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This paper presents the vibration behavior analysis of heterogeneous orthotropic
conical shells with mixed boundary conditions. Basic equations of heterogeneous or-
thotropic truncated conical shells are derived using Donnell–Mushtari shell theory.
Employing the separation of variables and Galerkin’s method, the expressions for
frequency of heterogeneous orthotropic conical shells with two mixed boundary con-
ditions are obtained. The results are validated through numerical comparisons with
available results in the literature. The influences of truncated shell characteristics,
heterogeneity, material orthotropy and mixed boundary conditions on dimensionless
frequency parameters are investigated.
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1. Introduction

In accordance with the recent developments of science and modern
technology, structural elements consisting of different heterogeneous materials
are becoming more widely used in the aerospace industry and in other high-
technology fields. This is connected with their high specific strength and specific
stiffness, light weight, fatigue resistance and improving the behavior of the struc-
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ture. Heterogeneous materials are generally isotropic, but they can be anisotropic
as well. There are numerous studies on the behavior of structural elements con-
sisting of heterogeneous or functionally graded (FG) isotropic materials. Reviews
of the major developments in the research on FG isotropic materials, published
since 1990, can be found in the works of Koizumi [1], Birman and Byrd [2]
and Shen [3]. Because of the combined effects of anisotropy and heterogeneity,
it is extremely difficult to obtain analytical solutions for the vibration problem
of shells made of heterogeneous materials with anisotropic properties. One of the
first works that proposed the theory of FG or heterogeneous orthotropic materi-
als was published by Pan [4], which determined the shape of the heterogeneity
of orthotropic materials as the exponential function and presented the exact so-
lution for FG anisotropic plate. Since this field is relatively new, there have been
few studies on the thermomechanical and vibrational behavior of FG or hetero-
geneous orthotropic shells. Chen, Bian and Ding [5] presented the solution to
free vibration problems of simply supported, fluid-filled orthotropic FG cylindri-
cal shells based on three-dimensional equations of elasticity. Batra and Jin [6]
obtained natural frequencies of an FG graphite/epoxy rectangular plate using
the first-order shear deformation. Pelletier and Vel [7] investigated an exact
solution for the steady-state thermoelastic response of FG orthotropic cylindri-
cal shells using Flügge and Donnell shell theories. Ootao and Tanigawa [8]
presented solution for transient thermal stresses of an orthotropic FG rectan-
gular plate based on the three-dimensional elasticity theory using Laplace and
finite cosine transformation methods. Chalivendra [9] developed quasi-static
mixed mode stress fields for a crack in orthotropic inhomogeneous medium using
asymptotic analysis coupled with Westergaard stress function approach. Vel [10]
obtained exact elasticity solution for the vibration of FG anisotropic cylindrical
shells. Baron [11] analyzed propagation of elastic waves in the FG anisotropic
hollow cylinder based on the Stroh’s sextic formalism and an analytical solu-
tion, the matricant, explicitly expressed under the Peano series expansion form.
Lal and Kumar [12] solved a transverse vibration problem of non-homogeneous
rectangular orthotropic plates of bilinearly varying thickness using characteristic
orthogonal polynomials. Najafov, Sofiyev and Kuruoglu [13] examined tor-
sional vibration and stability of FG orthotropic cylindrical shells on elastic foun-
dations. Sofiyev and Kuruoglu [14] solved vibration and buckling problems
of simply supported FG orthotropic cylindrical shells based on the first-order
shear deformation theory.

The orthotropic conical shells subjected to various loading and boundary
conditions are widely used in various engineering applications such as hoppers,
vessel heads, components of missiles and spacecrafts, and other areas, and their
analysis has become an important research area in applied mechanics. These
shells have a great potential to withstand the external pressure with. However,
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they can display complex dynamic behavior which is mainly due to orthotropy
and sensitivity to heterogeneity. Although a large number of works have been
published on the vibration behaviors of homogeneous orthotropic conical shells
[15–28], only a small number of investigations are concerned with the analysis
of heterogeneous or functionally graded isotropic and orthotropic shells with
different boundary conditions [29–37].

From the review of the literature, the available solutions for the vibration
problems of isotropic and orthotropic conical shells are relatively scarce, and
most of the previous studies regarding the conical shells are confined to the
simply supported and clamped boundary conditions. To the best knowledge of
the authors, it is the first time that the vibration analysis of heterogeneous or-
thotropic truncated conical shells with the following mixed boundary conditions
is conducted. At one end of heterogeneous orthotropic truncated conical shell is
a sleeve that prevents its longitudinal displacement and rotation, and the other
end is a free support. The main objective of this work is to develop analytical for-
mulations and solutions for the vibration analysis of heterogeneous orthotropic
conical shell with mixed boundary conditions using the Donnell–Mushtari shell
theory [38, 39].

2. Formulation of the problem

Figure 1 shows a heterogeneous orthotropic truncated conical shell with
a thickness h, half apex angle γ, length L, radii at the two ends R1 and R2,
respectively, distance along the generator from the top to the small and large
ends of the cone S1 and S2, respectively. Let the coordinate system (Sθz) be
chosen such that the origin O is at the vertex of the whole cone, on the reference
surface of the conical shell, and S axis lies on the reference surface of the cone,
z axis is in a direction normal to the reference surface of the cone, and θ axis
is in the normal direction to the S–z plane. The displacement components of

Fig. 1. The geometry of heterogeneous orthotropic truncated conical shell and notations.
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the reference surface are u, v and w along the meridian, tangential and radial
directions, respectively. The axes of orthotropy are parallel to the curvilinear
coordinates S and θ.

We assume that the Young moduli, shear modulus and density of the or-
thotropic material are functions of the coordinate in the thickness direction.
Hence, the material properties of heterogeneous orthotropic conical shell is ex-
pressed as a function of Z, the normalized coordinate in the thickness direction,
and it is as follows:

(2.1)
ES(Z) = E0Sϕ1(Z), Eθ(Z) = E0θϕ1(Z), G(Z) = G0ϕ1(Z),

ρ(Z) = ρ0ϕ2(Z), Z = z/h,

where E0S and E0θ are Young’s moduli of the homogeneous orthotropic ma-
terial along S and θ directions, respectively, G0 is shear modulus, ρ0 is the
density of the homogeneous orthotropic material. Furthermore, gradient func-
tions ϕ1(Z) and ϕ2(Z) are the exponential function giving the variations of the
Young moduli, shear modulus and density, respectively, and are expressed as
follows [4, 8, 13]:

(2.2) ϕ1(Z) = eη1(Z−0.5), ϕ2(Z) = eη2(Z−0.5),

in which ηi (i = 1, 2) are the exponential factors characterizing the degree of
Young’s moduli and shear modulus, and density of the orthotropic material,
respectively, and satisfying −1 ≤ (η1, η2) ≤ 1. We remark that η1 = η2 = 0
corresponds to the homogeneous orthotropic material, (η1, η2) < 0 to the graded
soft material and (η1, η2) > 0 to the graded stiff material. To make analysis
tractable, we assume that Poisson’s ratios (νSθ and νθS) in the heterogeneous
orthotropic materials are taken as a constant. This is reasonable for most sit-
uations of heterogeneous orthotropic materials due to very slight variation of
Poisson’s ratios.

3. Fundamental relations and basic equations

For the derivation of the basic equations Donnell–Mushtari shell theory is
used [40]–[42]. The stress-strain relations are given by considering the continuous
change of orthotropic material properties of heterogonous truncated conical shell
along the thickness direction [29]:

(3.1)
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where σS , σθ, σSθ are the stresses and eS , eθ, eSθ are the strains on the reference
surface with respect to the axes and ϕ = θ sin γ. The stiffness coefficients are
defined in terms of Qij , (i, j = 1, 2, 6) as follows:

(3.2)

Q11(Z) =
ES(Z)

1 − νSθνθS
, Q22(Z) ==

Eθ(Z)

1 − νSθνθS
,

Q12(Z) =
νθSES(Z)

1 − νSθνθS
=

νSθEθ(Z)

1 − νSθνθS
= Q21(Z), Q66(Z) = 2G(Z).

The stress resultants are related to the stresses by the equations [34]:

(NS , Nθ, NSθ) =

h/2∫

−h/2

(σS , σθ, σSθ) dz,(3.3)

(MS ,Mθ,MSθ) =

h/2∫

−h/2

(σS , σθ, σSθ)z dz.(3.4)

The force resultants may be expressed with the Airy stress function Ψ with
the following partial derivatives [41]:

(3.5) (NS , Nθ, NSθ) =
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Inserting Eqs. (3.1) into (3.3), (3.4) and using the resulting relations together
with the relations (3.5) in the basic equations for truncated conical shells [41],
and then, for simplicity of mathematical operations introducing a new parameter
x = ln(S/S2), it is possible to obtain the motion and compatibility equations of
heterogeneous orthotropic truncated conical shells, in the matrix form as follows:

(3.6)

[
L11 L12

L21 L22

] [
Ψ
w

]
= 0,

where Lij (i, j = 1, 2) are differential operators and the following definitions
apply:

L11 = δ1e
−4x ∂4

∂x4
+ δ2e

−4x ∂3

∂x3
+ δ3e

−4x ∂2

∂x2
+ δ4e

−4x ∂

∂x
(3.7)

+ S2e
−3x

(
∂2
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− ∂

∂x

)
cot γ + δ5e

−4x ∂4

∂ϕ4
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−4x ∂4

∂x2∂ϕ2

+ δ7e
−4x ∂3

∂x∂ϕ2
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−4x ∂2
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,
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L12 = −δ9e
−4x ∂4

∂ϕ4
− δ10e

−4x ∂4

∂x2∂ϕ2
+ δ11e

−4x ∂3

∂x∂ϕ2

− δ12e
−4x ∂2

∂ϕ2
− δ13e

−4x ∂4

∂x4
+ δ14e

−4x ∂3

∂x3

+ δ15e
−4x ∂2

∂x2
+ δ16e

−4x ∂

∂x
− ρ1S

4
2

∂2

∂t2
,

L21 = ∆1e
−4x ∂4

∂ϕ4
+ ∆2e

−4x ∂4

∂x2∂ϕ2
− ∆3e

−4x ∂3

∂x∂ϕ2

+ ∆4e
−4x ∂2

∂ϕ2
+ ∆5e

−4x ∂4

∂x4
+ ∆6e

−4x ∂3Ψ

∂x3

+ ∆7e
−4x ∂2Ψ

∂x2
+ ∆8e

−4x ∂Ψ

∂x
,

L22 = −∆9e
−4x ∂4

∂ϕ4
+ ∆10e

−4x ∂4

∂x2∂ϕ2
+ ∆11e

−4x ∂3

∂x∂ϕ2
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−4x ∂2

∂ϕ2
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−4x ∂4

∂x4
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−4x ∂3
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∂x2

+ ∆16e
−4x ∂

∂x
+ S2e

−3x

(
∂2

∂x2
− ∂

∂x

)
cot γ

in which t is a time, and ρ1, δj and ∆j (j = 1, 2, . . . , 16) are given in Appendix A.
Equations (3.6) are the governing equations for the free vibration of hetero-

geneous orthotropic truncated circular conical shells.

4. The solution of basic equations

Let w and Ψ be defined by the following relations [42]:

w = eλxw1(x, t) cos(n1ϕ),(4.1)

Ψ = S2e
(λ+1)xΨ1(x, t) cos(n1ϕ),(4.2)

where n1 = n/ sin γ, n is the circumferential wave number and λ is parameter
that will be determined from minimum conditions of frequencies.

Multiplying the first equation of the set (3.6) by wS2
2e2x dϕ dx and sec-

ond equation of the set by ΨS2
2e2x dϕ dx and applying the Galerkin method

in the ranges (−x0 ≤ x ≤ 0) and (0 ≤ ϕ ≤ 2π sin γ), respectively, then inte-
grating with respect to the coordinate ϕ, one finds the following characteristic
equation:
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(4.3)

0∫

−x0
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∂x3
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]

− ρ1S
4
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}
dx = 0,

(4.4)
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dx = 0.

Now we describe the mixed boundary conditions for the problem. At one end
of the truncated conical shell the following boundary condition is satisfied:

(4.5) v = w = NS = MS = 0,
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which corresponds to the free support and the other end is satisfied by the
following boundary condition:

(4.6) u =
∂w

∂x
= QS = NSθ = 0.

In practice, this means that at this end there is a sleeve that prevents shell’s
rotation and longitudinal displacement [42].

Case 1. At the large and small ends of the truncated conical shell the bound-
ary conditions (4.5) and (4.6) are satisfied respectively, so that the functions
w1(x, t) and Ψ1(x, t), can be chosen as follows:

(4.7) w1 = C1 sin

(
m1x

2

)
cos(ωt), Ψ1 = C2 sin

(
m1x

2

)
cos(ωt),

where C1 and C2 are unknown constants to be determined, ω (in radians per
second) is the natural frequency and the following definitions apply:

(4.8) m1 =
mπ

x0
, x0 = ln

S1

S2
; m = 1, 3, 5, . . . ,

in which m is the longitudinal wave number.
Introducing Eqs. (4.7) into Eqs. (4.3) and (4.4), after integrating according

to x and eliminating f2(t) from the resulting equations, the following expression
for the natural frequency of heterogeneous orthotropic truncated conical shells
is obtained:

(4.9) ω =

√
q13q21 + (q11 + q12)q22

ρ1q21
,

where qij (i, j = 1, 2, 3) are parameters depending on heterogeneous orthotropic
material properties, truncated conical shell characteristics and boundary condi-
tions. The explicit form of qij (i, j = 1, 2, 3) is too long so it is omitted [35, 43].

Remembering that for a homogeneous orthotropic truncated conical shell,
η1 = η2 = 0 and an analogue of expression (4.9) is considered as a special case.

For the non-dimensional frequency of heterogeneous orthotropic truncated
conical shell, the following expression is used:

(4.10) ω1 = ω
R2

1

h

√
(1 − νSθνθS)ρ0

E0S
.

Case 2. At the small and large ends of the heterogeneous orthotropic trun-
cated conical shell the boundary conditions (4.5) and (4.6) are satisfied respec-
tively, so that the functions w1(x, t) and Ψ1(x, t), can be chosen as follows:

(4.11) w1 = C1 sin

(
m1x

2

)
cos(ωt), Ψ1 = C2 sin

(
m1x

2

)
cos(ωt),
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where the following definitions apply:

(4.12) x = ln
S

S1
; m = 1, 3, 5, . . . .

Introducing (4.11) into Eqs. (4.3) and (4.4), after integrating with respect
to x and eliminating f2(t) from the resulting equations, then performing some
simplifications, the expressions for dimensional and non-dimensional natural fre-
quencies of heterogeneous orthotropic truncated conical shells, which satisfied
(4.5) and (4.6) at the small and large ends, respectively, are found. The resulting
expressions will be similar to the expression (4.10). For this case, S1 is written
instead of S2 and the boundaries of integrals varied from 0 to x0 in Eqs. (4.3)
and (4.4).

The dimensional and non-dimensional fundamental frequencies of heteroge-
neous orthotropic truncated conical shell may be obtained by means of minimiz-
ing the functions (4.9) and (4.10) with respect to m, n and λ.

5. Numerical results and discussion

5.1. Comparison

In order to confirm the accuracy of the current study, the values of the nat-
ural frequency of isotropic truncated conical shells for different L/R1 and R1/h
ratios are compared with those of Agenosov and Sachenkov [42] and tabu-
lated in Table 1. The other geometric parameters of the truncated conical shells
are taken to be h = 0.01 m, h = 0.01, γ = 45◦, m = 1 and λ = 1.2. The
Young modulus, mass density and Poisson’s ratio for the isotropic material are
E0 = 1.93 × 1011 Pa, ν0 = 0.3 and ρ0 = 8000 kg/m3. Here E0, ν0 and ρ0 are
the Young modulus, Poisson’s ratio and density of homogeneous isotropic ma-
terial, respectively. These values were taken from the study of Agenosov and

Table 1. Comparison of the natural frequency of isotropic truncated conical

shells with mixed boundary conditions.

ω (rad/s), (n)

Agenosov and Sachenkov [42] Present study

L/R1 L/R1

R1/h 1 2 3 1 2 3

150 324.517(7) 169.478(6) 115.16(6) 327.68(7) 171.77(6) 116.91(6)

200 213.078(7) 112.30(6) 74.108(6) 214.894(7) 113.615(6) 75.089(6)

250 151.519(8) 79.451(7) 54.146(6) 152.66(8) 80.279(7) 54.784(6)

300 115.715(8) 60.471(7) 40.687(6) 116.515(8) 61.048(7) 41.125(6)
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Sachenkov [42]. The boundary conditions at the small and large ends are de-
fined by Eqs. (4.5) and (4.6), respectively. It is evident that obtained a good
agreement with the results from [42] was obtained.

5.2. Free vibration analysis of heterogeneous orthotropic conical shell with mixed

boundary conditions

In this subsection, to study influences of heterogeneity and orthotropy on
the dimensionless frequency parameters of truncated conical shells under mixed
boundary conditions, different geometric relations L/R1 = 1, 2, 3, R1/h =
50, 75, 100; γ = 15◦, 30◦, 45◦ and material gradient index (µ1, µ2) = −1, 0,+1
are selected. The numerical results are tabulated in Table 2 and illustrated in
Figs. 2–4.

In order to discuss the influences of the heterogeneity, the stiffness ratio
(E01/E02) and mixed boundary conditions for the minimum values of dimen-
sionless frequency parameters, and the associated number of circumferential
waves (n) and parameter (λ) for homogeneous and heterogeneous orthotropic
truncated conical shells, the following material properties and shell character-
istics are taken to be: E0S = 138 × 1011 (Pa), E0θ = E0S/q; q = 10, 25, 40;
G0 = 0.5E0θ; νSθ = 0.25; νθS = νSθE0S/E0θ and R1/h = 5, L/R1 = 1 (see
Table 2). The minimum values of dimensionless frequency parameters of homo-
geneous and heterogeneous orthotropic truncated conical shells decrease as E0S

is kept constant and the stiffness ratio E0S/E0θ increases, whereas the associ-
ated number of circumferential waves does not change in the mixed boundary
conditions 1 and 2. In addition, the parameter λ is zero in Case 1 and changes
irregularly in Case 2. Comparing the heterogeneous orthotropic conical shells
with the homogeneous orthotropic conical shells, the importance of the differ-
ence between the values of dimensionless frequency parameters can be seen. It
should be mentioned that the effect of heterogeneity is not changed as E0S/E0θ

is increased from 10 to 40 by step 15 for fixed η1 and η2 in Case 1, although
sometimes this influence in Case 2 is higher than in Case 1, it changes with
an increasing of E0S/E0θ. One can see that influences of heterogeneity, stiffness
ratio and mixed boundary conditions for the minimum values of dimensionless
frequency parameters for truncated conical shells are apparent. It is noticed that
the minimum values of dimensionless frequency parameter of heterogeneous or-
thotropic truncated conical shell are identical as η1 = η2 = ±1 for all E0S/E0θ.
The minimum values of the dimensionless frequency parameter of heterogeneous
orthotropic conical shell are obtained at λ = 0 in Case 1, while at the various
values of the parameter λ, in Case 2. The values of dimensionless frequency pa-
rameter of heterogeneous orthotropic conical shells are smaller than the other
profiles as η1 = −1 and η1 = 0, whereas they are larger as η1 = 1 and η2 = 0 for
the all E0S/E0θ ratio.



Influence of mixed boundary conditions. . . 341

Table 2. Influences of the heterogeneity, the stiffness ratio and the mixed

boundary conditions on the minimum values of ω1.

ω1 (n, λ)

Mixed boundary conditions: Case 1 Mixed boundary conditions: Case 2

E01/E02 10 25 40 10 25 40

η1 = η2 = 0 3.414(5,0) 2.278(5,0) 1.835(5,0) 0.523(1,3.1) 0.262(5,3.2) 0.202(5,3.1)

η1 = η2 = ±1 3.385(5,0) 2.261(5,0) 1.821(5,0) 0.518(2,3.1) 0.252(5,3.2) 0.209(5,3.1)

µ1 = +1; µ2 = 0 2.691(5,0) 1.797(5,0) 1.448(5,0) 0.412(2,3.1) 0.200(5,3.2) 0.166(5,3.1)

η1 = −1; η2 = 0 4.437(5,0) 2.963(5,0) 2.387(5,0) 0.679(2,3.1) 0.330(5,3.2) 0.274(5,3.1)

Figures 2 and 3 display the variation of minimum values of dimensionless
frequency parameters for homogeneous (η1 = η2 = 0) and heterogeneous (η1 =

a)

R1/h

b)

R1/h

Fig. 2. Influences of the heterogeneity on the minimum values of ω1 for orthotropic conical
shells depending on the ratio, R1/h, in a) Case 1 and b) Case 2.
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η2 = ±1 or η1 = ±1, η2 = 0) orthotropic truncated conical shells depending
on the R1/h and L/R1 ratios, respectively, in two mixed boundary conditions:
(a) Case 1 and (b) Case 2. The homogeneous orthotropic material properties are:
E0S = 138 × 1011 (Pa), E0θ = E0S/q; q = 10, 25, 40; G0 = 0.5E0θ; νSθ = 0.25;
νθS = νSθE0S/E0θ. The conical shell characteristics are taken to be L/R1 = 1,
γ = 30◦, R1/h = 50, 75, 100 in Fig. 2, R1/h = 50, L/R1 = 2 and γ = 15◦, 30◦, 45◦

in Fig. 3. With a decrease in the ratio R1/h, the minimum values of dimension-
less frequency parameters increase, whereas with a decrease in the ratio L/R1,
these values decrease appreciably. The values of dimensionless frequency param-
eters for Case 2 are significantly lower than for Case 1 for all R1/h and L/R1

ratios. The influence of heterogeneity on the dimensionless frequency parameter
of orthotropic truncated conical shell is less influential as η1 = η2 = ±1, it is
significant as η1 = +1; η2 = 0, and it is more pronounced as η1 = −1; η2 = 0 in
Case 1 for all R1/h and L/R1 ratios.

a)

L/R1

b)

L/R1

Fig. 3. Influences of the heterogeneity on the minimum values of ω1 for orthotropic conical
shells depending on the ratio, L/R1, in a) Case 1 and b) Case 2.



Influence of mixed boundary conditions. . . 343

The curves pertaining to minimum values of dimensionless frequency param-
eters for homogeneous (η1 = η2 = 0) and heterogeneous (η1 = η2 = ±1 or
η1 = ±1, η2 = 0) orthotropic truncated conical shells depending on the semi-
vertex angle γ, in two mixed boundary conditions a) Case 1 and b) Case 2, are
illustrated in Fig. 4. Homogeneous orthotropic material properties are identical
to the previous calculation (see Figs. 2 and 3) and the truncated conical shell
characteristics are taken to be R1/h = 50, L/R1 = 2 and γ = 15◦, 30◦, 45◦. The
minimum values of dimensionless frequency parameter of homogeneous and het-
erogeneous orthotropic truncated conical shells decrease, as the semi-vertex angle
γ increases for Cases 1 and 2. The influence of heterogeneity on the dimensionless
frequency parameter of orthotropic truncated conical shell is more pronounced in
the second mixed boundary condition than in the first, when the Young moduli
and density vary together (i.e., η1 = η2 = ±1), whereas this influence is more
obvious when density of the material is kept constant and Young’s moduli and

a)

γ (angle)

b)

γ (angle)

Fig. 4. Influences of the heterogeneity on the minimum values of ω1 for orthotropic conical
shells depending on the semi-vertex angle γ in a) Case 1 and b) Case 2.
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shear modulus vary (η1 = ±1; η2 = 0), as the semi-vertex angle γ increases, in
Cases 1 and 2. The influence of heterogeneity on the dimensionless frequency
parameter of orthotropic truncated conical shell is almost unchanged in Case 1,
while this influence varies in Case 2, as the semi-vertex angle γ increases.

6. Conclusions

An investigation has been carried out on the free vibration of heterogeneous
orthotropic truncated conical shells with mixed boundary conditions. The basic
equations of heterogeneous orthotropic truncated conical shells are derived using
the Donnell–Mushtari shell theory. Using the separation of variables method
and Galerkin’s method, the expressions for natural frequency of heterogeneous
orthotropic truncated conical shells with two mixed boundary conditions are
successfully obtained in this study.

The numerical results support the following conclusions:
a) The minimum values of dimensionless frequency parameters of homoge-

neous and heterogeneous orthotropic truncated conical shell are obtained
for λ = 0 for all the semi-vertex-angles, the length-to-radius and the radius-
to-thickness ratios, and the stiffness ratio in Case 1, while these values are
obtained for various λ in Case 2.

b) The values of dimensionless frequency parameters of homogeneous and
heterogeneous orthotropic truncated conical shell decrease, as the semi-
vertex angle, the stiffness ratio and the length-to-radius ratio increase,
whereas these values increase as the radius-to-thickness ratio increases.

c) The minimum values of dimensionless frequency parameters of heteroge-
neous orthotropic truncated conical shell are identical as η1 = η2 = ±1.

d) The minimum values of dimensionless frequency parameter of heteroge-
neous orthotropic conical shells are smaller than the other profiles as η1 < 0
and η1 = 0, whereas it is larger as η1 > 0 and η2 = 0.

e) The influence of heterogeneity on the dimensionless frequency parameter
of orthotropic truncated conical shell is less influential as η1 = η2 = ±1,
it is significant as η1 = +1; η2 = 0, and it is more effective as η1 = −1;
η2 = 0 in Case 1.

f) The influence of heterogeneity is not changed, since E0S/E0θ increases for
fixed η1 and η2 in Case 1, although sometimes this influence in Case 2
is higher than in Case 1, it changes with the increasing of stiffness ratio
E0S/E0θ.

g) The influence of heterogeneity does not affect the dimensionless frequency
parameter of orthotropic truncated conical shell in Case 1, while this in-
fluence changes in Case 2.
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Appendix A

The coefficients δj and ∆j (j = 1, . . . , 16) of Eq. (3.7) are defined as follows:

(A.1)

δ1 = c12; δ2 = c11 − 4c12 − c22; δ3 = 5c12 + 3c22 − 3c11 − c21;

δ4 = 2(c11 − c22 − c12 + c21); δ5 = c21; δ6 = c11 − 2c31 + c22;

δ7 = 4c31 − 3c11 − c22; δ8 = 2(c11 − c31 + c21); δ9 = c24;

δ10 = c14 + c23 + 2c32; δ11 = 3c14 + c23 + 4c32;

δ12 = 2(c14 + c32 + c24); δ13 = c13; δ14 = c23 − c14 + 4c13;

δ15 = c24 − 3c23 + 3c14 − 5c13; δ16 = 2(c23 − c14 − c24 + c13);

∆1 = b11; ∆2 = 2b31 + b21 + b12; ∆3 = 4b31 + 3b21 + b12;

∆4 = 2(b31 + b21 + b11); ∆5 = b22; ∆6 = b21 ∗ −4b22 − b12;

∆7 = 5b22 + 3b12 − b11 − 3b21; ∆8 = 2b21 − 2b22 − 2b12 + 2b11;

∆9 = b14; ∆10 = 2b32 − b13 − b24; ∆11 = b13 + 3b24 − 4b32;

∆12 = 2b32 − 2b24 − 2b14; ∆13 = b23; ∆14 = b13 − b24 + 4b23;

∆15 = b14 − 3b13 + 3b24 − 5b23; ∆16 = 2b13 − 2b24 + 2b23 − 2b14,

where

(A.2)

c11 = a1
11b11 + a1

12b21, c12 = a1
11b12 + a1

12b22,

c13 = a1
11b13 + a1

12b23 + a2
11, c14 = a1

11b14 + a1
12b24 + a2

12,

c21 = a1
21b11 + a1

22b21, c22 = a1
21b12 + a1

22b22,

c23 = a1
21b13 + a1

22b14 + a2
21, c24 = a1

21b14 + a1
22b13 + a2

22,

c31 = a1
66b31, c32 = a1

66b32 + a2
66,

b11 = a0
22/L0, b12 = −a0

12/L0, b13 = (a0
12a

1
21 − a1

11a
0
22)/L0,

b14 = (a0
12a

1
22 − a1

12a
0
22)/L0, b21 = −a0

21/L0, b22 = a0
11/L0,

b23 = (a0
21a

1
11 − a1

21a
0
11)/L0, b24 = (a0

21a
1
12 − a1

22a
0
11)/L0,

b31 = 1/a0
66, b32 = −a1

66/a
0
66, L0 = a0

11a
0
22 − a0

12a
0
21,

in which

ak
11 =

E0Shk+1

1 − νSθνθS

1/2∫

−1/2

Zkϕ1(Z) dZ,

ak
22 =

E0θh
k+1

1 − νSθνθS

1/2∫

−1/2

Zkϕ1(Z) dZ, k = 0, 1, 2,

(A.3)
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ak
12 = νθSak

11 = νSθa
k
22 = ak

21,

ak
66 = 2G0h

k+1

1/2∫

−1/2

Zkϕ1(Z) dZ,

ρ1 = ρ0

−h/2∫

h/2

ϕ2(Z) dZ.

(A.3)
[cont.]
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