
2, 0.75, 0.80, 0.85. Results

of calculations are shown in Table 1. The meridian shapes of the example steel
Cassini ovaloidal shell are shown in Fig. 2.

Table 1. Values of basic quantities of the example steel Cassini ovaloidal shell.

kc 0.60 0.65 1/
√

2 0.75 0.80 0.85

a [m] 1.1462 1.1668 1.1956 1.2220 1.2596 1.3071

c [m] 0.6877 0.7584 0.8454 0.9165 1.0077 1.1110

As [m2] 14.498 14.646 14.875 15.103 15.448 15.910

ts [mm] 4.393 4.349 4.282 4.217 4.123 4.003

r0 [m] 0.9170 0.8867 0.8454 0.8083 0.7558 0.6885
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Fig. 2. Cassini ovals of different meridians: a) convex, b) plano-convex,
c) concavo-convex (c). K – Gaussian curvature in the mid-length of the shell.

4. Analytical investigation of membrane state of stress – pre-buckling

state

The membrane stress resultants for the Cassini ovaloidal shell loaded with
uniform external pressure p0 are defined as follows:

(4.1) N1(x) =
1

2
R2(x)p0, N2(x) =

[

1 − R2(x)

2R1(x)

]

R2(x)p0.

The normal stresses is

(4.2) σ1(x) = σ̃1(x)p0, σ2(x) = σ̃2(x)p0

and Huber-Mises-Hencky stress is

(4.3) σeq(x) = σ̃eq(x)p0,

where dimensionless stresses are

σ̃1(x) =
1

2

R2(x)

ts
, σ̃2(x) =

[

1 − R2(x)

2R1(x)

]

R2(x)

ts
,

σ̃eq(x) =
√

σ̃2
1 − σ̃1σ̃2 + σ̃2

2.
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The results of example calculations showing the distribution of the membrane
stress resultants, meridional N1 and circumferential N2, in selected shells are
given in the next section in which the comparison of the results obtained ana-
lytically and with the use of FEM is presented.

5. Numerical calculation – FEM study

The model of a Cassini ovaloidal shell has been elaborated in the ANSYS
code. The mid-surface of the shell has been modelled with the use of shell el-
ements shell181 available in the system. The element is characterised by four
nodes and six degrees of freedom in each node. The model has been subjected to
uniform external pressure p0 that is a typical load for submersibles, underground
tanks or aboveground tanks during emptying process. Support conditions as well
as the whole model are shown in Fig. 3.

Fig. 3. FE model of the shell.

At the supported ends of the model circular holes have been cut the diameter
of which equals 5 mm. Thanks to this a uniform quadrilateral mesh is possible
to generate and a stress concentration at the supports can be avoided. Even
though this solution causes small bending stresses near supported edges, they
do not affect the results of the buckling and post-buckling analyses.

A family of shells of constant capacity Vs = 5 m3 and constant mass ms =
500 kg has been analysed. The thickness of the shell ts as well as the parameter a
has been calculated from Eqs. (3.6) and (3.7). A linear-elastic material has been
assumed with the following parameters: Young’s modulus E = 205000 MPa,
Poisson’s ratio ν = 0.3. The mass density corresponds to steel – ρs = 7850 kg/m3.

5.1. The membrane state of stress

In the pre-buckling analysis the deformation and membrane stress resultants
have been analysed. The dimensionless parameter kc ranges from 0.55 to 0.95.
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Detailed results are presented for kc = 0.65 and 0.85. The deformation, which
is similar for all analysed shells, is shown in Fig. 4a. The highest deformation
appears in the mid-length of the shell; when moving to the supporting edge the
deformation decreases.

In Fig. 4b the distributions of dimensionless membrane stress resultants along
the axis of revolution are presented. These are the values obtained based on
the theoretical formulae (Eqs (4.1)) for pressure p0 = 1 MPa. Thicknesses are
given in Table 1. For convex shell both resultants reach the highest values in
the mid-length of the shell and decrease with decreasing of x. Similar distri-
bution has the circumferential resultant N2 for the concave shell. However, the
longitudinal resultant N1, according to Eqs. (4.1), follows the value of the cir-

Fig. 4. a) Total deformation; b) membrane stress resultants for shell with kc = 0.85 and
kc = 0.65; c) membrane stress resultants in the mid-length of shells and theirs maximum

values.
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cumferential radius and reaches the highest value for x corresponding to the
biggest R2.

To compare the membrane stress resultants for different shells the plot shown
in Fig. 4c has been prepared showing the influence of the parameter kc on the
dimensionless resultants. The values in the mid-length of shells are given (Ñmid

1(2) )

as well as the maximum values (Ñmax
1(2) ). A good agreement is seen between the

results obtained analytically (solid line) and with the use of FEM (diamonds).
It can be seen that the maximum value of Ñmax

2 corresponds to the shell de-
scribed by the parameter kc = 0.84. The minimum value of Ñmax

1 corresponds
to kc = 0.8.

5.2. The critical state

The same family of shells for which the membrane stress resultants were
determined in a previous subsection will be analysed here in terms of the buckling
resistance. The results of the linear buckling analysis are shown in Fig. 5. On
the plot the horizontal axis corresponds to the geometry of the shell and on
the vertical axis the critical pressure pcr is marked, normalised by the critical
pressure pp−c

cr for the shell with a plano-convex meridian. This way the value of

Fig. 5. Critical loads for Cassini ovaloidal shells of different geometries and an example of
buckling shape (FEM results).

dimensionless critical pressure of the value equal to 1 corresponds to a plano-
convex shell (marked with dashed line – kc = 1/

√
2). The Gaussian curvature in

the mid-length of this shell equals 0. When moving to the left from the dashed
line (kc < 1/

√
2) the positive Gaussian curvature of the meridian increases.

At the same time the critical load increases monotonically. Moreover, the higher
the buckling load the higher the number of circumferential waves. For shells with
kc > 1/

√
2 the Gaussian curvature in the mid-length is negative and the higher

the curvature the smaller the buckling load. However, a detailed analysis of this
part of the plot shows that the relation between the geometry, the number of
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Fig. 6. Influence of geometry of the Cassini ovaloidal shell and shape of the buckling load on
the buckling pressure for shells with kc > 1/

√
2.

buckling waves and the value of buckling load is more complex, what is presented
in Fig. 6 (the figure corresponds to the right part of the plot provided in Fig. 5).
The buckling shapes of selected shells are also shown. It is seen that for each
value of n a separate curve can be plotted. Starting from n = 6 the curves have
a parabolic shape with a minimum point. The smaller the value of circumferential
waves the higher the difference between the minimum and maximum point of
the curve. For example, for n = 3 the maximum critical load is 660% higher
than the minimum one. As will be seen in the next subsection also the post-
buckling behaviour of Cassini ovaloidal shells within the range of a given n
differs significantly.

5.3. The post-buckling state

The post-buckling analyses have been performed with the use of the arc-
length method available in the ANSYS code. The initial geometrical imperfec-
tions, which are necessary to start the procedure, had the magnitude of 0.05%
of the shell thickness and had the shape of the first buckling mode. The results
of two analyses are shown in Fig. 7.

The first analysis was performed on shells for which the buckling mode had
the shape of four circumferential waves (n = 4). These shells are represented
by points ’a–f’ in Fig. 7a which is a part of Fig. 6. The corresponding equi-
librium paths are shown in Fig. 7b. On the horizontal axis of the plot the
maximum deflection of the shell v divided by the shell thickness ts is shown.
The vertical axis corresponds to the applied load p normalised by the critical
load pcr for a given shell. The equilibrium path for the shell corresponding to
the point ’a’ has the shape typical for shell structures: the limit load is clearly
visible after which the path drops. The character of the path is said to be un-
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stable. Similar situation is observed for curve ’b’ but in this case the slope of
the path after the limit point is smaller. It can be said that the effect of sta-
bilisation appeared. This effect is well visible in paths ’c’ and ’d’ which have
a stable character. The next path ’e’ is also stable but the effect of stabilisation
is much smaller. The last path, ’f’, is again unstable. The results suggest that
nearby the minimum point of each curve shown in Fig. 6 the equilibrium path
is stable.

To verify this conclusion the second analysis has been carried out for shells,
geometry of which is marked with circles in Fig. 6. The results are shown in
Fig. 7c. As can be seen all equilibrium paths have stable character – the load
increases monotonically during the whole load history what is typical for bars and
plates but not necessarily for shells. The effect of stabilization is more pronounced
in the case of higher number of circumferential waves. For n = 2 the equilibrium
path becomes nearly flat at the critical load. The phenomenon of stabilization of
post-buckling behaviour of shells by introducing a negative Gaussian curvature
has been also reported by Jasion [21] for single-layered shells and by Jasion [24]
for sandwich cylindrical shells with variable thickness.

Fig. 7. Post-buckling behaviour of Cassini ovaloidal shells: a) results of buckling analysis for
n = 4, b) equilibrium paths for shells marked in Fig. 7a, c) equilibrium paths for shells

marked with circles in Fig. 6.

An important issue in the shell stability analysis is the sensitivity of a struc-
ture to the initial geometrical imperfections since even small disturbance of a per-
fect shape may influence the post-buckling behaviour significantly. For this rea-
son the imperfection sensitivity analysis has been performed for two selected
shells with very similar kc parameters but for which the character of the post-
buckling behaviour is different. The geometry of shells corresponds to points ‘b’
and ‘c’ in Fig. 7a.

The results of analyses are shown in Fig. 8. Six different imperfection am-
plitudes have been considered as a fraction of the shell thickness: 0.01ts, 0.02ts,
0.05ts, 0.1ts, 0.5ts, 1.0ts. The shape of imperfection corresponds to the first
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Fig. 8. Imperfection sensitivity of selected shells; a) kc = 0.805, b) kc = 0.8.

eigenmode. Both shells seem to be moderately sensitive to the initial geometri-
cal imperfections. What is important is that the magnitude of imperfections does
not influence the character of behaviour of shells in the post-buckling range.

6. Conclusions

In the present paper the results of the theoretical and numerical (FEM) study
on the strength and stability of shells in the form of Cassini oval are presented.
The study covers the pre-buckling, buckling and post-buckling state.

The pre-buckling state is described both analytically and numerically. The
formulae for membrane stress resultants and membrane stresses are derived.
A very good agreement is seen as to the value of membrane stress resultants
obtained with both approaches. Since the middle surface of the shell is distin-
guished by the continuity of curvatures the stress distribution is smooth – no
edge effect is present, differently than in classical cylindrical tanks closed with
heads.

The critical state has been analysed with the use of FEM only. The buckling
shape of analysed shells is typical for shells of revolution: one longitudinal half-
wave and a number of circumferential waves. The waves are located in the mid-
length of the shell where the circumferential resultant N2 take the biggest value.
The number of waves decreases with increasing of the parameter kc. The buckling
load depends strongly on this parameter. For kc < 1/

√
2 (shells with the positive

Gaussian curvature in the mid-length), the buckling load is higher for smaller
values of kc. For kc > 1/

√
2 (shells with the negative K in the mid-length), the

buckling load decreases with increasing of kc.
A distinguishing feature of the Cassini ovaloidal shells is that they may be-

have in a stable way in the post-buckling range. Such behaviour was observed
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in the post-critical analysis conducted with the use of FE method on shells with
K < 0 – for some shells the obtained equilibrium paths had a stable character.
When this post-critical behaviour is combined with a smooth stress distribution
the Cassini ovaloidal shell seems to be a favourable shape for a shell structure
subjected to external pressure.
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