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This paper studies the propagation of Rayleigh waves in an orthotropic elastic
half-space coated by a thin orthotropic elastic layer. The half-space and the layer are
assumed to be either compressible or incompressible and they are in sliding contact
with each other. The main aim of the paper is to establish approximate secular
equations of the wave for all (four) possibilities of a compressible or incompressible
half-space covered with a compressible or incompressible thin layer, except the case of
a compressible half-space coated by a compressible layer that has been considered [19].
In order to do that, the effective boundary condition method is employed and the
approximate third-order secular equations regarding the dimensionless thickness of
the layer are derived. It is shown that these approximate secular equations have a high
accuracy. Based on the obtained secular equations, the effect of incompressibility on
the Raleigh wave propagation is considered through some numerical examples. It is
shown that incompressibility strongly affects the Raleigh wave velocity and the effect
becomes stronger when the coating is incompressible.
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1. Introduction

The structures made of a thin film attached to solids, modeled as
half-spaces coated by a thin layer, are widely applied in modern technology. The
measurement of mechanical properties of thin films deposited on half-spaces
before and during loading plays an important role in health monitoring of these
structures in applications, see for example Makarov et al. [1], Every [2] and
references therein. Among various measurement methods, the surface/guided
wave method is most widely used [2], because it is non-destructive and brings
reduced cost, short inspection time and greater coverage (Hess et al. [3]), and
for which the guided Rayleigh wave is a versatile and convenient tool (Hess et

al. [3], Kuchler and Richter [4]).
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For the Rayleigh-wave approach, the explicit dispersion relations of Rayleigh
waves supported by thin-film/substrate interactions are employed as theoretical
bases for extracting the mechanical properties of thin films from experimental
data. They are therefore the main purpose of any investigation of Rayleigh waves
propagating in half-spaces covered by a thin layer.

Tiersten [5] and Bovik [6] assumed that the layer and the half-space are
both isotropic, and the authors derived approximate secular second-order equa-
tions. For this case, Vinh and Anh [7] obtained a fourth-order approximate
secular equation with a very high accuracy. Steigmann and Ogden [8] consid-
ered a transversely isotropic layer with residual stress overlying an isotropic half-
space and the authors obtained an approximate second-order dispersion relation.
Wang et al. [9] considered an isotropic half-space covered by a thin electrode
layer and they obtained an approximate secular equation of first-order. In Vinh

and Linh [10] and Vinh et al. [11] the layer and the half-space are both as-
sumed to be orthotropic, and approximate secular equations of third-order were
obtained. In Vinh and Linh [12] the layer and the half-space are both subjected
to homogeneous pre-strains and an approximate secular equation of third-order
was established which is valid for any pre-strain and for a general strain energy
function.

In the above mentioned investigations, the contact between the layer and
the half-space is assumed to be perfectly bonded. For the case of sliding con-
tact, Achenbach and Keshava [13] derived an approximate secular equation
of third-order by replacing the thin layer by a plate modeled by Mindlin’s plate
theory [14]. The layer and the half-space are both isotropic and compressible.
However, this approximate secular equation includes the shear coefficient, origi-
nating from Mindlin’s plate theory [14], whose usage should be avoided as noted
by Touratier [15], Muller and Touratier [16] and Stephen [17]. Recently,
Vinh et al. [18] derived a fourth-order approximate secular equation with a very
high accuracy.

For the case when the layer and the half-space are both orthotropic, an
approximate secular equation of third-order was established recently by Vinh

and Anh [19] for a compressible half-space coated by a thin compressible layer.
There are four possibilities of a (compressible or incompressible) half-space cov-
ered with a (compressible or incompressible) thin layer. Therefore, the deriva-
tion of approximate secular equations for the remaining three combinations is
needed.

By using the effective boundary condition method, the approximate secular
equations of third-order are derived in terms of the dimensionless thickness of
the layer. It is shown numerically that these approximate secular equations have
a high accuracy. Based on the obtained secular equations, the effect of incom-
pressibility on the Raleigh wave propagation is considered carrying out some
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numerical examples. It is shown that the incompressibility (of half-spaces and
coating layers) strongly affects the Raleigh wave velocity and the effect becomes
stronger when the coating is incompressible.

The paper is organized as follows. In Section 2, the effective boundary con-
dition method is recalled. In Section 3, the pre-effective boundary conditions for
a compressible or incompressible orthotropic elastic layer are presented. In Sec-
tions 4 and 6, the propagation of Rayleigh waves in an incompressible orthotropic
elastic half-space coated by a thin incompressible (compressible) orthotropic elas-
tic layer is considered. Section 5 deals with the propagation of Rayleigh waves
in a compressible orthotropic elastic half-space coated by a thin incompress-
ible orthotropic elastic layer. The approximate secular equations of third-order
are established using the effective boundary condition method. In Section 7, as
an application of the obtained results, the infuence of incompressibility of half-
spaces and layers on the Rayleigh wave velocity is investigated numerically using
the derived approximate secular equations.

2. The effective boundary condition method

Taking into consideration the thin-layer assumption, approximate explicit
secular equations of Rayleigh waves can be derived by replacing approximately
the entire effect of the thin layer on the half-space by the so-called effective

boundary conditions that relate linearly the displacements and the stresses of
the half-space at its surface. Then, by ignoring the coating, the Rayleigh wave
can be considered as a Rayleigh wave propagating in the half-space, without
the layer whose surface is subjected to the effective boundary conditions. This
approach is called the effective boundary condition method. It is worth noting
that this method is applicable not only to the Rayleigh wave propagation but
also to other problems.

To derive the effective boundary conditions, first we need the so-called pre-ef-

fective boundary conditions that relate linearly the displacements and the stresses
of the layer at its flat bottom, where the layer is in contact with the half-space.
The effective boundary conditions are then derived by using the contact condi-
tions of the half-space and the layer.

For obtaining the pre-effective boundary conditions, Achenbach and Ke-

shava [13], and Tiersten [5] replaced the thin layer with a plate modeled by
different theories. Mindlin’s plate theory and the plate theory of low-frequency
extension and flexure, while Bovik [6] expanded the stresses at the top surface
of the layer into Taylor series in its thickness. The Taylor expansion technique
was then developed by Niklasson et al. [20], Rokhlin and Huang [21, 22],
Benveniste [23], Steigmann and Ogden [8], Vinh and Linh [10, 12], Vinh

et al. [11, 18] and Vinh and Anh [7, 19].
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While the effective boundary conditions are immediately obtained from the
pre-effective boundary condition for the welded contact because of the continuity
of displacements and stresses through the interface between the half-space and
the layer, the situation does not occur for the sliding contact, due to the discon-
tinuity of the horizontal displacement component. To derive these conditions,
the displacement and the stresses are restricted to the class of plane waves.

3. Pre-effective boundary conditions for thin orthotropic layers

Consider a thin orthotropic elastic layer that occupies the domain
−h ≤ x2 ≤ 0. The layer is in sliding contact with an orthotropic elastic half-space
x2 ≥ 0 through the plane x2 = 0. Note that some quantities related to the half-
space and the layer have the same symbol but are systematically distinguished
by a bar if pertaining to the layer.

3.1. A compressible layer

Suppose that the layer is compressible. According to Vinh and Linh [10],
Vinh and Anh [19], the approximate pre-effective third-order boundary condi-
tions have the following form:

(3.1) σ̄12 + h
(
r1σ̄22,1 − r3ū1,11 − ρ̄¨̄u1

)

+
h2

2

[
r2σ̄12,11 +

ρ̄

c̄66

¨̄σ12 − r3ū2,111 − ρ̄(1 + r1)¨̄u2,1

]

+
h3

6

(
r4σ̄22,111 + ρ̄r5 ¨̄σ22,1 − r6ū1,1111 − ρ̄r7 ¨̄u1,11 −

ρ̄2

c̄66

¨̄u1,tt

)
= 0, at x2 = 0,

(3.2) σ̄22 + h
(
σ̄12,1 − ρ̄¨̄u2

)
+
h2

2

[
r1σ̄22,11 +

ρ̄

c̄22

¨̄σ22 − r3ū1,111 − ρ̄(1 + r1)¨̄u1,1

]

+
h3

6

[
r2σ̄12,111+ ρ̄r8 ¨̄σ12,1−r3ū2,1111− ρ̄(1+2r1)¨̄u2,11−

ρ̄2

c̄22

¨̄u2,tt

]
= 0, at x2 = 0,

where

r1 =
c̄12

c̄22
, r2 = r1 +

r3
c̄66

, r3 =
c̄212 − c̄11c̄22

c̄22
,

r4 = r1r2 +
r3
c̄22

, r5 =
1 + r1
c̄22

+
r1
c̄66

, r6 = (r1 + r2)r3,

r7 = r21 + 2r2, r8 =
1 + r1
c̄66

+
1

c̄22
.

(3.3)
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3.2. An incompressible layer

Let the layer be incompressible. Then, the approximate pre-effective third-
order boundary conditions are given by (see Vinh et al. [11])

(3.4) σ̄12+h

(
σ̄22,1+δ̄ū1,11−ρ̄¨̄u1

)
+
h2

2

(
r9σ̄12,11+

ρ̄

c̄66

¨̄σ12+δ̄ū2,111−2ρ̄¨̄u2,1

)

+
h3

6

(
r9σ̄22,111+

ρ̄

c̄66

¨̄σ22,1−r10ū1,1111−ρ̄r11 ¨̄u1,11−
ρ̄2

c̄66

¨̄u1,tt

)
= 0, at x2 = 0,

(3.5) σ̄22+h

(
σ̄12,1−ρ̄¨̄u2

)
+
h2

2

(
σ̄22,11+δ̄ū1,111−2ρ̄¨̄u1,1

)

+
h3

6

(
r9σ̄12,111+

2ρ̄

c̄66

¨̄σ12,1+δ̄ū2,1111−3ρ̄¨̄u2,11

)
= 0, at x2 = 0,

where

(3.6) r9 = 1 − δ̄

c̄66
, r10 = δ̄

(
δ̄

c̄66
− 2

)
, r11 = 2r9 + 1, δ̄ = c̄11 + c̄22 − 2c̄12.

Remark 1.

(i) If the contact between the layer and the half-space is welded, i.e., the
displacements and the stresses are continuous through the interface of the layer
and the half-space, we immediately obtain the effective boundary conditions
from the pre-effective boundary conditions by replacing ū1, ū2, σ̄12 and σ̄22 with
u1, u2, σ12 and σ22, respectively.

(ii) For the sliding contact, the situation is rather different. The horizontal
displacement is not required to be continuous through the interface; the effec-
tive boundary conditions are not immediately obtained from the pre-effective
boundary conditions. As shown below, for obtaining these conditions we have to
restrict the displacement and the stress to those with the plane wave motion.

4. Rayleigh waves in an incompressible half-space coated by a thin

incompressible layer

4.1. Approximate effective third-order boundary conditions

Consider the propagation of a Rayleigh wave, traveling (in coated half-space)
with velocity c (> 0) and wave number k (> 0) in the x1-direction and decaying
in the x2-direction. The displacements and the stresses of the wave are sought
in the form

ū1 = Ū1(y)e
ik(x1−ct), ū2 = Ū2(y)e

ik(x1−ct),

σ̄12 = ikT̄1(y)e
ik(x1−ct), σ̄22 = ikT̄2(y)e

ik(x1−ct)
(4.1)
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for the layer, and

u1 = U1(y)e
ik(x1−ct), u2 = U2(y)e

ik(x1−ct),

σ12 = ikT1(y)e
ik(x1−ct), σ22 = ikT2(y)e

ik(x1−ct)
(4.2)

into the half-space, where y = kx2. Substituting (4.1) for (3.4) and (3.5) yields

(4.3)

iT̄1(0)

[
1 +

ε2

2

(
−r9 −

ρ̄c2

c̄66

)]
+ T̄2(0)

[
−ε+

ε3

6

(
r9 +

ρ̄c2

c̄66

)]

+ Ū1(0)
[
ε

(
−δ̄ + ρ̄c2

)
+
ε3

6

(
−r10 − ρ̄c2r11 −

ρ̄2c4

c̄66

)]

+ iŪ2(0)

[
ε2

(
− δ̄

2
+ ρ̄c2

)]
= 0,

T̄1(0)

[
−ε+

ε3

6

(
r9 +

2ρ̄c2

c̄66

)]
+ iT̄2(0)

(
1 − ε2

2

)

+ iŪ1(0)

[
ε2

(
− δ̄

2
+ ρ̄c2

)]
+ Ū2(0)

[
ερ̄c2 +

ε3

6
(δ̄ − 3ρ̄c2)

]
= 0,

where ε = kh is the dimensionless thickness of the layer. Let the contact between
the layer and the half-space be sliding, then we have

(4.4) σ12 = 0, σ̄12 = 0, u2 = ū2, σ22 = σ̄22 at x2 = 0,

or, in view of Eqs. (4.1) and (4.2), equivalently

(4.5) T1(0) = 0, T̄1(0) = 0, U2(0) = Ū2(0), T2(0) = T̄2(0).

Using the second equation of (4.5) in (4.3) and eliminating Ū1 we have

(4.6) iT̄2(0)(a1 + a2ε
2) = −(a3ε+ a4ε

3)Ū2(0),

where

a1 = r2vx− ēδ, a2 =
1

6

[
ēδ(2 − ēδ) + 2ēδr

2
vx− r4vx

2

]
,

a3 = c̄66r
2
vx(r

2
vx− ēδ), a4 =

c̄66

12

[
ē2δ − 2r2vx

(
ē2δ − 2ēδr

2
vx+ r4vx

2
)]
,

(4.7)

in which

x =
c2

c22
, ēδ =

δ̄

c̄66
, rv =

c2
c̄2
, c2 =

√
c66

ρ
, c̄2 =

√
c̄66

ρ̄
.(4.8)
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From the last two equations of (4.5) and Eq. (4.6) it follows that

(4.9) T2(0)(a1 + a2ε
2) = i(a3ε+ a4ε

3)U2(0).

This is the desired approximate third-order effective boundary condition with
which the total effect of the layer on the half-space is approximately replaced.
From the first equations of (4.5) and (4.9), the surface x2 = 0 of the half-space
is subjected to the following conditions:

(4.10) T1(0) = 0, T2(0)(a1 + a2ε
2) = iU2(0)(a3ε+ a4ε

3).

4.2. An approximate secular third-order equation

Now we can ignore the layer and consider the propagation of Rayleigh waves
in the incompressible elastic half-space whose surface x2 = 0 is subjected to the
boundary conditions (4.10). According to Ogden and Vinh [24], the displace-
ment components of a Rayleigh wave travelling with velocity c and wave number
k in the x1-direction and decaying in the x2-direction are determined by (4.2)1,2

in which U1(y) and U2(y) are given by

U1(y) = −k(b1B1e
−b1y + b2B2e

−b2y),

U2(y) = −ik(B1e
−b1y +B2e

−b2y),
(4.11)

where B1 and B2 are the constants to be determined and b1 and b2 are the roots
of the equation

(4.12) γ̂b4 − (2β̂ −X)b2 + (γ̂ −X) = 0,

with positive real parts (for ensuring the decay conditions), X = ρc2, and

(4.13) γ̂ = c66, β̂ = (δ − 2γ̂)/2, δ = c11 + c22 − 2c12

From Eq. (4.12) it follows that

(4.14) b21 + b22 =
2β̂ −X

γ̂
:= S, b21b

2
2 =

γ̂ −X

γ̂
:= P.

It is not difficult to verify that if the Rayleigh wave exists (→ b1 and b2 have
positive real parts), then

(4.15) 0 < X < c66

and

(4.16) b1b2 =
√
P, b1 + b2 =

√
S + 2

√
P .
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Introducing (4.11) and (4.2)1,2 into the stress-strain relations (Eq. (6) in [24])
and using the equations of motion (Eq. (7) in [24]) yield

σ12 = k2(β1B1e
−b1y + β2B2e

−b2y)eik(x1−ct),

σ22,1 = k3(γ1B1e
−b1y + γ2B2e

−b2y)eik(x1−ct),
(4.17)

in which

(4.18) βn = c66(b
2
n + 1), γn = (X − δ + βn)bn, n = 1, 2.

From (4.2)3,4 and (4.17) it follows that

T1(y) = −ik
(
β1B1e

−b1y + β2B2e
−b2y

)
,

T2(y) = −k
(
γ1B1e

−b1y + γ2B2e
−b2y

)
.

(4.19)

Substituting into Eqs. (4.10) Eqs. (4.11) and (4.19) provides a homogeneous
system of linear equations for B1 and B2

(4.20)

{
f(b1)B1 + f(b2)B2 = 0,

F (b1)B1 + F (b2)B2 = 0,

where

(4.21) F (bn) = γn(a1 + a2ε
2) + (a3ε+ a4ε

3), f(bn) = βn, n = 1, 2.

Due to B2
1 + B2

2 6= 0, the determinant of coefficients of the system (4.20) must
vanish. This gives

(4.22) f(b1)F (b2) − f(b2)F (b1) = 0.

Introducing (4.21) into (4.22) leads to the secular equation of the wave

(4.23) D0 +D1ε+D2ε
2 +D3ε

3 = 0,

where

D0 = a1

[
(X − δ)

√
P +X

]
, D1 = a3

√
S + 2

√
P,

D2 = a2

[
(X − δ)

√
P +X

]
, D3 = a4

√
S + 2

√
P,

(4.24)

in which S and P are given by (4.14). Equation (4.23), in which Dk are given by
(4.24), is the desired approximate secular third-order equation. It is fully explicit.
In the dimensionless form this equation is written as

(4.25) E0 + E1ε+E2ε
2 +E3ε

3 = 0,
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where

E0 = (r2vx− ēδ)[(x− eδ)
√
P + x], E1 = rµr

2
vx(r

2
vx− ēδ)

√
S + 2

√
P,

E2 =
1

6
[ēδ(2 − ēδ) + 2ēδr

2
vx− r4vx

2][(x− eδ)
√
P + x],

E3 =
1

12
rµ[ē2δ − 2r2vx(ē

2
δ − 2ēδr

2
vx+ r4vx

2)]

√
S + 2

√
P,

S = eδ − 2 − x, P = 1 − x

(4.26)

and

(4.27) eδ =
δ

c66
, rµ =

c̄66

c66
.

It is clear from Eqs. (4.25) and (4.26) that the squared dimensionless Rayleigh
wave velocity x = c2/c22 depends on five dimensionless parameters eδ, ēδ, rµ, rv
and ε. Note that eδ > 0, ēδ > 0 (see [24]). When ε = 0, from Eq. (4.25) and the
first of Eq. (4.26) it follows that

(4.28) (x− eδ)
√

1 − x+ x = 0.

This is the secular equation of Rayleigh waves in an incompressible orthotropic
elastic half-space (see [24]).

Figure 1 presents the dependence on ε = k.h ∈ [0, 1.5] of the dimensionless
Rayleigh wave velocity x = c2/c22 that is calculated by the exact secular equation
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Fig. 1. Plots of the dimensionless Rayleigh wave velocity x(ε) in the interval [0, 1.5] that is
calculated by the exact secular equation (solid line) and by the approximate secular equation

(4.25) (dashed line). Here we take rµ = 1, rv = 1.5 and eδ = 3, ēδ = 3.5.
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(having the form of a 6 × 6 determinant) and marked (solid line) and by the
approximate secular equation (4.25) (dashed line). Here we take rµ = 1, rv = 1.5,
eδ = 3, ēδ = 3.5. It is seen in Fig. 1 that the exact velocity curve and the third-
order approximate one almost totally coincide with each other for the values
of ε ∈ [0, 1.5]. The maximum absolute error in the interval [0, 1.5] is 0.002 (at
ε = 1.5). This shows that the approximate secular equation (4.25) is a very good
approximation.

4.3. Isotropic case

When the layer and the half-space are both transversely isotropic (with the
isotropic axis being the x3-axis)

(4.29) c11 = c22, c̄11 = c̄22, c11 − c12 = 2c66, c̄11 − c̄12 = 2c̄66,

we can see that

(4.30) eδ = ēδ = 4, S = 2 − x.

With the use of Eqs. (4.29) and (4.30), Eq. (4.26) is simplified to

E0 = (r2vx− 4)
[
(x− 4)

√
1 − x+ x

]
,

E1 = rµr
2
vx(r

2
vx− 4)

(
1 +

√
1 − x

)
,

E2 = −1

6
(8 − 8r2vx+ r4vx

2)
[
(x− 4)

√
1 − x+ x

]
,

E3 =
1

6
rµ[8 − r2vx(16 − 8r2vx+ r4vx

2)](1 +
√

1 − x).

(4.31)

When the layer and the half-space are both isotropic, E0, E1, E2 and E3 are
also given by Eq. (4.31), but in this case x = ρc2/µ, rµ = µ̄/µ, µ and µ̄ are the
shear moduli.

5. Rayleigh waves in an incompressible half-space coated by a thin

compressible layer

5.1. Effective third-order boundary conditions

Using the same technique as the one in Subsection 4.1, from the pre-effective
boundary conditions (3.1) and (3.2) we derive the approximate third-order ef-
fective boundary conditions for this case (see also [19])

T1(0) = 0,

T2(0)(a5 + a6ε
2) = iU2(0)(a7ε+ a8ε

3),
(5.1)
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where

a5 = xr2v−ēd,

a6 = −1

6

{
ēd

(
ēd−2ē2ē3

)
+r2vx

(
ē22ē

2
3+2ē2ē3−3ē1ē2−2ēd

)
+r4vx

2(1+3ē2)
}
,

a7 = c̄66r
2
vx(r

2
vx−ēd),

a8 =
c̄66

12

{
ē2d+r

2
vx

[
2ēd

(
ē2ē3−ēd−1

)

+r2vx
(
1−2ē2ē3−ē22ē23+4ēd+2ē1ē2

)
−2r4vx

2
(
1+ē2

)]}
,

(5.2)

in which

x =
c2

c22
, ē1 =

c̄11

c̄66
, ē2 =

c̄66

c̄22
, ē3 =

c̄12

c̄66
, ēd = ē1 − ē2ē

2
3,

rµ =
c̄66

c66
, rv =

c2
c̄2
, c2 =

√
c66

ρ
, c̄2 =

√
c̄66

ρ̄
.

(5.3)

Note that the total effect of the layer on the half-space is replaced approximately
by the second equation of (5.1).

5.2. An approximate secular third-order equation

Now we can omit the layer and consider the Rayleigh wave propagating in the
incompressible orthotropic elastic half-space (without the coating) whose surface
x2 = 0 is subjected to the boundary conditions (5.1).

By substituting into Eqs. (5.1) Eqs.(4.11) and (4.19) we obtain homoge-
neously linear equations for B1 and B2. Making the determinant of coefficients
of this system leads to the third-order approximate dispersion equation of the
wave:

(5.4) D0 +D1ε+D2ε
2 +D3ε

3 = 0,

where

D0 = a5

[
(X − δ)

√
P +X

]
, D1 = a7

√
S + 2

√
P,

D2 = a6

[
(X − δ)

√
P +X

]
, D3 = a8

√
S + 2

√
P,

(5.5)

in which S and P are given by (4.14). In the dimensionless form, Eq. (5.4)
becomes

(5.6) E0 + E1ε+E2ε
2 +E3ε

3 = 0,
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where

E0 = (r2vx−ēd)
[
(x−eδ)

√
P+x

]
, E1 = rµr

2
vx(r

2
vx−ēd)

√
S+2

√
P ,

E2 = −1

6

{
r4vx

2
(
1+3ē2

)
+r2vx

[
ē22ē

2
3+2ē2ē3−2ēd−3ē1ē2

]

−ēd

(
2ē2ē3−ēd

)}[
(x−eδ)

√
P+x

]
,

E3 =
1

12
rµ

{
ē2d+r

2
vx

[
2ēd

(
ē2ē3−ēd−1

)

+r2vx
(
1−2ē2ē3−ē22ē23+4ēd+2ē1ē2

)
−2r4vx

2
(
1+ē2

)]}√
S+2

√
P,

S = eδ−2−x, P = 1−x.

(5.7)

It is clear from Eqs. (5.6) and (5.7) that the squared dimensionless Rayleigh
wave velocity x = c2/c22 depends on seven dimensionless parameters eδ, ē1, ē2,
ē3, rµ, rv and ε. Note that eδ > 0, ē1 > 0, ē2 > 0 and ē1 − ē2ē

2
3 > 0 (see [25]).

When ε = 0, from Eq. (5.6) and the first equation of (5.7) it implies

(5.8) (x− eδ)
√

1 − x+ x = 0.
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Fig. 2. Plots of the dimensionless Rayleigh wave velocity x(ε) in the interval [0, 1.5] that is
calculated by the exact secular equation (solid line) and by the approximate secular equation

(5.6) (dashed line). Here we take eδ = 2.1, ē1 = 1.8, ē2 = 1.2, ē3 = 0.6, rv = 3, rµ = 0.5.
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This is again the secular equation of Rayleigh waves in an incompressible or-
thotropic elastic half-space (see [24]).

Figure 2 presents the dependence on ε = k.h ∈ [0, 1.5] of the dimensionless
Rayleigh wave velocity x = c2/c22 that is calculated by the exact secular equation
(having the form of a 6 × 6 determinant) (solid line) and by the approximate
secular equation (5.6) (dashed line). The dimensionless parameters are taken as
eδ = 2.1, ē1 = 1.8, ē2 = 1.2, ē3 = 0.6, rv = 3, rµ = 0.5. It is shown in Fig. 2
that the exact velocity curve and the third-order approximate one are very close
to each other for the values of ε ∈ [0, 1.5]. The maximum absolute error in the
interval [0, 1.5] is 0.0109 (at ε = 0.6). This means that the approximate secular
equation (5.6) has a high accuracy.

5.3. Isotropic case

When the layer is isotropic and the half-space is transversely isotropic (with
the isotropic axis being the x3 axis), we have

(5.9) c̄11 = c̄22 = λ̄+ 2µ̄, c̄12 = λ̄, c̄66 = µ̄, c11 = c22, c11 − c12 = 2c66

and consequently

(5.10) ē1 = 1/γ̄, ē2 = γ̄, ē3 = 1/γ̄ − 2, ēd = 4(1− γ̄), eδ = 4, S = 2− x,

where γ̄ = µ̄/(λ̄ + 2µ̄). Taking into account (5.10), the expressions (5.7) of Ek

are simplified to

E0 =
[
r2vx− 4(1 − γ̄)

][(
x− 4

)√
1 − x+ x

]
,

E1 = rµr
2
vx

[
r2vx− 4(1 − γ̄)

](
1 +

√
1 − x

)
,

E2 = −1

6

[
8(1 − γ̄) + 4r2vx(γ̄

2 − 2) + r4vx
2(1 + 3γ̄)

][(
x− 4

)√
1 − x+ x

]
,

E3 =
1

6
rµ

{
8(1 − γ̄)2 + r2vx

[
8(−2 + 3γ̄ − γ̄2) + 2r2vx(4 − 2γ̄ − γ̄2)

− r4vx
2(1 + γ̄)

]}(
1 +

√
1 − x

)
.

(5.11)

When the layer and the half-space are both isotropic, the expressions (5.11) are
unchanged, but in this case: x = ρc2/µ, rµ = µ̄/µ, µ̄ and µ are the shear moduli.

6. Rayleigh waves in a compressible half-space coated by a thin in-

compressible layer

According to Subsection 4.1, the approximate effective third-order boundary
condition for this case is given by (4.10). The Rayleigh wave can now be con-
sidered as a Rayleigh wave propagating in the compressible orthotropic elastic
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half-space whose surface x2 = 0 is subjected to the boundary conditions (4.10).
According to [25], the displacement components of a Rayleigh wave travelling
with velocity c and wave number k in the x1-direction and decaying in the x2-
direction are determined by (4.2)1,2 in which U1(y) and U2(y) are given by

U1(y) = b1B1e
−b1y + b2B2e

−b2y,

U2(y) = α1B1e
−b1y + α2B2e

−b2y,
(6.1)

where B1 and B2 are the constants, b1 and b2 are roots of the characteristic
equation

(6.2) c22c66b
4 + [(c12 + c66)

2 + c22(X − c11) + c66(X − c66)]b
2

+ (c11 −X)(c66 −X) = 0

whose real parts are positive to ensure the decay condition, X = ρc2, and

(6.3)

αk = iβk,

βk =
bk(c12 + c66)

c22b2k − c66 + ρc2
=
c11 − ρc2 − c66b

2
k

(c12 + c66)bk
,

where k = 1, 2 and i =
√
−1. From (6.2) we have

b21 + b22 = −(c12 + c66)
2 + c22(X − c11) + c66(X − c66)

c22c66
:= S,

b21b
2
2 =

(c11 −X)(c66 −X)

c22c66
:= P.

(6.4)

It is not difficult to verify that if the Rayleigh wave exists (→ b1 and b2 having
positive real parts), then

(6.5) 0 < X < min{c11, c66}

and

(6.6) b1b2 =
√
P, b1 + b2 =

√
S + 2

√
P .

Using (4.2)1,2 and (6.1) in the stress-strain relations (Eq. (2.2) in [25]) we obtain
the expressions of σ12 and σ22 that are given by (4.2)3,4, in which

T1(y) = ic66

[
(b1 + β1)B1e

−b1y + (b2 + β2)B2e
−b2y

]
,

T2(y) =
[
(c12 − c22b1β1)B1e

−b1y + (c12 − c22b2β2)B2e
−b2y

]
.

(6.7)
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Introducing Eqs. (6.1) and (6.7) into Eqs. (4.10) provides a homogeneous system
of two linear equations for B1 and B2, and making its determinant of coefficients
equal to 0 yields the third-order approximate dispersion equation of the wave:

(6.8) D0 +D1ε+D2ε
2 +D3ε

3 = 0

where

D0 = a1

[(
c212 − c11c22 + c22X

)
b1b2 + (c11 −X)X

]
,

D1 = a3(c11 −X)(b1 + b2),

D2 = a2

[
(c212 − c11c22 + c22X)b1b2 + (c11 −X)X

]
,

D3 = a4(c11 −X)(b1 + b2),

(6.9)

in which b1b2 and b1 +b2 are given by Eq. (6.6). Equation (6.8) is the desired ap-
proximate third-order secular equation. It is totally explicit. In the dimensionless
form this equation is written as

(6.10) E0 + E1ε+E2ε
2 +E3ε

3 = 0,

where

E0 =
(
r2vx− ēδ

)[(
e2x− ed

)
b1b2 +

(
e1 − x

)
x
]
,

E1 = rµr
2
vx

(
r2vx− ēδ

)(
e1 − x

)(
b1 + b2

)
,

E2 =
1

6

[
ēδ(2 − ēδ) + 2ēδr

2
vx− r4vx

2
][(

e2x− ed

)
b1b2 +

(
e1 − x

)
x
]
,

E3 =
1

12
rµ

[
ē2δ − 2r2vx

(
ē2δ − 2ēδr

2
vx+ r4vx

2
)](

e1 − x
)(
b1 + b2

)
,

b1b2 =
√
P, b1 + b2 =

√
S + 2

√
P,

P =
(1 − x)(e1 − x)

e2
,

S =
e2(e1 − x) + 1 − x− (1 + e3)

2

e2

(6.11)

and

(6.12) e1 =
c11

c66
, e2 =

c22

c66
, e3 =

c12

c66
, ed = e1e2 − e23.

It is clear from Eqs. (6.10) and (6.11) that the squared dimensionless Rayleigh
wave velocity x = c2/c22 depends on seven dimensionless parameters e1, e2, e3,
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ēδ, rµ, rv and ε. Note that e1 > 0, e2 > 0, e1e2 − e23 > 0, ēδ > 0 (see [25]). If
ε = 0, from Eq. (6.10) and the first equation of (6.11) it follows

(6.13)
(
e2x− ed

)√
P +

(
e1 − x

)
x = 0.

Equation (6.13) is the secular equation of Rayleigh waves propagating in an
orthotropic elastic half-space (see [26] and [25]).
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Fig. 3. The Rayleigh wave velocity curves drawn by solving the exact dispersion (solid line)
and by the approximate secular equation (6.10) (dashed line) with rµ = 0.8, rv = 1.3,

e1 = 2.5, e2 = 3, e3 = 1.5 and ēδ = 3.2.

Figure 3 presents the dependence on ε = k.h ∈ [0, 1.5] of the dimensionless
Rayleigh wave velocity x = c2/c22 that is calculated by the exact secular equation
(in the form of a 6× 6 determinant) (solid line) and by the approximate secular
equation (6.10) (dashed line) with rµ = 0.8, rv = 1.3, e1 = 2.5, e2 = 3, e3 =
1.5 and ēδ = 3.2. Figure 3 shows that the exact velocity curve and the third-
order approximate one almost totally coincide with each other for the values of
ε ∈ [0 1.5]. The maximum absolute error in the interval [0, 1.5] is 0.0052 (at
ε = 1.5). This shows that the approximate secular equation (6.10) is a good
approximation.

6.1. Isotropic case

When the layer is transversely isotropic (with the isotropic axis being the
x3-axis) and the half-space is isotropic, i.e., c11 = c22 = λ+2µ, c12 = λ, c66 = µ,
c̄11 = c̄22 and c̄11 − c̄12 = 2c̄66, then from Eqs. (3.6), (4.8), (6.3) and (6.4), it is
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easy to verify that

(6.14) ēδ = 4, b1 =
√

1 − γx, b2 =
√

1 − x, β1 = b1, β2 =
1

b2
,

where γ = µ/(λ+ 2µ). With the help of Eq. (6.14), the secular equation (6.10)
is simplified to

(6.15) Ē0 + Ē1ε+ Ē2ε
2 + Ē3ε

3 = 0,

where

Ē0 =
(
r2vx− 4

)[
(x− 2)2 − 4b1b2

]
, Ē1 = rµr

2
vx

2b1
(
r2vx− 4

)
,

Ē2 = −1

6

[
8 − 8r2vx+ r4vx

2
][

(x− 2)2 − 4b1b2

]
,

Ē3 =
1

6
rµxb1

[
8 − r2vx(16 − 8r2vx+ r4vx

2)
]
,

(6.16)

here rµ = c̄66/µ. When the layer and the half-space are both isotropic, Ēk,
(k = 0, 1, 2, 3) are also calculated by Eq. (6.16), but in this case x = ρc2/µ,
rµ = µ̄/µ, µ̄ and µ are the shear moduli.

7. Numerical examples

In this section, as an example of application of the obtained approximate
secular equations, we consider numerically the influence of incompressibility on
the Rayleigh wave velocity. For this purpose we consider four examples. In the
first example, a compressible half-space is coated either by a compressible layer or
by an incompressible layer. These two layers have the same elastic constants. In
the second example, the compressible half-space is replaced by an incompressible
half-space. In the third and fourth examples, two different (compressible and
incompressible) half-spaces with the same elastic constants are covered with the
same compressible or incompressible layer.

In particular, in the first example we take e1 = 2.5, e2 = 3 and e3 = 1.5 for
the half-space and ē1 = 2.2, ē2 = 1.8 and ē3 = 0.5 for the layers and rµ = 1 and
rv = 1.2.

In the second example, we choose eδ = 2.5 for the half-space and ē1 = 4.6,
ē2 = 1 and ē3 = 1 for the layers and rµ = 0.8 and rv = 2.

In the third example, the dimensionless parameters ē1 = 1.8, ē2 = 1 and
ē3 = 0.6 are used for the layer and e1 = 2.5, e2 = 3 and e3 = 1.5 for the
half-spaces and rµ = 0.5 and rv = 3.

In the last case, they are ēδ = 3.5 for the layer and e1 = 2.8, e2 = 3.2 and
e3 = 1.5 for the half-spaces and rµ = 1 and rv = 1.5.
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Fig. 4. A compressible half-space coated by a compressible layer (solid line drawn by solving
Eq. (39) in [19]), by an incompressible layer (dashed line drawn by solving (6.10)). Here we
take e1 = 2.5, e2 = 3 and e3 = 1.5 for the half-space and ē1 = 2.2, ē2 = 1.8 and ē3 = 0.5 for

the layers and rµ = 1 and rv = 1.2.
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Fig. 5. An incompressible half-space coated by a compressible layer (solid line drawn by
solving (5.6)), by an incompressible layer (dashed line drawn by solving (4.25)). Here we take
eδ = 2.5 for the half-space and ē1 = 4.6 and ē2 = 1, ē3 = 1 for the layers and rµ = 0.8 and

rv = 2.

The numerical results of the first, second, third and fourth examples are
presented in Figs. 4, 5, 6 and 7, respectively. To establish the wave velocity
curves, the approximate secular equations (4.25), (5.6), (6.10) obtained in this
paper and Eq. (39) in [19] are employed.
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Fig. 6. A compressible layer coats a compressible half-space (solid line drawn by solving
Eq. (39) in [19]), and coats an incompressible half-space (dashed line drawn by solving (5.6)).
Here we take ē1 = 1.8, ē2 = 1 and ē3 = 0.6 for the layer and e1 = 2.5, e2 = 3 and e3 = 1.5 for

the half-spaces and rµ = 0.5 and rv = 3.
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Fig. 7. An incompressible layer coats a compressible half-space (solid line drawn by solving
(5.6)), and an incompressible half-space (dashed line drawn by solving (4.25)). Here we take
ēδ = 3.5 for the layer and e1 = 2.8, e2 = 3.2 and e3 = 1.5 for the half-spaces and rµ = 1 and

rv = 1.5.

It is shown in Figs. 4–7:
(i) Incompressibility strongly affects the Rayleigh wave velocity.
(ii) The effect of incompressible coating layers is considerably stronger than

the one of incompressible half-spaces.
(iii) Incompressibility increases the Rayleigh wave velocity.



496 P. C. Vinh, V. T. N. Anh

8. Conclusions

In this paper, the propagation of Rayleigh waves in an orthotropic elastic
half-space coated by a thin orthotropic elastic layer is considered. The half-space
and the layer are in sliding contact with each other and they are compressible
or incompressible. By using the effective boundary condition method, the ap-
proximate third-order secular equations regarding of the dimensionless thickness
of the layer are derived for three combinations: incompressible/incompressible,
compressible/incompressible and incompressible/compressible. It is shown that
these approximate secular equations are good approximations. Based on the ob-
tained secular equations, the effect of incompressibility on the Raleigh wave ve-
locity is examined. It is shown that the Raleigh wave velocity is strongly affected
by the incompressibility of half-spaces and coating layers, and the incompress-
ibility of coating layers has a stronger effect than the one of half-spaces. The
incompressibility increases the Rayleigh wave velocity.
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