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1. Introduction

There are certain circumstances in the modern engineering practice where
a simple homogeneous material such as steel cannot fulfill all the technical re-
quirements imposed by constantly growing applications. This limitation can be
to some extent alleviated by using anisotropic laminated or fiber-reinforced com-
posites in engineering designs. Despite their usefulness in a large variety of ap-
plications, these composites have their own limitations and shortcomings. For
example, they are prone to stress concentration due to material discontinuities
and delamination. A novel remedy against these problems is to use a class of
advanced composites called functionally graded materials (FGMs). These ma-
terials are usually isotropic, but always inhomogeneous. That is, the material
properties vary continuously in space so that certain objectives can be achieved
in the design process. For example, the inner surface of a pressure vessel or
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a pipe can be made of ceramics whereas the outer surface is made of a metal
like steel. Such a design can withstand extreme conditions to which the inner
surface is exposed like high temperatures or hazardous environment while the
outer steel guarantees the structural integrity of the vessel. Moreover, the outer
surface made of steel can be bolted or welded in order to provide appropriate
mechanical constraints to the foundations whatsoever. Such a material leaves a
lot of options and flexibilities at our disposal. For a functionally graded material
however, the blending between ceramics and metal has to vary continuously and
smoothly in space.

An important feature of FGMs is to resist high temperatures and the so-
induced thermal stresses. Thus, thermal and eventually thermoelastic analysis
of structures made of FGMs are of paramount importance. The first step in such
an analysis is to solve the heat conduction problem within the material so as
to determine the temperature field. Once the temperature field is known, the
analysis can be extended further to calculate the thermal stresses, strains and
displacements. This information is needed in order to design a pressure vessel or
any other structure intended to carry thermal extreme loads.

It is obvious that in real-world engineering problems, we work with real-world
materials. Therefore, many idealizations, assumptions and simplifications that
are employed in the daily practice of mechanics might not be feasible anymore.
By the advancement of technology and the increasing need for more reliable and
economic designs with possibly small safety factors, the accuracy of thermal and
mechanical analyses is highly demanded. For example, the classical assumption
of temperature-independent material properties that is often made in engineer-
ing calculations becomes problematic, especially when the structure undergoes
large temperature differences. So, if a more accurate calculation is the aim, the
temperature-dependency of material properties is to be taken into account. In
this paper, the steady axisymmetric heat conduction problem within an infinitely
long cylindrical shell made of FGM with temperature-dependent material prop-
erties is studied by analytical means. For this purpose, the Poincaré method
is used for regular perturbation problems. This solution is interesting from the
viewpoint of heat transfer analysis of pressure vessels and it is also useful to pave
the way toward analytical solution of thermal stresses within the FGM cylinder
with temperature-dependent material properties.

The axisymmetric temperature field due to heat conduction in the radial
direction of a homogeneous cylindrical shell has been studied for a long time
and is now merely considered as a textbook material. However, the analytical
determination of the temperature field and subsequently the induced thermal
stresses in cylindrical objects made of functionally graded materials is a matter of
contemporary research works. Virtually all papers published in this field address
the case with temperature-independent material properties. Though, a number of
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numerical studies have been conducted to investigate the effect of temperature
on the material properties, cf. [1]. In what follows, a brief review of relevant
analytical works is presented.

Using perturbation technique, Obata and Noda [2] analyzed steady one-
dimensional thermal stresses in hollow cylindrical and spherical objects. Ootao

et al. [3] made a transient analysis of thermal stresses in a functionally graded
hollow cylinder due to a moving heat source in the axial direction. Lutz and
Zimmermann [4, 5] gave the analytical solution for the thermal stresses in thick
cylindrical and spherical shells made of FGMs graded in the radial direction.
Tanigawa et al. [6] analytically investigated thermal stresses in a FGM semi-
infinite body graded with a power function in the thickness direction. Jabbari

et al. [7, 8] considered an FGM hollow cylinder graded by a power function in the
radial direction and developed analytical solutions for one- and two-dimensional
thermal stresses. Liew et al. [9] presented an analysis of thermoelastic prob-
lem in an FGM hollow cylinder. They proposed a novel technique by which they
derived the solution for an inhomogeneous material from the solution for a homo-
geneous material. You et al. [10] gave an analytical solution for elastic stresses
in thick-walled spherical vessels under internal pressure. They considered the
shell to be made of a functionally graded material confined between two inner
and outer homogeneous layers. Zhao et al. [11] have analytically studied the
transient temperature field in objects of different shapes made of FGM under
convective boundary conditions. Chen and Lin [12] performed an elastic anal-
ysis of a thick-walled FGM cylindrical shell graded exponentially in the radial
direction. Asgari and Akhlaghi [13] have analytically studied transient heat
conduction in a two-dimensional FGM hollow cylinder with finite length. Peng

and Li [14] proposed a method to solve steady thermal stresses in a hollow cylin-
der made of functionally graded materials with physical properties varying in the
radial direction.

The remainder of this paper is organized as follows. The governing equations
are presented in Section 2. The analytical solution is given in Section 3. Section
5 contains a numerical example which is worked out using the proposed solution
procedure. Finally, the paper is concluded in Section 6.

2. Governing equations

In this section, the differential equation governing the heat conduction prob-
lem in a hollow cylinder made of FGM with temperature-dependent material
properties along with the required boundary conditions are presented. This equa-
tion is to be solved in order to obtain the temperature field within the hollow
cylinder. The inner and outer radii of the cylinder are respectively denoted by
Ri and Ro throughout this paper.
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When a steady heat conduction analysis is the aim, the only relevant material
property is the heat conductivity λ. First, we shall introduce the FGM model
which is used to describe the spatial variation of the heat conductivity within
the cylinder. Also, the dependence of λ on temperature is to be pointed out.

For a cylinder which is functionally graded in the radial direction r and
whose heat conductivity depends upon temperature, the heat conductivity λ
can be written as λ = λ(ϑ, r), with ϑ being the temperature field. Furthermore,
if the material property function is separable, λ can then be shown as

(2.1) λ = λ(ϑ, r) = f(ϑ)g(r),

in which f(ϑ) delegates the dependency of λ upon the temperature and g(r) is the
grading function. The following model for temperature-dependent, functionally
graded heat conductivity is employed throughout this paper:

(2.2) λ = λ(ϑ, r) = (λ0 − λ1ϑ)

(

r

Ro

)m

,

where λ0, λ1 and m are physical constants characterizing the material behavior.
Equation (2.2) describes a material in which the heat conductivity depends on
temperature in a linear manner, that is, λ decreases by increasing temperature
if λ1 > 0 and vice versa. The case with λ1 = 0 simply describes a material with
temperature-independent heat conductivity. The power m determines how the
heat conductivity changes with radius r. In the grading function g, the radius r is
non-dimensionalized by the outer radius Ro. Normally, λ1 is very small compared
to λ0, i.e., λ1 ≪ λ0. This means that the heat conductivity is basically λ0g(r)
at a reference temperature and it is perturbed by the term −λ1ϑg(r) when the
temperature changes from the reference value by an amount of ϑ.

The differential equation governing the temperature field is obtained by the
energy conservation law, the Fourier constitutive equation for heat conduction
and the dependence of heat conductivity on spatial coordinates and tempera-
ture as pointed out in equation (2.2). Thus, we start with the steady energy
conservation law without heat generation:

(2.3) ∇ · q = 0,

where ∇ and q are the nabla operator and heat flux vector, respectively. Equa-
tion (2.3) shows that for steady heat conduction without heat generation, the
heat flux vector q is a solenoidal or divergence-free vector field.

Equation (2.3) is a single scalar equation for three components of the heat
flux vector q. Thus, equation (2.3) is unclosed and in order to mathematically
close this system, a constitutive equation relating the heat flux vector to the
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temperature is required. In this work, the classical Fourier heat conduction law
is used:

(2.4) q = −λ · ∇ϑ,

in which λ is the heat conductivity tensor. For isotropic materials, the heat
conductivity tensor λ reduces to a spherical tensor, i.e.

(2.5) λ = λE,

with λ and E being the heat conductivity of the isotropic material and the iden-
tity tensor, respectively. Substituting equation (2.5) into equation (2.4) yields

(2.6) q = −λE · ∇ϑ = −λ∇ϑ.

The Fourier constitutive equation (2.6) along with the energy conservation law
(2.3) gives the following field equation for the temperature:

(2.7) ∇ · (λ∇ϑ) = 0.

For an infinitely long cylinder with axisymmetric temperature field, equation
(2.7) reduces to the following nonlinear ordinary differential equation:

(2.8)
1

r

d

dr

(

rλ(ϑ, r)
dϑ

dr

)

= 0.

Differentiating (rλdϑ/dr) with respect to r using the product rule, equation (2.8)
can be written as

(2.9)
d

dr

(

rλ
dϑ

dr

)

= λ
dϑ

dr
+ r

dλ

dr

dϑ

dr
+ rλ

d2ϑ

dr2
= 0,

in which dλ/dr is calculated using the product rule:

(2.10)
dλ

dr
=

d

dr

[

(λ0 − λ1ϑ)

(

r

Ro

)m

]

=
d(λ0 − λ1ϑ)

dr

(

r

Ro

)m

+ (λ0 − λ1ϑ)
d

dr

(

r

Ro

)m

.

Furthermore, the use of the chain rule of differentiation yields

(2.11)
d(λ0 − λ1ϑ)

dr
=

d(λ0 − λ1ϑ)

dϑ

dϑ

dr
= −λ1

dϑ

dr
.

Substituting equations (2.10) and (2.11) into equation (2.9) gives

(2.12)

[

(1 + m)(λ0 − λ1ϑ) − rλ1
dϑ

dr

]

dϑ

dr
+ r(λ0 − λ1ϑ)

d2ϑ

dr2
= 0.
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Equation (2.12) shows that taking into account the temperature-dependency of
the heat conductivity results in governing equation becoming nonlinear. Thus,
the analysis of the problem gets much more difficult than the case with tempera-
ture-independent heat conductivity. Due to this inherent difficulty, it is often
tried to refrain from such a full nonlinear description. However, the advancement
of technology pushes us toward a more accurate description for the behavior of
engineering materials.

In order to be solved, equation (2.12) requires two boundary conditions in r
direction. In this paper, we consider general linear boundary conditions imposed
on inner and outer surfaces of the cylinder:

αiϑ(r = Ri) + βi
dϑ

dr

∣

∣

∣

∣

r=Ri

= γi,(2.13a)

αoϑ(r = Ro) + βo
dϑ

dr

∣

∣

∣

∣

r=Ro

= γo,(2.13b)

where αi, αo, βi, βo, γi and γo are some constant coefficients. These general
boundary conditions cover the cases with prescribed temperature , prescribed
heat flux and heat convection at the boundaries by choosing appropriate values
for the coefficients. For example, by choosing αi = 1, βi = 0, αo = 0 and βo = 1,
we have a prescribed temperature at the inner surface whereas the heat flux is
specified at the outer surface.

3. Analytical solution using perturbation technique

In this section, the heat conduction problem is going to be solved in order to
obtain the temperature field ϑ. The heat conduction problem is solved using the
Poincaré method for regular perturbation problems. For this purpose, a small
parameter ε is to appear in the nonlinear differential equation (2.8). As men-
tioned earlier, one can postulate that λ1 ≪ λ0 for most of engineering materials.
The rationale for this assumption is as follows. The heat conductivity at a ref-
erence temperature ϑ0 is λ0g(r) and by varying the temperature, it changes to
a new function (λ0 − λ1ϑ)g(r). However, as long as the temperature variation
from the reference value is not very intense, one expects that the change in heat
conductivity is small. Thus, λ1 has to be small compared to λ0. We can now
define the small parameter ε as

(3.1) ε =
λ1

λ0
≪ 1.

Dividing both sides of equation (2.12) by the non-zero constant λ0, we can
obtain the governing equation of the temperature field in terms of the small
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parameter ε:

(3.2)

[

(1 + m)(1 − εϑ) − εr
dϑ

dr

]

dϑ

dr
+ r(1 − εϑ)

d2ϑ

dr2
= 0.

Equation (3.2) is a nonlinear ordinary differential equation and the regular per-
turbation method (Poincaré’s technique) is employed to solve it. For this purpose,
the temperature field ϑ is expanded as a power series of ε:

(3.3) ϑ = ϑ̄0 + εϑ̄1 + ε2ϑ̄2 + · · · =
∞
∑

n=0

εnϑ̄n.

This expansion can be truncated at any order to give an approximate tempera-
ture field, e.g.:

ϑ0 = ϑ̄0,(3.4)

ϑ1 = ϑ̄0 + εϑ̄1,(3.5)

ϑ2 = ϑ̄0 + εϑ̄1 + ε2ϑ̄2.(3.6)

Substituting expansion (3.3) into equation (3.2) and grouping all terms with
the same power of ε gives

(3.7) ε0

[

r
d2ϑ̄0

dr2
+ (1 + m)

dϑ̄0

dr

]

+ ε1

[

r
d2ϑ̄1

dr2
+ (1 + m)

dϑ̄1

dr
− ϑ̄0

(

r
d2ϑ̄0

dr2
+ (1 + m)

dϑ̄0

dr

)

− r
dϑ̄0

dr

dϑ̄0

dr

]

+ ε2

[

r
d2ϑ̄2

dr2
+ (1 + m)

dϑ̄2

dr
− ϑ̄0

(

r
d2ϑ̄1

dr2
+ (1 + m)

dϑ̄1

dr

)

− ϑ̄1

(

r
d2ϑ̄0

dr2
+ (1 + m)

dϑ̄0

dr

)

− 2r
dϑ̄0

dr

dϑ̄1

dr

]

+ O(ε3) = 0.

This series can be continued and more terms could be obtained. In this paper,
we restrict ourselves to the above order of approximation and do not go any
further.

Since equation (3.7) is to hold for arbitrary values of ε, each square-bracketed
term is to vanish individually. This results in a hierarchical series of problems
which we solve in the sequel in order to obtain different levels of approximation
for the temperature field. First, the O(ε0) problem is to be solved:

(3.8) O(ε0) : r
d2ϑ̄0

dr2
+ (1 + m)

dϑ̄0

dr
= 0,
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which can also be obtained by setting ε = 0 in equation (3.7). This is a ho-
mogeneous Cauchy–Euler ordinary differential equation whose general solution
reads

(3.9) ϑ̄0(r) = C1,0 +
C2,0

rm
.

To determine the integration constants C1,0 and C2,0, this general solution must
be subjected to the following boundary conditions:

αiϑ̄0(r = Ri) + βi
dϑ̄0

dr

∣

∣

∣

∣

r=Ri

= γi,(3.10a)

αoϑ̄0(r = Ro) + βo
dϑ̄0

dr

∣

∣

∣

∣

r=Ro

= γo.(3.10b)

Imposition of these boundary conditions onto the general solution (3.9) gives the
following relations for the integration constants C1,0 and C2,0:

(3.11) C1,0 =
ζoγi − ζiγo

αiζo − αoζi

, C2,0 =
αiγo − αoγi

αiζo − αoζi

,

in which

(3.12) ζi =
αiRi − βim

Rm+1
i

, ζo =
αoRo − βom

Rm+1
o

.

The O(ε1) problem is obtained by setting the bracket multiplied by ε1 in
equation (3.7) to zero:

(3.13) O(ε1) : r
d2ϑ̄1

dr2
+ (1+m)

dϑ̄1

dr
= ϑ̄0

(

r
d2ϑ̄0

dr2
+ (1+m)

dϑ̄0

dr

)

+ r
dϑ̄0

dr

dϑ̄0

dr
.

The first term on the right-hand side of equation (3.13) vanishes due to equation
(3.8). Thus, the O

(

ε1
)

problem can be finally written as

(3.14) O(ε1) : r
d2ϑ̄1

dr2
+ (1 + m)

dϑ̄1

dr
= r

dϑ̄0

dr

dϑ̄0

dr
,

which is an inhomogeneous Cauchy-Euler differential equation whose solution
is composed of two parts: the homogeneous solution and a particular solution.
The homogeneous solution of equation (3.14) is the same as the solution of
equation (3.8). A particular solution of equation (3.13) can be easily calculated
as well. The general solution of equation (3.13) then reads

(3.15) ϑ̄1(r) = C1,1 +
C2,1

rm
+

C2
2,0

2r2m
,
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which is to be subjected to the following boundary conditions:

αiϑ̄1(r = Ri) + βi
dϑ̄1

dr

∣

∣

∣

∣

r=Ri

= 0,(3.16a)

αoϑ̄1(r = Ro) + βo
dϑ̄1

dr

∣

∣

∣

∣

r=Ro

= 0.(3.16b)

Application of these boundary conditions to the general solution (3.15) yields
the following relations for the integration constants:

(3.17) C1,1 =
ζoξi − ζiξo

αiζo − αoζi

, C2,1 =
αiξo − αoξi

αiζo − αoζi

,

where

(3.18) ξi =
(2βim − αiRi)C

2
2,0

2R2m+1
i

, ξo =
(2βom − αoRo)C

2
2,0

2R2m+1
o

.

Finally, we look at the O(ε2) problem. In order to obtain the O(ε2) problem
we need to set the terms multiplied by ε2 in equation (3.7) to zero. This gives

(3.19) O(ε2) : r
d2ϑ̄2

dr2
+ (1 + m)

dϑ̄2

dr
= ϑ̄0

(

r
d2ϑ̄1

dr2
+ (1 + m)

dϑ̄1

dr

)

+ ϑ̄1

(

r
d2ϑ̄0

dr2
+ (1 + m)

dϑ̄0

dr

)

+ 2r
dϑ̄0

dr

dϑ̄1

dr
.

This equation can be rewritten in the following form by taking into account
equations (3.8) and (3.14):

(3.20) O(ε2) : r
d2ϑ̄2

dr2
+ (1 + m)

dϑ̄2

dr
= rϑ̄0

dϑ̄0

dr

dϑ̄0

dr
+ 2r

dϑ̄0

dr

dϑ̄1

dr

= r
dϑ̄0

dr

(

ϑ̄0
dϑ̄0

dr
+ 2

dϑ̄1

dr

)

.

This is again an inhomogeneous Cauchy-Euler differential equation whose general
solution is written as the sum of the homogeneous solution and a particular
solution:

(3.21) ϑ̄2(r) = C1,2 +
C2,2

rm
+

χ

2r2m
+

C3
2,0

2r3m
,

in which

(3.22) χ = C2,0(C1,0C2,0 + 2C2,1).
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The boundary conditions for the O
(

ε2
)

problem are

αiϑ̄2(r = Ri) + βi
dϑ̄2

dr

∣

∣

∣

∣

r=Ri

= 0,(3.23a)

αoϑ̄2(r = Ro) + βo

dϑ̄2

dr

∣

∣

∣

∣

r=Ro

= 0,(3.23b)

which give the following values for the integration constants C1,2 and C2,2:

(3.24) C1,2 =
ζoηi − ζiηo

αiζo − αoζi

, C2,2 =
αiηo − αoηi

αiζo − αoζi

,

where

ηi =
(2βim − αiRi)χ

2R2m+1
i

+
(3βim − αiRi)C

3
2,0

2R3m+1
i

,

ηo =
(2βom − αoRo)χ

2R2m+1
o

+
(3βom − αoRo)C

3
2,0

2R3m+1
o

.

(3.25)

Now, the temperature fields at different orders of approximation read

ϑ0(r) = ε0ϑ̄0 = ε0

(

C1,0 +
C2,0

rm

)

+ O(ε1),(3.26)

ϑ1(r) = ϑ̄0 + ε1ϑ̄1(3.27)

= ε0

(

C1,0 +
C2,0

rm

)

+ ε1

(

C1,1 +
C2,1

rm
+

C2
2,0

2r2m

)

+ O(ε2),(3.28)

ϑ2(r) = ϑ̄0 + ε1ϑ̄1 + ε2ϑ̄2(3.29)

= ε0

(

C1,0 +
C2,0

rm

)

+ ε1

(

C1,1 +
C2,1

rm
+

C2
2,0

2r2m

)

+ ε2

(

C1,2 +
C2,2

rm
+

χ

2r2m
+

C3
2,0

2r3m

)

+ O(ε3).

The above solution is valid for the case with m 6= 0. The case with m = 0
which describes a homogeneous material with temperature-dependent material
properties needs special attention. In this case, the zeroth-order solution reads

(3.30) ϑ̄0(r) = C1,0 + C2,0 ln r,

where the integration constants C1,0 and C2,0 are given by

(3.31) C1,0 =
µoγi − µiγo

αiµo − αoµi

, C2,0 =
αiγo − αoγi

αiµo − αoµi

,
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in which

(3.32) µi = αi ln Ri +
βi

Ri

, µo = αo ln Ro +
βo

Ro

.

The first-order solution can also be obtained as

(3.33) ϑ̄1(r) = C1,1 + C2,1 ln r +
C2

2,0

2
ln2 r,

in which the integration constants C1,1 and C2,1 are obtained by applying the
boundary conditions:

(3.34) C1,1 =
µoσi − µiσo

αiµo − αoµi

, C2,1 =
αiσo − αoσi

αiµo − αoµi

,

in which

(3.35)

σi = −C2
2,0

(

αi

2
ln2 Ri + βi

lnRi

Ri

)

,

σo = −C2
2,0

(

αo

2
ln2 Ro + βo

lnRo

Ro

)

.

Finally, the second-order solution is as follows:

(3.36) ϑ̄2 (r) = C1,2 + C2,2 ln r + Λ ln2 r +
C3

2,0

2
ln3 r,

in which

(3.37) Λ =
C2,0

2
(C1,0C2,0 + 2C2,1).

Imposition of boundary conditions yields the following formulae for the integra-
tion constants C1,2 and C2,2:

(3.38) C1,2 =
µoτi − µiτo

αiµo − αoµi

, C2,2 =
αiτo − αoτi

αiµo − αoµi

,

in which

τi = −2βiΛ

Ri

lnRi −
(

αiΛ +
3βiC

3
2,0

2Ri

)

ln2 Ri −
αiC

3
2,0

2
ln3 Ri,

τo = −2βoΛ

Ro

lnRo −
(

αoΛ +
3βoC

3
2,0

2Ro

)

ln2 Ro −
αoC

3
2,0

2
ln3 Ro.

(3.39)

Now, the approximate temperature fields for m = 0 can be obtained using equa-
tions (3.4), (3.5) and (3.6).
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The problem of steady one-dimensional conduction in an inhomogeneous hol-
low cylinder with temperature-dependent heat conductivity can be exactly solved
as well. For this purpose, we start with the heat equation:

(3.40)
d

dr

(

rλ
dϑ

dr

)

=
d

dr

(

rf(r)g(ϑ)
dϑ

dr

)

= 0.

This results in the following implicit general solution:

(3.41) λ0ϑ − 1

2
λ1ϑ

2 =
C1

rm
+ C2.

This is a quadratic equation for ϑ which can be solved to yield the tempera-
ture field ϑ. But, this approach has at least two problems. First, only first-kind
boundary conditions can be imposed on this exact solution and the imposition of
second- and third-kind boundary conditions is not possible. The second problem
arises when a thermoelastic analysis is to be performed using the so-obtained
temperature field. If this is the case, then the mathematical form of ϑ makes the
thermoelastic analysis extremely difficult and in most cases a closed-form solu-
tion can not be obtained. However, the proposed perturbation solution does not
exhibit these two problems and is therefore viable. Although the perturbation
solution is valid when ε is very small, the approximate solution shows consid-
erable improvement over the linear solution even when ε is not very small, as
shown in Section 5.

4. Thermal stresses

Thermal stresses due to the obtained temperature field are considered here
for the case of plane stress. The elasticity modulus E and the thermal expansion
coefficient αt are assumed to be temperature-independent and are only functions
of the radial direction r whereas the Poisson’s ratio ν is assumed to be constant.
The static equilibrium equation for axisymmetric thermal stresses in a hollow
cylinder reads

(4.1)
dσr

dr
+

σr − σt

r
= 0,

where σr and σt are the radial and hoop stresses, respectively. In case of axisym-
metric mechanical and thermal loading, the only non-zero displacement compo-
nent is the radial one, denoted by u. The radial and tangential strains are related
to u via

(4.2) ǫr =
du

dr
, ǫt =

u

r
.
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The stress-strain relations are given by

σr =
E(r)

1 − ν2
[ǫr + νǫt − (1 + ν)αt(r)ϑi] ,(4.3)

σt =
E(r)

1 − ν2
[νǫr + ǫt − (1 + ν)αt(r)ϑi] ,(4.4)

in which i = 0, 1, 2. Substituting the kinematic equations (4.2) into constitutive
equations (4.3) and (4.4) yields

σr =
E(r)

1 − ν2

[

du

dr
+ ν

u

r
− (1 + ν)αt(r)ϑi

]

,(4.5)

σt =
E(r)

1 − ν2

[

ν
du

dr
+

u

r
− (1 + ν)αt(r)ϑi

]

.(4.6)

Combining equations (4.1), (4.5) and (4.6) gives the following differential equa-
tion governing the displacement field u:

(4.7)
d2u

dr2
+

(

1

E

dE

dr
+

1

r

)

du

dr
+

(

ν

Er

dE

dr
− 1

r2

)

u =
1 + ν

E

d

dr
(Eαtϑi).

The material properties E and αt are taken to be the following functions of r:

(4.8) E(r) = E0

(

r

Ro

)p

, αt(r) = αt0

(

r

Ro

)q

.

With this, the displacement equation (4.7) reads

(4.9) r2 d2u

dr2
+ (p + 1)r

du

dr
+ (νp − 1)u = RHSi,

where RHSi for i = 0, 1, 2 is given by

RHS0 =
ΓC1,0

r
+

(Γ − m)C2,0

rm+1
,(4.10)

RHS1 =
ΓA1

r
+

(Γ − m)B1

rm+1
+

(Γ − 2m)C1

r2m+1
,(4.11)

RHS2 =
ΓA2

r
+

(Γ − m)B2

rm+1
+

(Γ − 2m)C2

r2m+1
+

(Γ − 3m)D2

r3m+1
,(4.12)

in which Γ = p + q − 1.
The inhomogeneous ordinary differential equation (4.9) subjected to appro-

priate boundary conditions can be readily solved to yield the displacement field u.
Once, u is known, stresses and strains can be easily calculated.
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5. Numerical example

In this section, some selected results obtained from the proposed analytical
solution are presented. As pointed out by equation (3.2), the actual values of
material properties λ0 and λ1 are immaterial for the determination of the steady
temperature field. Instead, the ratio λ1/λ0 which is denoted by ε the ratio influ-
ences the field. In this section, results of a temperature field at different levels
of approximation obtained by setting αi = 1, αo = 1, βi = 0, βo = 0, γi = 0
and different values for γo are presented and compared with a numerical solu-
tion of the full nonlinear equation. The numerical solution is obtained by using
a second-order central finite difference scheme. The simulation is conducted on
a very fine computational mesh so that the solution can be considered as “exact”
within the round-off error margin of the computer. The code has been written
in Fortran and the simulation has been conducted in the double precision mode
of the compiler.

Figure 1 shows the temperature profiles for ϑi = 0◦C, ϑo = 1000◦C, ε = 0.001
and m = 0 obtained by different orders of approximation. The solution of full
nonlinear governing equations obtained by an accurate numerical solution based
on the finite difference method is also plotted for comparison. The convergence
of perturbation series from the zeroth-order solution (i.e., the linear problem)
towards the “exact” solution by increasing the order of approximation is demon-
strated in this figure. However, even the second-order approximation does not
fully match the numerical solution. If the value of ε decreases then the accuracy
of the solution is significantly improved.

It is worthwhile to note that the “exact” temperature profile is concave up.
However, it is observed at the first glance that the zeroth-order solution, i.e., the
linear solution, is concave down. This means that the linear description not only
fails to quantitatively predict the full solution, but it also fails in the qualitative
prediction of the physics. Moreover, the neat feature of higher-order approxi-
mations is observed as the first- and second-order solutions show concave-up
temperature profiles. Though, the concave-up feature of the first-order solution
is modest. This observation confirms that the proposed asymptotic solution pro-
cedure is neat in predicting the concavity of the temperature profiles. It shall
be mentioned that the protuberance which occurred in the “exact” temperature
profile in the vicinity of the outer surface is not reproduced by any of approx-
imate solutions up to the second order. This discrepancy can be alleviated by
going to even higher orders, cf. [15]. However, at smaller values of ε, as discussed
below, the protuberance disappears and the approximation is just fine.

To demonstrate the effect of ε on the convergence of the asymptotic series,
the temperature fields obtained by the aforementioned set of parameters but
with ε = 0.0005 and ε = 0.0001 are respectively depicted in Figs. 2 and 3. It is
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instrumental to note that these values of ε are typical for engineering materials,
e.g. for steel we have ε = 0.000584. We conclude that the greater the value of ε,
the more terms in the asymptotic series are required to retain a given accuracy.

In order to show the effect of temperature difference between the inner
and outer surfaces of the cylinder, temperature profiles for γo = 500◦C and
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Fig. 1. Temperature profiles for γo = 1000◦C, ε = 0.001 and m = 0 obtained by different
orders of approximation and comapred with a numerical solution of the full nonlinear

equation.
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Fig. 2. Temperature profiles for γo = 1000◦C, ε = 0.0005 and m = 0 obtained by different
orders of approximation and comapred with a numerical solution of the full nonlinear

equation.
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γo = 100◦C with ε = 0.001 and m = 0 are depicted in Figs. 4 and 5, respec-
tively. In Figs. 4, we see that ϑ2 almost coincides with the “exact” solution while
ϑ1 is a little bit off. By decreasing γo even more, in Fig. 5 both ϑ1 and ϑ2 almost
coincide with the “exact” solution. It means that the higher the temperature
difference, the more terms in the perturbation series are required in order to get
an accurate solution.
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Fig. 3. Temperature profiles for γo = 1000◦C, ε = 0.0001 and m = 0 obtained by different
orders of approximation and comapred with a numerical solution of the full nonlinear
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The ϑ2 profiles presented in Fig. 6 are obtained by setting γo = 1000◦C
and ε = 0.0005 for various values of m. Figure 6 shows how the value of m
affects the temperature profile. Larger values of m lead to higher temperature
levels and vice versa. Also, the curvature of temperature curves changes with
the values of m. This means that for large positive values of m, the temperature
gradient near the inner surface is sharp and this sharp gradient weakens by
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Fig. 5. Temperature profiles for γo = 100◦C, ε = 0.001 and m = 0 obtained by different
orders of approximation.
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approaching the outer surface. However, for negative values of m, the behavior
is converse. This trend can be explained as follows. For positive m, the heat
conductivity assumes its minimum value at the inner surface and it increases
by approaching the outer surface. Moreover, the radial heat flux is constant in
this one-dimensional problem. Thus, by increasing λ in the radial direction, the
temperature graident ∂ϑ/∂r has to decrease in order to retain a constant heat
flux. A converse statement holds for the negative values of m.

6. Conclusions

In this paper, an approximate analytical solution for the temperature field
in a hollow cylinder made of FGM with temperature-dependent material prop-
erties is presented. After introducing the governing equations and the boundary
conditions of the problem, the heat conduction problem is analytically solved
using perturbation technique. This leads to an approximate solution, but the
order of accuracy can be increased in a systematic manner. The convergence of
the hierarchical asymptotic solutions is examined by comparison to a numerical
solution of the full nonlinear problem. Finally, a numerical example is worked
out and some of the temperature profiles are presented and discussed.
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