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1. Introduction

The theory of coupled thermoelasticity was formulated by Biot [1] to
eliminate the paradox inherent in the classical uncoupled theory which states
that elastic changes have no effect on temperature. However, the heat equations
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for both of the two mentioned theories, though different, are of the diffusion
type that predicts infinite speeds of propagation for heat waves, which is con-
trary to physical observations. The theory of coupled thermoelasticity was ex-
tended by Lord and Shulman [2] and Green and Lindsay [3] by including
thermal relaxation time in constitutive relations. Additional discussions of the
generalized thermoelasticity theory are given in the literature (see, for exam-
ple, Chandarasekharaia [4], Aouadi [5], Hetnarski and Eslami [6] and
Zenkour [7]).

The dual-phase-lag (DPL) model describes the interactions between photons
and electrons on a microscopic level as retarding sources causing a delayed re-
sponse on a macroscopic scale. The DPL model was first proposed by Tzou [8, 9].
The proposed model was a modification of the classical thermoelastic model in
which the Fourier law is replaced by an approximation to a modified Fourier law
with two different time translations: a phase lag of the heat flux τq and a phase
lag of the temperature gradient τθ (see Tzou [10]). For macroscopic formulation,
it is convenient to use the DPL model for investigation of the micro-structural
effect on the behavior of heat transfer. The physical meanings and the applica-
bility of the DPL model have been supported by experimental results in [10].
A Taylor series approximation of the modified Fourier law, together with the
remaining field equations, leads to a complete system of equations describing
DPL thermoelastic model. The model transmits thermoelastic disturbance in
a wave-like manner if the approximation is linear with respect to τq and τθ
(0 ≤ τθ < τq) or quadratic in τq and linear in τθ, with τq > 0 and τθ > 0. This
theory is developed in a rational way to produce a fully consistent theory which
incorporates thermal pulse transmission in a very logical manner. Roychoud-

huri [11] has studied thermoelastic wave propagation in an elastic half-space
in the context of a generalized DPL model. Another generalization, known as
three-phase-lag thermoelasticity model, was extended by Roychoudhuri [12].
Akbarzadeh and Pasini [13] have presented a theoretical framework includ-
ing three-phase-lag, dual-phase-lag and hyperbolic heat conduction to study the
thermal responses of one-dimensional multilayered systems, functionally graded
solid media and porous materials.

Viscoelasticity is of interest in different applications. It is linked to a va-
riety of microphysical processes and can be therefore used as an experimental
probe in those processes. The linear viscoelastic governing equations are con-
structed by means of the Boltzmann superposition principle. The linear theory
of viscoelasticity may be extended to the corresponding thermo-viscoelasticity
theory at finite strains. To do this, several requirements should be taken under
consideration. The first requirement is that compatibility with the second law
of thermodynamics should be satisfied. The second is that the constitutive the-
ory of finite thermoelasticity can be reduced during a sufficiently fast (or slow)
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deformation process. The third is that it can be interpreted by microscopic de-
formation mechanisms under reasonable physical assumptions. The last is that
it can adequately represent as many experimental data as possible with limited
number of material parameters.

The linear theory of viscoelasticity has been formulated and applied to sit-
uations in which environmental factors such as temperature are assumed to be
constant. However, the mechanical response of a viscoelastic material is sensi-
tive to variations in such environmental factors as temperature, humidity and
presence of diffusion. Viscoelasticity is one of the principal types of inelastic
behavior. Pervasive categories of materials such as polymers, rubber, glass, con-
crete, asphalt, ice, rock salt, sound dampers, as well as biological and geological
substances and elastic materials at high temperature, behave viscoelastically
and are characterized by time dependent energy dissipation due to creep and/or
relaxation. Viscoelasticity and related phenomena are of great importance in
the study of biological materials. Just as strain can be measured in more than
one way, so the related rate of strain can be measured in a number of different
ways.

Viscoelastic materials play an important role in many branches of engineer-
ing, technology and, in recent years, biomechanics [14]. Viscoelastic materials
such as amorphous polymers, semi-crystalline polymers and biopolymers can be
modeled to determine their stress or strain interactions as well as their tem-
poral dependencies. The study of viscoelastic behavior in bone is of interest in
several contexts. Bone is a hierarchical solid that contains structure at multiple
length scales. The study of bone viscoelasticity is best placed in the context of
strain levels and frequency components associated with normal activities and
with applications of diagnostic tools [15]. The investigations of the solutions of
viscoelastic wave equations, velocities of seismic wave propagating and the atten-
uation of seismic waves in viscoelastic media are very important for geophysical
prospecting technology. The linear theories of the viscoelasticity and thermos-
viscoelasticity of binary mixtures where the individual components are modeled
as Kelvin–Voight viscoelastic materials were developed in [15, 16]. Svanadze [17]
has considered basic boundary value problems (BVPs) of steady vibrations in the
linear theories of the viscoelasticity and thermo-viscoelasticity for Kelvin–Voigt
materials. He has also generalized some basic results of the classical theories of
elasticity and thermoelasticity, and established the uniqueness theorems of the
basic internal and external BVPs [17].

The Kelvin–Voigt model is one of the macroscopic mechanical models often
used to describe the viscoelastic behavior of a material. This model represents
the delayed elastic response subjected to stress when the deformation is time
dependent but recoverable. The dynamic interaction of thermal and mechanical
fields in solids has great practical applications in modern aeronautics, astronau-
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tics, nuclear reactors and high-energy particle accelerators. Several problems of
wave propagation in a linear viscoelastic solid have been discussed by many re-
searchers. Additionally, with the rapid development of polymer science and the
plastic industry, as well as the wide use of materials under high temperature in
modern technology, the theoretical study and application of viscoelastic materials
has become important for solid mechanics. The theory of thermo-viscoelasticity
and the solutions of some BVPs of thermo-viscoelasticity are investigated by
Ilioushin and Pobedria [18]. In the last decade, the works of Tanner [19]
and Huilgol and Phan-Thien [20] have helped in finding solutions for the
BVPs of linear viscoelastic materials including temperature variations in both
quasi-static and dynamic problems.

Kovalenko and Karanaukhov [21] have presented a generalized linearized
theory of thermo-viscoelasticity with the inclusion of the heat formation ef-
fect. Drozdov [22] has derived the constitutive relations for the non-isothermal
viscoelastic behavior of polymers at finite strains. Kundu and Mukhopad-

hyay [23] have considered the distribution of field quantities in a viscoelastic
medium with a spherical cavity in the context of generalized thermoelastic-
ity with the relaxation effect. Baksi et al. [24] have derived the fundamental
equations of an infinite rotating magneto-thermo-viscoelastic media due to heat
sources with one relaxation parameter. Kanoria and Mallik [25] have stud-
ied the thermoviscoelastic interaction in an infinite Kelvin–Voigt-type viscoelas-
tic medium subjected to periodically varying heat sources. Ezzat et al. [26]
have applied the coupled fractional relaxation equations in the frame of thermo-
viscoelasticity to the 1D problem with heat sources. Kar and kanoaria [27]
have studied a problem dealing with thermo-visco-elastic interaction due to
a step input of temperature on the stress free boundaries of a homogeneous
viscoelastic isotropic spherical shell in the context of generalized theories of
thermo-elasticity. Deswal and Kalkal [28] have presented a paper dealing
with the problem of thermo-viscoelastic interactions in a homogeneous, isotropic
3D medium whose surface suffers a time-dependent thermal shock and based on
a three-phase-lag model with two temperatures.

The contents and structure of the present paper are as follows. We initially
present a conducting orthotropic body of variable thermal conductivity with
a cylindrical cavity. We assume that the boundaries of the cylinder are subjected
to a time-dependent thermal shock and its surface is traction free. We investigate
the thermoelastic interactions in this body in the context of generalized thermoe-
lasticity with DPL [29–32]. The present DPL model initially developed by Tzou

[8, 9] is an extension of the well-known generalized thermoelasticity theory [2, 3].
Next, we graphically present some numerical results for the field quantities of
the thermoviscoelastic body. Some special cases are considered and explained
when the viscosity field and variability of thermal conductivity are neglected.
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The main purpose of this study is to extend the linear theory of viscoelasticity
to include the effects of a larger set of environmental factors on a larger class of
materials.

2. Basic equations

Consider a generalized plane strain (where the non-zero strain components
act in one plane only) thermoviscoelastic orthotropic body with a cylindrical
cavity at uniform temperature T0 whose surface is traction-free and subjected
to a time-dependent thermal shock. We can employ the Kelvin–Voigt model of
linear viscoelasticity to describe the viscoelastic nature of the material.

The theories of viscoelasticity, which include the Maxwell model, the Kelvin–
Voigt model and the standard linear solid model, are used to predict a material’s
response under different loading conditions. One of the simplest mathematical
models constructed to describe viscoelastic effects is the classical Kelvin–Voigt
model [33]. The basic idea concerning this model is that stress is dependent
on the deformation tensor and deformation-rate tensor. This model consists of
a Newtonian damper and Hooke’s elastic spring connected in parallel.

The cylindrical coordinates system (r, ξ, z) is used with z-axis lying along the
axis of the cylinder. It is assumed that disturbances are small and are confined
to the neighborhood of the interface r = R, and hence vanish as r → ∞.

For an axially symmetric problem, the displacements are reduced to

(2.1) ur = u(r, t), uξ(r, t) = uz(r, t) = 0,

and their radial εrr and hoop εξξ strains are given by

(2.2) εrr =
∂u

∂r
, εξξ =

u

r
.

The constitutive relations for a Kelvin–Voigt type solid are [33]

(2.3)




σrr

σξξ

σzz



 =



τmc11 τmc12 −β11

τmc12 τmc22 −β22

τmc13 τmc23 −β33








∂u

∂r
u

r
θ




,

where σrr, σξξ and σzz are the normal mechanical stresses, cij are the isothermal
elastic constants, βij are the thermal elastic coupling components, τm = 1+ t0

∂
∂t

and t0 is the mechanical relaxation time due to the viscosity. θ = T −T0 denotes
the thermodynamical temperature, in which T is the temperature and T0 is the
reference temperature such that |θ/T0| ≪ 1.

The dynamic equation of motion of the cylindrical cavity, in which the body
forces are neglected, is expressed as
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(2.4)
∂σrr

∂r
+
σrr − σξξ

r
= ρ

∂2u

∂t2
.

With the aid of Eq. (1.3), the above equation of motion becomes

(2.5) τmc11

(
∂2u

∂r2
+

1

r

∂u

∂r

)
− τmc22

u

r2
= ρ

∂2u

∂t2
+ β11

∂θ

∂r
+ (β11 − β22)

θ

r
,

where ρ denotes the material density. The modified Fourier’s law is given by

(2.6)

(
1 + τq

∂

∂t

)
q = −Kr

(
1 + τθ

∂

∂t

)
∇θ,

where q is the heat flux vector, Kr is the thermal conductivity, and τθ and τq
denote the finite times. The first delay time τθ is said to be the PL of the temper-
ature gradient, while the second delay time τq denotes the PL of the heat flux.
The aim of the delay time τq is to ensure that the heat conduction equation will
predict finite speeds of heat propagation. Now, the energy conservation equation
can be given by

(2.7) −∇ · q = ρCE
∂θ

∂t
+ T0

∂

∂t

(
β11

∂u

∂r
+ β22

u

r

)
,

where CE is the specific heat at constant strain. By eliminating q using Eqs.
(2.6) and (2.7), the heat conduction equation with DPLs and without any heat
sources will be

(2.8)

(
1 + τθ

∂

∂t

)
(Krθ,r),r =

(
1 + τq

∂

∂t

)[
ρCE

∂θ

∂t
+ T0

∂

∂t

(
β11

∂u

∂r
+ β22

u

r

)]
.

The governing field equations in the context of linear generalized thermoelas-
ticity with one relaxation time can be written using Eqs. (2.1)–(2.8) by setting
mechanical PL parameters τθ = 0 and τθ = τ0 (τ0 is the thermal relaxation
time). Upon taking the thermal PLs τθ = τq = 0, we obtain the governing field
equations for a coupled theory of thermoelasticity. When setting thermal PLs as
τθ = τq = 0, and the thermomechanical coupling parameters as β11 = β11 = 0,
the governing field equations for uncoupled thermoelasticity can also be obtained.

3. Variable thermal conductivity

The thermal properties of the thermosensitive body should vary with tem-
perature and lead to a nonlinear heat conduction problem. This problem can
be solved by simply assuming nonlinear properties of the material. This means
that the thermal material coefficient Kr and the specific heat CE are linearly
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dependent on the temperature [34], but the thermal diffusivity k (k = Kr/ρCE)
is assumed constant. That is

(3.1) Kr = Kr(θ) = k0 + k∗1θ,

where k0 is the thermal conductivity at T0 and k∗1 (≡ k1/k0) is the slope of the
thermal conductivity-temperature curve. Now, a new function ψ is considered
to express heat conduction in the Kirchhoff transformation [34]

(3.2) ψ =
1

k0

θ∫

0

Kr(θ)dθ.

The above equation, with the aid of Eq. (3.1), gives

(3.3) ψ = θ(1 + 1
2k1θ).

From Eq. (3.3), it follows that

(3.4) ∇ψ =
Kr(θ)

k0
∇θ, ∂ψ

∂t
=
Kr(θ)

k0

∂θ

∂t
.

The final form of the general heat equation with variable thermal conductivity,
after substituting Eq. (3.4) into Eq. (2.8), is

(3.5)

(
1 + τθ

∂

∂t

)(
∂2ψ

∂r2
+

1

r

∂ψ

∂r

)

=

(
1 + τq

∂

∂t

)[
ρCE

∂ψ

∂t
+
T0

k0

∂

∂t

(
β11

∂u

∂r
+ β22

u

r

)]
.

From Eqs. (3.3), the equation of motion will be as follows:

(3.6) τmc11

(
∂2u

∂r2
+
∂u

∂r

)
− τmc22

u

r2

= ρ
∂2u

∂t2
+

β11

1 + 2k1θ

∂ψ

∂r
+ (β11 − β22)

(−1 +
√

1 + 2k1ψ

k1r

)
.

For linearity, where θ = T − T0 such that |θ/T0| ≪ 1, the governing equations
will be as follows:

τmc11

(
∂2u

∂r2
+

1

r

∂u

∂r

)
− τmc22

u

r2
= ρ

∂2u

∂t2
+ β11

∂ψ

∂r
+ (β11 − β22)

ψ

r
,(3.7)




σrr

σξξ

σzz



 =



τmc11 τmc12 −β11

τmc12 τmc22 −β22

τmc13 τmc23 −β33








∂u

∂r
u

r
ψ




.(3.8)
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Let us consider the following non-dimensional variables

(3.9)
(r′, u′, R′

i) =
c0
k

(r, u,Ri), (t′, t′0, τ
′

q, τ
′

θ) =
c20
k

(t, t0, τq, τθ),

ψ′ =
ψ

T0
, σ′ij =

σij

c11
, k′1 = T0k1, c20 =

c11

ρ
.

Using the above quantities in the governing equations given in Eqs. (3.5)–(3.8)
and suppressing dashes, we obtain

τm
∂2u

∂r2
+

1

r

∂u

∂r
− τmc2

u

r2
=
∂2u

∂t2
+ ε1

∂ψ

∂r
+ ε3

ψ

r
,(3.10)

(
1 + τθ

∂

∂t

)
∇2ψ =

(
1 + τq

∂

∂t

)[
∂ψ

∂t
+
∂

∂t

(
ε4
∂u

∂r
+ ε5

u

r

)]
,(3.11)




σrr

σξξ

σzz



 =



τm τmc1 −ε1
τmc1 τmc2 −ε2
τmc3 τmc4 −ε6








∂u

∂r
u

r
ψ




,(3.12)

where

c1 =
c12

c11
, c2 =

c22

c11
, c3 =

c13

c11
, c4 =

c23

c11
,

ε1 =
β11T0

c11
, ε2 =

β22T0

c11
, ε3 =

(β11 − β22)T0

c11
,(3.13)

ε4 =
β11

ρCE
, ε5 =

β22

ρCE
, ε6 =

β33T0

c11
.

4. Conditions of the problem

The initial and regularity conditions should be considered to solve the present
problem. They are given by

u(r, t)

∣∣∣∣
t=0

=
∂u(r, t)

∂t

∣∣∣∣
t=0

= 0, θ(r, t)

∣∣∣∣
t=0

=
∂θ(r, t)

∂t

∣∣∣∣
t=0

= 0,

ψ(r, t)

∣∣∣∣
t=0

=
∂ψ(r, t)

∂t

∣∣∣∣
t=0

= 0,

(4.1)

u(r, t) = θ(r, t) = ψ(r, t) = 0 at r → ∞.(4.2)

To solve Eqs. (3.10) and (3.11), we will consider that the medium described
above is quiescent and the surface of the cylinder is subjected to a time-dependent
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thermal shock and it is traction free. Therefore, the corresponding boundary
conditions will be

(4.3) θ(R, t) = θ0H(t), t > 0,

where θ0 is constant,

(4.4) σ̄rr(R, t) = 0.

Using Eq. (3.3), we obtain

(4.5) ψ(R, t) = θ0H(t) +
k1

2
[θ0H(t)]2.

5. Solution of the problem

The Laplace transform is applied to Eqs. (3.10)–(3.12), taking into account
the initial conditions given in Eq. (4.1) and assuming that β11 = β22 (i.e., ε4 =
ε5 = ε) and c11 = c22. This gives the following equations:

d2ū

dr2
+

1

r

dū

dr
− ū

r2
− s2

1 + t0s
ū =

ε1
1 + t0s

dψ̄

dr
,(5.1)

∇2ψ̄ =
s(1 + τqs)

1 + τθs

[
ψ̄ + ε

(
dū

dr
+
ū

r

)]
,(5.2)




σ̄rr

σ̄ξξ

σ̄zz



 =




1 c1 −ε1
c1 1 −ε1
c3 c4 −ε6








(1 + t0s)
dū

dr

(1 + t0s)
ū

r
ψ̄




,(5.3)

where ζ̄ is the Laplace transform of quantity ζ and s is the Laplace parameter.
Equations (5.2) and (5.3) can be written as

(
DD1 −

s2

1 + t0s

)
ū =

ε1
1 + t0s

Dψ̄,(5.4)

εqD1ū = (D1D − q)ψ̄,(5.5)

where

(5.6) D =
d

dr
, D1 =

d

dr
+

1

r
, q =

s(1 + τqs)

1 + τθs
.

Now, the displacement u is given as a first derivative of a new thermoelastic
potential function φ as

(5.7) u =
dφ

dr
,
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then, the above relation is introduced into Eqs. (5.4) and (5.5); thus, we get
(
D1D − s2

1 + t0s

)
φ̄ =

ε1
1 + t0s

ψ̄,(5.8)

εqD1Dφ̄ = (D1D − q)ψ̄.(5.9)

Eliminating ψ̄ from Eqs. (5.8) and (5.9), we obtain

(5.10)

(
∇4 −

[
s2

1 + t0s
+ q

(
ε1ε

1 + t0s
+ 1

)]
∇2 +

qs2

1 + t0s

)
φ̄ = 0,

which can be rewritten as

(5.11) (∇2 −m2
1)(∇2 −m2

2)φ̄ = 0,

where m2
1 and m2

2 are the roots of the equation

(5.12) m4 −
[

s2

1 + t0s
+ q

(
ε1ε

1 + t0s
+ 1

)]
m2 +

qs2

1 + t0s
= 0.

The roots of the above characteristic equation are given by

(5.13) m2
1 = 1

2 [2A+
√
A2 − 4B], m2

2 = 1
2 [2A−

√
A2 − 4B],

where

(5.14) A =
s2 + qε1ε

1 + t0s
+ q, B =

qs2

1 + t0s
.

Equation (5.11) leads to the modified Bessel equation for φ̄ of order zero

(5.15)

(
d2

dr2
+

1

r

d

dr
−m2

1

)(
d2

dr2
+

1

r

d

dr
−m2

2

)
φ̄ = 0.

The solutions of Eq. (5.15), under the regularity conditions that u, θ, ψ → 0 as
r → ∞, can be written as

(5.16) φ̄ =

2∑

i=1

AiK0(mir),

where K0 is the modified Bessel function of the first kind of order zero and
Ai (i = 1, 2) are two parameters depending on the parameter s of the Laplace
transform. Using Eqs. (5.8) and (5.16) we obtain

(5.17)
ε1

1 + t0s
ψ̄ =

2∑

i=1

(m2
i − s2)AiK0(mir).

In addition, according to Eqs. (5.7) and (5.16) the radial displacement will be

(5.18) ū = −
2∑

i=1

miAiK1(mir),
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where K1 is the modified Bessel function of the first kind of order one. The
well-known relations of the Bessel function

(5.19) xK ′

n(x) = −xKn±1(x) ± nKn(x),

are used to derive the stresses with the aid of the displacement ū and the func-
tion ψ̄. They are given by

σ̄rr =

2∑

i=1

(
s2K0(mir) +

mi(1 − c1)

r
K1(mir)

)
Ai,(5.20)

σ̄ξξ =
2∑

i=1

(
[s2 +m2

i (c1 − 1)]K0(mir) +
mi(c1 − 1)

r
K1(mir)

)
Ai,(5.21)

σ̄zz =

2∑

i=1

[(
m2

i c3
2

− ε6
ε1

(m2
i − s2)

)
K0(mir)(5.22)

− mic4
r

K1(mir) +
m2

i c3
2

K2(mir)

]
Ai,

where K2 is the modified Bessel function of the first kind of order two. The
boundary conditions, after using the Laplace transform and Eqs. (4.4) and (4.5),
are

ψ(R, s) = θ0

(
1

s
+
k1

2s

)
= Ḡ(s),(5.23)

σ̄rr(R, s) = 0.(5.24)

The substitution of Eqs. (5.17) and (5.20) into the above conditions gives two
equations with the unknown parameters Ai as

2∑

i=1

(m2
i − s2)AiK0(miR) =

ε1
1 + t0s

Ḡ(s),(5.25)

2∑

i=1

(
s2K0(miR) +

mi(1 − c1)

R
K1(miR)

)
Ai = 0.(5.26)

Therefore, the solution of the problem will be completed in the Laplace transform
domain. In addition, the temperature θ̄ can be obtained by solving Eq. (3.3) after
applying the Laplace transform as

(5.27) θ̄(r, s) =
−1 +

√
1 + 2k1ψ̄

k1
.
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6. Numerical results and discussion

Here, the distributions of the field quantities such as temperature, radial dis-
placement, and stresses will be obtained inside the medium in their inverted
forms. To invert the Laplace transform in Eqs. (5.18) and (5.20)–(5.22), a nu-
merical inversion method based on a Fourier series expansion [8, 9] should be
adopted. Any expression in Laplace domain can be inverted in this method to
the time domain as

(6.1) f(t) =
ect

t

(
1

2
f̄(c) + Re

N∑

n=1

(−1)nf̄(c+ inπ/t)

)
.

The value of c should satisfy the relation ct ≈ 4.7 as mentioned in numerous
numerical experiments [35]. So, we will use the same value of c for the purpose of
numerical evaluation. Numerical evaluations are made by choosing an orthotropic
material such as cobalt. The properties of such material are thus given in SI units
[36] as

(6.2)

c11 = 3.071 × 1011 N · m−1, c12 = 1.650 × 1011 N · m−1,

c22 = 3.071 × 1011 N · m−1, T0 = 298 K, ρ = 8836 kg · m−3,

CE = 427 J · kg−1 · K−1, Kr = 69 W · m−1 · K−1 · s−1,

β11 = β22 = 7.04 × 106 N · m−2K−1, β33 = 6.90 × 106 N · m−2 · K−1.

The numerically computed non-dimensional temperature θ, radial displace-
ment u and distributions of thermal stresses σrr, σξξ and σzz have been presented
graphically for thermoviscoelastic (TVE) and thermoelastic (TE) cylinders at
different values of R, (R ≥ 1).

The results are graphically presented in Figs. 1–3 for three cases. The first
case is devoted to discussing non-dimensional temperature, displacement and
thermal stresses with the variable thermal conductivity parameter k1 when τq
and τθ remain constant (τq = 0.2, τθ = 0.1). Three different values of k1 for vis-
cous solids are used (t0 = 0.1). The values k1 = −1,−0.5 are taken for variable
thermal conductivity and k1 = 0 for temperature-independent thermal conduc-
tivity. Variations of the spatial coordinate r can be observed in Fig. 1. It should
be noted that the parameter k1 has significant effects on all field quantities.The
following important facts can also be observed:

• Figure 1a shows that the temperature θ decreases along the radial direction.
It also decreases as k1 decreases.

• Figure 1b shows that variations of the radial displacement u start with neg-
ative values in all cases, and u increases continuously to attain its highest
values at r ≈ 1.12 and then it gradually diminishes to zero. The displace-
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(a) θ versus r (b) u versus r

(c) σrr versus r (d) σξξ versus r

(e) σzz versus k1

Fig. 1. Effects of the thermal conductivity parameter k1 on the field quantities along the
radial direction of the cylindrical hole.

ment u vanishes twice, firstly at r ≈ 1.09 and secondly at r = 2. As k1

decreases the displacement u increases in the interval 1 ≤ r ≤ 1.09 and
decreases in the interval 1.09 < r ≤ 2.
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(a) θ versus r (b) u versus r

(c) σrr versus r (d) σξξ versus r

(e) σzz versus r

Fig. 2. Distributions of the field quantities along the radial direction of the cylindrical hole r

for different theories of thermoelasticity.

• Figure 1c shows that variations of the thermal stress σrr start with a zero
value at r = 1 for all cases which agree with the boundary condition. The
thermal stress σrr continuously increases to attain its highest values at



Effects of phase-lags in a thermoviscoelastic. . . 471

(a) θ versus r (b) u versus r

(c) σrr versus r (d) σξξ versus r

(e) σzz versus r

Fig. 3. Effects of the viscosity parameter t0 on the field quantities along the radial direction
of the cylindrical hole.

r ≈ 1.07 then it decreases to attain its lowest values at r ≈ 1.22. It should
be noted that the increase of k1 increases the magnitude of the wave of
thermal stress σrr.
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• The thermal stress σξξ starts with negative values and continuously vi-
brates along the radial direction as shown in Fig. 1d. It can also be noticed
that σξξ increases as the parameter k1 decreases.

• The thermal stress σzz has similar behavior as that of σrr with different
magnitudes as shown in Fig. 1e.

• The two stresses σrr and σzz are compressive at some part of the cylinder
and tensile at another portion of it. However, the hoop stress σξξ is always
compressive.

• The variable thermal conductivity parameter k1 has a significant effect on
all the fields which add importance to our consideration about thermal
conductivity being variable.

The second case is devoted to the investigation of non-dimensional temper-
ature, displacement and thermal stresses versus the PLs τq and τθ when the
variable thermal conductivity parameter k1 remains constant (k1 = −0.5). The
variations of temperature change θ, radial displacement u and thermal stresses
σrr, σξξ and σzz are respectively plotted in Fig. 2 for different theories of thermoe-
lasticity obtained as special cases of the present DPL model. We have the follow-
ing theories: the coupled theory (CT) (τq = τθ = 0), the Lord and Shulman (LS)
theory (τθ = 0, τq = 0.2) and the generalized theory of thermoelasticity proposed
by Tzou (DPL) (τq = 0.2, τθ = 0.1). From these figures it can be observed that:

• The fact that thermal waves in the coupled theory travel with an infinite
speed of propagation as opposed to a finite speed in the generalized case is
satisfied here. The coupled and generalized thermoelasticity theories give
very close results near the surface of the cylinder where the boundary con-
ditions dominate. However, the behaviors inside the cylinder are markedly
different.

• All figures show that the variations of all field quantities in the context of
the DPL and CT theories of thermoelasticity follow similar trends while
the LS theory may be different.

• The difference between the three curves at any fixed point for the three
theories is clearly visible in these figures.

• The fact that in generalized thermoelasticity theories (DPL and LS), the
waves propagate with finite speeds is evident.

• With an increase in distance, the results are quite close to each other,
which is in agreement with the generalized theories of thermoelasticity.

• The effects of the DPL parameters are very noticeable in the distributions
of field quantities.

Finally, the third case is devoted to discussing how non-dimensional tem-
perature, displacement and stresses vary with mechanical relaxation time due
to the viscosity t0 when τq = 0.2, τθ = 0.1 and k1 = −0.5. Comparisons of
the dimensionless physical quantities are shown in Fig. 3 for two different cases:
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(i) a thermoviscoelastic solid (TVE) when t0 = 0.2, 0.1 and (ii) a thermoelastic
solid (TE) when t0 = 0.0. We can also observe the following important facts
from Fig. 3:

• The influence of the viscosity parameter is very pronounced for tempera-
ture and thermal stresses.

• It can be seen in Fig. 3a that the viscosity parameter increases the magni-
tude of the temperature distribution. The temperature distribution in TE
case has small behavior as compared to TVE case.

• In Fig. 3b we can see that, when the value of viscosity increases, the abso-
lute values of the radial displacement u decrease and the peak occurs when
r = 1.18.

• In Figs. 3c and 3e, when the value of the viscosity parameter increases,
the absolute values of the stresses σrr and σzz increase along the radial
direction.

• The difference in the values of σξξ at a particular point for three different
values of viscosity parameter can easily be observed in Fig. 3d.

• All of the stress distributions in TE case have different behaviors than
those of TVE case.

7. Conclusions

In this work, we constructed, based on the DPL model, the equations of gener-
alized thermo-viscoelasticity for a homogeneous orthotropic infinite unbounded
body containing a cylindrical cavity with variable thermal conductivity. The
outer surface of the body was taken to be traction-free and subjected to a time-
dependent thermal shock. The numerical solution of the problem has been pre-
sented with the aid of the Laplace transform technique. Results for all fields
have been graphically presented. Comparisons between thermoelasticity theories
have been made and the effects of different parameters were discussed. It can be
observed that the viscous effect plays an important role and its effect is more
pronounced in thermo-viscoelasticity. The variable thermal conductivity param-
eter has a significant effect on speed of the wave propagation in all fields. In
the generalized thermoelasticity theory with phase-lags heat propagates in the
medium as a wave with finite velocity instead of infinite velocity. The phase-lag
of the heat flux and phase-lag of the temperature gradient have great influence
on the field quantities. The results presented in this paper should prove useful to
researchers in the development of the mechanics of solids, as well as to researchers
in material science, designers of new materials, low temperature physicists and
those working on the development of a theory of hyperbolic thermoelasticity.
In addition, the results presented here may provide interesting information for
experimental scientists and researchers working on this subject.
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