
Arch. Mech., 67, 6, pp. 417–437, Warszawa 2015

Modeling of skin tissue heating using the generalized dual

phase-lag equation

E. MAJCHRZAK, Ł. TURCHAN, J. DZIATKIEWICZ

Institute of Computational Mechanics and Engineering

Silesian University of Technology

44-100 Gliwice, Konarskiego 18a, Poland

e-mails: ewa.majchrzak@polsl.pl, lukasz.turchan@polsl.pl,

jolanta.dziatkiewicz@polsl.pl

This paper concerns the numerical modeling of skin tissue heating. To describe
the analyzed process the system of three generalized dual phase-lag equations corre-
sponding to the successive layers of the skin: epidermis, dermis and sub-cutaneous
region is applied. On the surfaces between the layers the ideal thermal contact is as-
sumed, on the skin surface the Neumann condition describing the external heating of
tissue can be accepted, and on the remaining surfaces the no-flux condition is taken
into account. Initial temperature of the tissue and the blood is known. The problem
is solved using the explicit scheme of finite difference method. In the final part of the
paper the results of computations are shown.
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1. Introduction

Controlled heating of biological tissue (artificial hyperthermia) or un-
controlled process of heating (burns) can be modeled using different mathe-
matical descriptions of heat transfer in the living organisms. So far, the most
commonly used model is the Pennes equation [1–9]. The bioheat transfer Pennes
equation has the essential limitation because it cannot be used to simulate the
effect of large, widely spaced thermally significant blood vessels.

In recent years, the several papers devoted to the application of dual phase-
lag model in the scope of bioheat processes modeling appeared, e.g., [10–16].
In the dual phase-lag equation (DPL) two lag times are taken into account,
in particular, the relaxation and thermalization times. These parameters are
assumed on the basis of information resulting from the experiments [17–19] but
the numerical values given in the literature vary.

Another approach is to treat the tissue as a porous medium divided into
two regions: the vascular region (blood vessels) and the extravascular region
(tissue) [20–28]. Then, the mathematical model consists of two equations which
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describe the tissue temperature and the blood temperature. The acceptance
of the certain assumptions leads to the generalized dual phase-lag equation
(GDPLE) (tissue sub-domain) [25] in which the coupling factor and the phase-
lag times appear. The phase-lag times are expressed in terms of the blood and
tissue properties, the interphase convective heat transfer coefficient and the
blood perfusion rate [25]. The GDPLE and the formula concerning the depen-
dence between blood and tissue temperatures supplemented by the appropriate
boundary initial conditions create the mathematical model of the process con-
sidered. The problem of internal tissue heating is analyzed in [27] using this
model.

The purpose of this research is to use the GDPLE for the modeling of skin
tissue heating. It should be pointed out that in the case of skin tissue, which has
a multilayer structure, a description of the heating process is more difficult (in
the very limited number of papers concerning the GDPLE applications – e.g.,
[20] the homogeneous 1D tissue domain is considered). In this paper the axially
symmetrical problem is solved. The temperature distribution in the epidermis is
described by Fourier equation, because in this layer the blood vessels do not occur
and metabolic heat source is equal to zero, while the temperature distribution in
the dermis and in the subcutaneous region is described by generalized dual phase-
lag equations, wherein the different dimensions of blood vessels in these layers are
taken into account. This system of equations is supplemented by the appropriate
boundary and the initial conditions. According to the authors’ knowledge, the
heat transfer processes in heterogeneous domains described by the system of
GDPL equations have not been considered so far. The explicit scheme of the
finite difference method for multilayered domain is proposed and the stability
criteria are formulated. The FDM algorithm constitutes a basis of ‘in house’
computer program used for performing numerical modeling. In the final part of
the paper the results of computations are shown.

2. Generalized dual phase-lag equation

Heat transfer in the living biological tissues is associated with heat conduction
in the tissue, the convective heat transfer between blood vessels and tissue and
blood perfusion. The tissue can be treated as a porous medium divided into two
regions: the vascular region (blood vessels) and the extravascular region (tissue)
as shown in Fig. 1 [25]. To describe the temperature field in these sub-domains
the two-equation porous model [25, 29] is applied

(2.1) ερbcb
∂Tb

∂t
+ ερbcbu · ∇Tb + (1 − ε)ρc

∂T

∂t

= ε∇(λb∇Tb) + (1 − ε)∇(λ∇T ) + εQb + (1 − ε)Q
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Fig. 1. Assumed tissue structure [25].

and

(2.2) ερbcb
∂Tb

∂t
= G(T − Tb),

where ε denotes the porosity (the ratio of blood volume to total volume),
ρ, ρb [kg/m3] are the densities of tissue and blood, respectively, c, cb [J/(kg ·K)]
are the specific heats, λ, λb [W/(m ·K)] are the thermal conductivities, T , Tb [K]
are the temperatures, t [s] is the time, Q, Qb [W/m3] are the metabolic heat
sources, u [m/s] is the blood velocity vector and G [W/(m3 ·K)] is the coupling
factor.

The coupling factor is defined as [25]

(2.3) G = Aα+ wcb,

where A [m2/m3] is the volumetric heat transfer area between tissue and blood,
α [W/(m2 · K)] is the heat transfer coefficient and w [kg/(m3 · s)] is the blood
perfusion rate.

From Eq. (2.2) the tissue temperature can be determined

(2.4) T = Tb +
ερbcb
G

∂Tb

∂t
.

Introducing the formula (2.4) into Eq. (2.1) one obtains

(2.5) ερbcb
∂Tb

∂t
+ ερbcbu · ∇Tb + (1 − ε)ρc

(
∂Tb

∂t
+
ε ρbcb
G

∂2Tb

∂t2

)

= ε∇(λb∇Tb) + (1 − ε)∇
[
λ∇Tb + λ

ε ρbcb
G

∂(∇Tb)

∂t

]
+ εQb + (1 − ε)Q

or

(2.6) C
∂Tb

∂t
+ (1 − ε) ρc

ε ρbcb
G

∂2Tb

∂t2
+ ερbcbu · ∇Tb

= ∇ (Λ∇Tb) + (1 − ε)λ
ε ρbcb
GΛ

∂

∂t
[∇ (Λ∇Tb)] + εQb + (1 − ε)Q,
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where

(2.7) Λ = (1 − ε)λ+ ελb

and

(2.8) C = (1 − ε)ρc+ ερbcb

are the effective thermal conductivity and effective heat capacity, respectively.
The phase lags for heat flux and temperature gradient are defined as [25]

(2.9) τq =
ε(1 − ε)ρcρbcb

GC

and

(2.10) τT =
ε(1 − ε)ρbcbλ

GΛ
.

As can be observed, the phase-lag times are expressed in terms of the prop-
erties of blood and tissue, the interphase convective heat transfer coefficient α
and the blood perfusion rate w (cf. Eq. (2.3)). These parameters are closely re-
lated to the porosity and, as shown in the paper [25], the greater porosity value
determines the greater values of these parameters.

So, Eq. (2.6) can be written as follows:

(2.11) C

(
∂Tb

∂t
+ τq

∂2Tb

∂t2

)
+ ερbcbu · ∇Tb

= ∇(Λ∇Tb) + τT
∂

∂t
[∇(Λ∇Tb)] + εQb + (1 − ε)Q.

It should be pointed out that in Eq. (2.11) the blood temperature and the
blood velocity vector are unknown. It is possible, with the additional assumption,
to obtain the equation in which the only unknown is the tissue temperature. For
this purpose, the blood temperature Tb is determined from Eq. (2.4)

(2.12) Tb = T − ερbcb
G

∂Tb

∂t
.

Introducing the above dependence to Eq. (2.11) one obtains

C

(
∂T

∂t
− ε ρbcb

G

∂2Tb

∂t2
+ τq

∂2T

∂t2
− τq

ε ρbcb
G

∂3Tb

∂t3

)
(2.13)

+ ερbcbu · ∇T − ε2ρ2
bc

2
b

G
u · ∂

∂t
(∇Tb)

= ∇
[
Λ∇

(
T − ε ρbcb

G

∂Tb

∂t

)]

+ τT
∂

∂t

{
∇

[
Λ∇

(
T − ε ρbcb

G

∂Tb

∂t

)]}
+ εQb + (1 − ε)Q
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or

(2.14) C

(
∂T

∂t
+ τq

∂2T

∂t2

)

= ∇(Λ∇T ) + τT
∂

∂t
[∇(Λ∇T )] − ερbcbu · ∇T

+ εQb + (1 − ε)Q+
ερbcb
G

{
C

(
∂2Tb

∂t2
+ τq

∂3Tb

∂t3

)

− ∂

∂t
[∇(Λ∇Tb)] − τT

∂2

∂t2

[
∇(Λ∇Tb)] + ε ρbcbu · ∂

∂t
(∇Tb)

}
.

Equation (2.11) is differentiated with respect to time and then

(2.15) C

(
∂2Tb

∂t2
+ τq

∂3Tb

∂t3

)
− ∂

∂t
[∇(Λ∇Tb)] − τT

∂2

∂t2
[∇(Λ∇Tb)]

+ ερbcb
∂

∂t
(u · ∇Tb) = ε

∂Qb

∂t
+ (1 − ε)

∂Q

∂t
.

As can be seen, the left-hand side of Eq. (2.15) is the same as the expression in
the curly brackets on the right-hand side of Eq. (2.14). Thus, Eq. (2.14) can be
written as

(2.16) C

(
∂T

∂t
+ τq

∂2T

∂t2

)
= ∇(Λ∇T ) + τT

∂

∂t
[∇(Λ∇T )]

− ερbcbu · ∇T + εQb + (1 − ε)Q+
ε ρbcb
G

[
ε
∂Qb

∂t
+ (1 − ε)

∂Q

∂t

]

or (cf. formula (2.9))

(2.17) C

(
∂T

∂t
+ τq

∂2T

∂t2

)
= ∇(Λ∇T ) + τT

∂

∂t
[∇(Λ∇T )]

− ερbcbu · ∇T + εQb + (1 − ε)Q+
τqC

(1 − ε)ρc

[
ε
∂Qb

∂t
+ (1 − ε)

∂Q

∂t

]
.

If one assumes that [25]

(2.18) −ερbcbu · ∇T ≈ G(Tb − T )

then Eq. (2.17) takes the form

(2.19) C

(
∂T

∂t
+ τq

∂2T

∂t2

)
= ∇(Λ∇T ) + τT

∂

∂t

[
∇(Λ∇T )

]

+G(Tb − T ) + εQb + (1 − ε)Q+
τqC

(1 − ε)ρc

[
ε
∂Qb

∂t
+ (1 − ε)

∂Q

∂t

]
.
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It should be pointed out that from the numerical point of view the determina-
tion of tissue temperature from Eq. (2.19) and the blood temperature from Eq.
(2.12) is very convenient because it does not require the knowledge of velocity
vector u. Taking into account the approximation (2.18), a certain simplification
of the model (2.17) is introduced, of course.

To estimate the porosity ε it is assumed that the vessels with diameters db

are uniformly distributed in the tissue and the entire cross-section area can be
considered as a set of recurrent hexagons as shown in Fig. 1 [25]. The diameters
of the circles which are equivalent to hexagons are equal to d. So, the porosity
can be determined as follows:

(2.20) ε =
d2

b

d2
.

To determine the coupling factor it is necessary to know the heat transfer
coefficient and the heat transfer area between the tissue and blood (cf. Eq. (2.3)).
The heat transfer coefficient can be calculated from the Nusselt number

(2.21) Nu =
αdb

λb
→ α =

Nuλb

db
.

To calculate the heat transfer area, the bundle of k blood vessels located in
the volume V should be considered. Then, the parameter A has the following
form:

(2.22) A =
kPb

V
=
εkPb

kVb
=

επdbL

π(db/2)2L
=

4ε

db
,

where Pb is the surface area between the vessels and tissue, Vb is the volume of
blood and L is the length of blood vessels.

In the presented model the blood velocity does not appear explicitly. Para-
meter describing the blood flow is the blood perfusion rate w [kg/(m3s)], as in
the Pennes model [1]

(2.23) ρc
∂T

∂t
= ∇(λ∇T ) + wcb(TB − T ) +Q,

where TB is the arterial blood temperature. Pennes assumed that the arterial
blood temperature TB is uniform throughout the tissue, while the vein tempe-
rature is equal to the tissue temperature at the same point.

For example, in the paper [23] the value of blood flow rate [m3/s] has been
found on the basis of a simple energy balance concerning the steady state prob-
lem. The blood temperature change in the relevant sector of the vessel is assumed
to be known and then blood flow rate can be obtained. Next, the obtained value
is recalculated into the blood velocity v [m/s] in the axial direction.
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To summarize, two-temperature model (2.19) and (2.2) supplemented by ap-
propriate boundary and initial conditions allows one to determine the tissue and
blood temperatures. In addition, the phase-lag times are expressed in terms of
the properties of blood and tissue and the coupling factor between blood and
tissue. In this way the non-homogeneous structure of living tissues is taken into
account.

3. Formulation of the problem

The domain of skin tissue can be treated as the composition of layers corre-
sponding to the epidermis, dermis and subcutaneous region as shown in
Fig. 2.

Fig. 2. Axisymmetric fragment of skin tissue (1 – epidermis, 2 – dermis, 3 – sub-cutaneous
region).

Because the blood vessels are absent in the epidermis layer, the temperature
distribution T1 = T1(r, z, t) is described by the following equation:

(3.1) C1
∂T1

∂t
= ∇(λ1∇T1),

where λ1 is the thermal conductivity of epidermis and C1 = c1ρ1 is the volumetric
specific heat of epidermis (c1 is the specific heat, ρ1 is the density).

Heat transfer in dermis and subcutaneous region is associated not only with
the heat conduction but also with the convective heat transfer between blood
vessels and tissue as well as with blood perfusion. So, in each of these layers the
tissue can be treated as a porous medium and the temperature distribution in
dermis (e = 2) and subcutaneous region (e = 3) can be described by generalized
dual phase-lag equations (here the constant metabolic source functions Q and
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Qb are taken into account – cf. Eq. (2.19)

(3.2) Ce

(
∂Te

∂t
+τ qe

∂2Te

∂t2

)

= ∇(Λe∇Te) + τTe

∂

∂t
[∇(Λe∇Te)] +Ge(Tbe − Te) + (1 − εe)Qe + εeQbe,

where

(3.3) ∇(Λe∇Te) =
∂

∂z

(
Λe
∂Te

∂z

)
+

1

r

∂

∂r

(
rΛe

∂Te

∂r

)
,

while the blood temperatures in these sub-domains are calculated from the for-
mula (cf. Eq. (2.2))

(3.4) Tbe = Te −
εeρbcb
Ge

∂Tbe

∂t
.

Equations (3.1), (3.2) and (3.4) should be supplemented by appropriate bound-
ary and initial conditions. So, on the contact surfaces between the layers the
ideal thermal contact is assumed, namely

(3.5) (r, z) ∈ Γ1 :

{
T1(r, z, t) = T2(r, z, t),

q1(r, z, t) = q2(r, z, t),

and

(3.6) (r, z) ∈ Γ2 :

{
T2(r, z, t) = T3(r, z, t),

q2(r, z, t) = q3(r, z, t),

where q1(r, z, t) = −λ1n·∇T1(r, z, t), qe(r, z, t) = −Λen·∇Te(r, z, t), e = 2, 3. On
the fragment of skin surface: r ≤ rD, z = 0, for t ≤ te, where te is the exposure
time, the Neumann condition is proposed [5]

(3.7) qb(r, 0, t) = q0
t

te

(
1 − t

te

)
exp

(
− r2

r2D

)
,

where q0 is the constant value. For t > te: qb(r, 0, t) = 0. On the remaining
surfaces of the domain, the no-flux condition is assumed. The initial conditions
are also given:

(3.8) t = 0 : T1(r, z, t) = Tp, Te(r, z, t) = Tp,
∂Te(r, z, t)

∂t
= 0, e = 2, 3,

where Tp is the initial temperature of tissue.
The formulas (3.4) describing the changes of blood temperature are supple-

mented by the following initial conditions:

(3.9) t = 0 : Tbe(r, z, 0) = Tp, e = 2, 3.
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4. Method of solution

The formulated problem has been solved using the explicit scheme of finite
difference method. The following time grid is introduced:

(4.1) 0 = t0 < t1 < · · · < tf−1 < tf < · · · < tF <∞.

The temperature for time tf = f∆t (f ≥ 2) is denoted as T f = T (r, z, f∆t),
where ∆t is the constant time step. The uniform spatial grid of dimensions n×m
is shown in Fig. 3.

Fig. 3. Spatial discretization.

It is assumed that h is a constant grid step, the same in both directions. It
should be noted that the boundary nodes are not located on the boundary of
the domain but are shifted by half the grid step (cf. Fig. 3). Then, for node (i, j)

the temperature is denoted as T f
e i,j = (ih− h/2, jh− h/2, f∆t), where e is the

number of particular layers, i = 1, 2, . . . n and j = 1, 2, . . . ,m.
The approximation of Eq. (3.4) is as follows:

(4.2) T f
be i,j = T f−1

e i,j − εeρbcb
Ge

T f
be i,j − T f−1

be i,j

∆t
,

hence

(4.3) T f
be i,j =

Ge∆t

Ge∆t+ εeρbcb

(
T f−1

e i,j +
εeρbcb
Ge∆t

T f−1
be i,j

)
.

As can be seen, when ε1 = 0, τq1 = 0, τT1 = 0, G1 = 0, Q1 = 0 and Qm1 = 0 then
Eq. (3.2) is the same as Eq. (3.1) describing the temperature distribution in the
epidermis. In other words, Eq. (3.2) can be used to determine the temperature
in all the layers e = 1, 2, 3.
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The following approximate form of equations (3.2) is proposed:

(4.4) Ce

T f
e i,j − T f−1

e i,j

∆t
+ Ceτqe

T f
ei,j − 2T f−1

e i,j + T f−2
e i,j

(∆t)2

= ∇(Λe∇Te)
f−1
i,j +

τTe

∆t
[∇(Λe∇Te)

f−1
i,j −∇(Λe∇Te)

f−2
i,j ]

+Ge(T
f
be i,j − T f−1

e i,j ) + (1 − εe)Qe + εeQbe

or

(4.5) Ce

T f
e i,j − T f−1

e i,j

∆t
+ Ceτqe

T f
ei,j − 2T f−1

e i,j + T f−2
e i,j

(∆t)2

=
∆t+ τTe

∆t
∇(Λe∇Te)

f−1
i,j

− τTe

∆t
∇(Λe∇Te)

f−2
i,j +Ge(T

f
be i,j − T f−1

e i,j ) + (1 − εe)Qe + εeQbe,

where (cf. formula (3.3))

∇(Λe∇Te)
s
i,j =

1

h

[
Λs

e i+0.5,j

(
∂Te

∂z

)s

i+0.5,j

− Λf−1
e i−0.5,j

(
∂Te

∂z

)s

i−0.5,j

]
(4.6)

+
1

hri,j

[
Λs

e i,j+0.5

(
r
∂Te

∂r

)s

i,j+0.5

− Λs
e i,j−0.5

(
r
∂Te

∂r

)s

i,j−0.5

]

or

(4.7) ∇(Λe∇Te)
s
i,j =

1

h

[
Λs

e i+0.5,j

T s
e i+1,j − T s

e i,j

h
− Λf−1

e i−0.5,j

T s
e i,j − T s

e i−1,j

h
]

+
1

hri,j

[(
ri,j +

h

2

)
Λs

e i,j+0.5

T s
e i,j+1 − T s

e i,j

h
−

(
ri,j −

h

2

)
Λs

e i,j−0.5

T s
e i,j − T s

e i,j−1

h

]
,

while s = f − 1 or s = f − 2. The location of intermediate nodes is shown in
Fig. 4.

The thermal conductivities in the intermediate nodes are assumed to be the
harmonic means of nodal thermal conductivities [30–32], namely

(4.8)

Λs
e i−0.5,j =

2Λs
e ijΛ

s
e i−1,j

Λs
e ij + Λs

e i−1,j

, Λf−1
e i+0.5,j =

2Λs
e ijΛ

s
e i+1,j

Λs
e ij + Λs

e i+1,j

,

Λs
e i,j−0.5 =

2Λs
e i,jΛ

s
e i,j−1

Λs
e ij + Λs

e i,j−1

, Λs
e i,j+0.5 =

2Λs
e ijΛ

s
e i,j+1

Λs
e ij + Λs

e i,j+1

.
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Fig. 4. Five-point star.

Introducing (4.8) into formula (4.7) and after some mathematical reductions, the
following form of operator ∇ is obtained:

∇(Λe∇Te)
s
i,j = Φ1

T s
e i,j−1 − T s

e i,j

Rs
e i,j1

+ Φ2

T s
e i,j+1 − T s

e i,j

Rs
e i,j2

(4.9)

+ Φ3

T s
e i−1,j − T s

e i,j

Rs
e i,j3

+ Φ4

T s
e i+1,j − T s

e i,j

Rs
e i,j4

,

where

Rs
e i,j1 =

h

2

(
1

Λs
e i,j

+
1

Λs
e i,j−1

)
, Rs

e i,j2 =
h

2

(
1

Λs
e i,j

+
1

Λs
e i,j+1

)
,

Rs
e i,j3 =

h

2

(
1

Λs
e i,j

+
1

Λs
e i−1,j

)
, Rs

e i,j4 =
h

2

(
1

Λs
e i,j

+
1

Λs
e i+1,j

)
,

(4.10)

Φ1 =
ri,j − 0.5h

hri,j
, Φ2 =

ri,j + 0.5h

hri,j
, Φ3 = Φ4 =

1

h
.(4.11)

Summing up, from Eq. (4.5) the temperatures T f
ei,j at all internal nodes i, j

are calculated. In the nodes located near the boundary the FDM equations are
a little different. For example, for i = 1 the boundary condition (3.7) should be
taken into account, namely

(4.12) r ≤ rD, z = 0 : q1(r, z, t) = −λ1n · ∇T1(r, z, t) = qb(r, z, t);

this means

(4.13) −λ1

(
∂T

∂z

)s

i−0.5,j

= qs
b i−0.5,j .
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The dependence (4.13) is introduced to the formula (4.6) and then (e = 1 and
i = 1):

(4.14) ∇(λ1∇T1)
s
i,j =

1

h

[
λs

1 i+0.5,j

(
∂T1

∂z

)s

i+0.5,j

+ qs
b i−0.5,j

]

+
1

hri,j

[
ri,j+0.5λ

s
1 i,j+0.5

(
∂Te

∂r

)s

i,j+0.5

− ri,j−0.5λ
s
1 i,j−0.5

(
∂T1

∂r

)s

i,j−0.5

]
.

Hence,

∇(λ1∇T1)
s
i,j = Φ1

T s
1 i,j−1 − T s

1 i,j

Rs
1 i,j1

+ Φ2

T s
1 i,j+1 − T s

1 i,j

Rs
e i,j2

(4.15)

+ Φ3q
s
b i−0.5,j + Φ4

T s
1 i+1,j − T s

1 i,j

Rs
1 i,j4

.

In the case of explicit scheme of finite difference method application, the sta-
bility criterion should be fulfilled, of course. As it is known, solving parabolic
equations, two-level difference approximation of time derivative is used and the
explicit scheme is stable, if the appropriate coefficients in the FDM equations are
non-negative [33]. Here, the hyperbolic equation containing a second-order time
derivative and higher-order mixed derivative in both time and space is solved
and the problem of stability is more complicated.

To formulate the stability criteria, Eq. (4.5) can be written as follows:

T f
e i,j =

∆t(∆t+τTe)

Ce(∆t+τqe)
∇(Λe∇Te)

f−1
i,j − τTe∆t

Ce(∆t+τqe)
∇(Λe∇Te)

f−2
i,j(4.16)

+
∆t+2τqe

∆t+τqe
T f−1

e i,j − τqe

∆t+τqe
T f−2

e i,j +
Ge(∆t)

2

Ce(∆t+τqe)
(T f

be i,j −T
f−1
e i,j )

+
(∆t)2

Ce(∆t+τqe)
[(1−εe)Qe +εeQbe]

or using the dependence (4.9)

(4.17) T f
e i,j =
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∆t+2τqe

∆t+τqe
−∆t(∆t+τTe)
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+
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− τTe∆t

Ce(∆t+τqe)
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e i,j1
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e i,j2
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Φ3
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[
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.

Equation (4.17) is a three-level difference approximation, and the condition simi-
lar as in the case of two-level scheme must be fulfilled

(4.18)
∆t+ 2τqe

∆t+ τqe
− ∆t(∆t+ τTe)

Ce(∆t+ τqe)

(
Φ1

Rf−1
e i,j1

+
Φ2

Rf−1
e i,j2

+
Φ3

Rf−1
e i,j3

+
Φ4

Rf−1
e i,j4

)

− Ge(∆t)
2

Ce(∆t+ τqe)
≥ 0.

The authors performed numerous computations with a wide range of val-
ues of h and ∆t which suggest that the condition (4.18) is not sufficient and
the unconditional stability appears when additionally appropriate coefficients in
the difference equations (4.17) occurring at temperatures for the time tf−2 are
negative. Thus,

(4.19)
τqe

∆t+ τqe
− τTe∆t

Ce(∆t+ τqe)

(
Φ1

Rf−2
e i,j1

+
Φ2

Rf−2
e i,j2

+
Φ3

Rf−2
e i,j3

+
Φ4

Rf−2
e i,j4

)
≥ 0,

but it is not proven mathematically. Summing up, in the case of the proposed
algorithm both of the conditions (4.18) and (4.19) must be fulfilled. This is also
confirmed by the results presented in [34]. So, it is necessary to choose such
a time step ∆t and a grid step h for which these inequalities are satisfied. In this
paper, for the assumed grid step h and for each skin layer e, e = 1, 2, 3, the time
steps ∆t1, ∆t2, ∆t3 were chosen in order to fulfil these stability criteria and next
in the calculations the time step ∆t = min{∆t1,∆t2,∆t3} is accepted.

5. Results of computations

The domain of skin tissue (cylinder of dimensions R = Z = 0.0121 m)
shown in Fig. 2 is considered. The thicknesses of successive layers of skin are
equal to z1 = 0.0001 m, z2 = 0.002 m and z3 = 0.01 m, respectively. The
initial temperature of tissue and blood is equal to Tp = 37◦C. In Table 1 the
thermophysical parameters of all tissue layers and the blood are collected [2].

Calculations are performed for rD = R/4, q0 = 20 kW/m2 and te = 100 s
(cf. formula (3.7)). In Fig. 5 the course of boundary heat flux for selected times
is presented.
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Table 1. Thermophysical parameters of tissue layers and blood [2].

Layer 1 Layer 2 Layer 3 Blood

Density [kg/m3] ρ1 = 1200 ρ2 = 1200 ρ3 = 1000 ρb = 1060

Specific heat [J/(kg · K)] c1 = 3589 c2 = 3300 c3 = 2674 cb = 3770

Thermal conductivity [W/(m · K)] λ1 = 0.235 λ2 = 0.445 λ3 = 0.185 λb = 0.5

Metabolic heat source [W/m3] Qm1 = 0 Qm2 = 245 Qm3 = 245 Qmb = 245

Fig. 5. Distribution of boundary heat flux along the radius of the cylinder.

Fig. 6. Time history of tissue temperature at point A for different number of grid nodes.

The parameters necessary to determine the porosity and coupling factors
for second and third layers of skin are also taken from the literature [25] and
summarized along with the calculated data in Table 2. The Nusselt number is
assumed as Nu = 4.93 [35].
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Table 2. Parameters of the blood supplied layers.

Layer 2 Layer 3

Vessel diameter [m] db2 = 0.00114 db3 = 0.00228

Diameter of circles equivalent to hexagons [m] d2 = 0.01783 d3 = 0.01982

Porosity ε2 = 0.0041 ε3 = 0.0132

Perfusion rate [kg/(m3 · s)] w2 = 1 w3 = 1

Coupling factor [W/(m3 · K)] G2 = 34785.174 G3 = 28869.763

Relaxation time [s] τq2 = 0.46772 τq3 = 1.80753

Thermalization time [s] τT2 = 0.46771 τT3 = 1.80751

Effective thermal conductivity [W/(m · K)] Λ2 = 0.4452 Λ3 = 0.1892

Effective volumetric heat capacity [MJ/(m3 · K)] C2 = 3.9601 C3 = 2.6915

Blood velocity [m/s] [23] v2 = 12.29 v3 = 3.8

As was mentioned earlier, the problem is solved by means of the finite dif-
ference method. It should be pointed out that in order to check whether the
results are grid independent, the calculations were done for 242×242, 484×484,
605 × 605 and 968 × 968 nodes (Fig. 6) under the assumption that the time
step is equal to ∆t = 0.0001 s. In further calculations the differential grid with
605 × 605 nodes is used and the time step is equal to ∆t = 0.0005 s.

History of tissue temperature at points A (10−5; 10−5), B (10−5; 1.1 · 10−4)
and C (10−5; 2.11 · 10−3) (all coordinates are given in meters) marked in Fig. 3
is shown in Fig. 7. At point A maximum temperature 57.08◦C occurs after 65 s
and at point B maximum temperature 57.29◦C occurs after 67 s. At point C the
maximum temperature occurs after 86 s and is equal to 45.43◦C. As can be seen

Fig. 7. Time history of tissue temperature at selected points.
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Fig. 8. Distribution of tissue temperature after 30 seconds.

Fig. 9. Distribution of tissue temperature after 60 seconds.

Fig. 10. Distribution of tissue temperature after 90 seconds.

in Fig. 7, after 180 s the tissue temperature at points A, B and C is almost the
same.

In Figs. 8, 9 and 10 the distribution of tissue temperature in the part of
the domain (z ≤ 0.006 m) is presented. The boundaries between the layers are
marked as Γ1 and Γ2, respectively.
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In Figure 11 the courses of tissue and blood temperature at point C marked
in Fig. 3 are shown. It is visible, that these temperatures are very similar.

As was mentioned before, the numerical modeling of skin tissue heating on the
basis of the system of Pennes equations can be also used [2, 5, 7, 8]. If in Eqs. (3.2)
one assumes that εe = 0 (in this case Ce = ρece, Λe = λe, τqe = 0, τTe = 0),
Ge = wcb and Tbe = TB , where TB = 37◦C is the arterial blood temperature,
then these equations are reduced to the Pennes ones (cf. Eq. (2.23)). Thus, the
calculations both for the GDPLE and for the Pennes equations can be performed
using the same computer program.

Comparison of the results obtained using these models is shown in Fig. 11
(the solution corresponding to the GDPL model has been obtained using the
data collected in Table 2). The slight differences are due to the fact that the low
porosity values of ε2 and ε3 are assumed here. At the same time, this compari-
son confirms the correctness of the proposed algorithm. For the higher porosity
values the differences between the temperatures obtained using both models
are significant [36]. To show these differences, the calculations have been re-
peated under the assumption that the porosity of subcutaneous region is equal
to ε3 = 0.1637 (db3 = 0.00456 m, d3 = 0.01127 m, w3 = 5 kg/(m3 · s) [25]
and then G3 = 96479.910 W/(m3 · K), τq3 = 5.67173 s, τT3 = 5.67085 s). In
Fig. 12 the history of tissue and blood temperatures at point C obtained us-
ing the GDPL model and the history of tissue temperature obtained using the
Pennes model are shown.

As can be seen, in the case of GDPLE the blood and tissue temperatures
differ significantly, and during the heating process they are lower than the tem-
perature obtained from the Pennes equation. Moreover, comparing the results
shown in Figs. 11 and 12, it is visible that when the porosity is higher (in this case

Fig. 11. Time history of tissue and blood temperature at point C and comparison with the
Pennes model.
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Fig. 12. Time history of tissue and blood temperature at point C and comparison with the
Pennes model (ε3 = 0.1637).

the relaxation time and the thermalization time are also longer) the differences
between the temperatures T and Tb are greater.

6. Conclusions

Cylindrical domain of layered structure of skin tissue is considered. To deter-
mine the temperature distribution in the heated skin tissue the system of gener-
alized dual phase-lag equations is used, while the blood temperature in dermis
and subcutaneous regions is calculated on the basis of formulas describing the
relationships between tissue and blood temperatures. It should be pointed out
that the coupling factors and the phase-lag times occurring in the mathemati-
cal model contain the information about the properties of the blood, interphase
convective heat transfer coefficients and blood perfusion rates.

The problem is solved using the explicit scheme of finite difference method
and the results of computations confirm the effectiveness of the presented algo-
rithm.

Temperature distribution of the tissue and blood obtained using the proposed
algorithm can be applied, among others, in numerical modeling of laser-biological
tissue interactions [10, 11, 39], burn predictions [7, 8] and also for estimation of
admissible thermal dose [5, 37, 38] or degree of thermal damage (Arrhenius
integral) during the skin tissue heating.
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