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In this paper, a theory of two-temperature generalized thermoelasticity is
constructed in the context of a new consideration of heat conduction with fractional
orders. The obtained general solution is applied to a specific problem of a medium,
semi-infinite solid considered to be made of a homogeneous thermoelastic material.
The bounding plane surface of the medium is being subjected to a non-Gaussian laser
pulse. The medium is assumed initially quiescent and Laplace transforms techniques
will be used to obtain the general solution for any set of boundary conditions. The
inverse of the Laplace transforms are computed numerically using a method based
on Fourier’s expansion techniques. The theories of coupled thermoelasticity and of
generalized thermoelasticity with one relaxation time follow as limit cases. Some
comparisons have been shown in figures to estimate the effects of the fractional order,
temperature discrepancy, laser-pulse and the laser intensity parameters on all the
studied fields.
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1. Introduction

The effect of temperature on soil behaviour is a crucial problem in
some important cases, i.e., the storage of hot fluids, the disposal of radioactive
waste and that of explosive shock. The classical uncoupled theory of thermoelas-
ticity predicts two phenomena not compatible with physical observations. First,
the equation of heat conduction of this theory does not contain any elastic terms;
secondly, the heat equation is of a parabolic type, predicting infinite speeds of
propagation for thermal signals. Thus, the classical uncoupled theory of ther-
moelasticity contradicts the physical facts.

Biot [1] has introduced a theory of coupled thermoelasticity to overcome
the first shortcoming. The governing equations for this theory are coupled, elim-
inating the first paradox of the classical theory. However, this theory shares
the second shortcoming since the heat equation for the coupled theory is based
on Fourier’s law of heat conduction and it is also parabolic. Henceforth, two
styles of generalized theories of thermoelasticity presented by Lord and Shul-
mann [2], and Green and Linsday [3], which consider the finite speed of the
thermal signal, have been the center of interest of active research during the last
three decades. The third generalization to the coupled theory is known as the
dual-phase-lag thermoelasticity, proposed by Tzou [4], in which Fourier’s law is
replaced by an approximation to a modification of Fourier’s law with two differ-
ent translations for the heat flux and the temperature gradient. These theories
remove the paradox of the infinite speed of heat propagation that is inherent in
the conventional coupled dynamical theory of thermoelasticity, which was intro-
duced by Biot [1]. In the generalized theories, a modified heat conduction law,
which includes both the heat flux and its time derivative, replaced the conven-
tional Fourier’s law. Green and Naghdi [5]–[7] have introduced a new theory
of thermoelasticity and divided their theory into three parts, referred as types I,
II and III.

Chen and his colleagues [8]–[10] have formulated a theory of heat conduction
in deformable bodies, which depends on two distinct temperatures, the conduc-
tive temperature and thermodynamic temperature. For time-independent situa-
tions, the difference between these two temperatures is proportional to the heat
supply, and in the absence of any heat supply, the two temperatures are identi-
cal. For time-dependent problems, however, and for wave propagation problems
in particular, the two temperatures are in general different regardless of the
presence of a heat supply. The two temperatures and the strain are found to
appear in the form of a traveling wave plus a response, which occurs instanta-
neously throughout the body [11]. Warren and Chen [12] have investigated
the wave propagation in the two-temperature thermoelasticity theory (2TT),
but Youssef [13] has extended this theory in the context of the generalized
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theory of thermoeasticity. He has improved the previous theories of the gen-
eralized thermoelasticity by introducing a new theory with two temperatures
called two-temperature generalized thermoelasticity. Recently, the first author
and his colleagues have presented additional investigations concerning the two-
temperature model [14]–[17].

Excitation of thermoelastic waves by a pulsed laser in solid is of great interest
due to extensive applications of pulsed laser technologies in material processing
and nondestructive detecting and characterization. When a solid is illuminated
with a laser pulse, absorption of the laser pulse results in a localized temperature
increase, which in turn causes thermal expansion and generates a thermoelastic
wave in the solid. In ultrashort-pulsed laser heating, two effects become impor-
tant. Due to the extremely short heating time, modifications to the Fourier heat
conduction theory are necessary in order to predict the temperature field cor-
rectly. One modification is to consider the non-Fourier effect, which accounts
for a thermal relaxation time in the energy carrier’s collision process. The other
modification is to employ the two-temperature (or two-step heat transfer) model
[18] to account for the fact that the photon energy is first absorbed by the elec-
tron gas in a metal and is then transferred to the lattice. Using this model, the
temperature of the electron gas was found to be much higher than that of the
lattice during the initial period of ultrafast-laser heating [19, 20].

Fractional calculus has been used successfully to modify many existing mod-
els of physical process. In the formulation of tautochrone problem, Abel applied
fractional calculus to solve the integral equation and that was the first appli-
cation of fractional derivatives. In the second half of the nineteenth century,
Caputo [21] and Caputo and Mainardi [22] have found an agreement be-
tween the experimental results with theoretical ones when using fractional deriva-
tives for the description of viscoelastic materials. Povstenko [23] has proposed
a quasi-static uncoupled theory of thermoelasticity based on the heat conduc-
tion equation with a time-fractional derivative of order α. In [24] Povstenko
has investigated the nonlocal generalizations of the Fourier law and heat con-
duction by using time and space fractional derivatives. Jiang and Xu [25] have
obtained a fractional heat conduction equation with a time fractional deriva-
tive in the general orthogonal curvilinear coordinate and in other orthogonal
coordinate system. Abouelregal and Zenkour [26] have presented the effect
of fractional thermoelasticity on a two-dimensional problem of a mode I crack
in a rotating fibre-reinforced thermoelastic medium. Abbas and Zenkour [27]
have presented the semi-analytical and numerical solutions of fractional order in
generalized thermoelastic in a semi-infinite medium.

The current manuscript is an attempt to study the induced temperature and
stress fields in an elastic half-space. The governing equations are written in the
context of two-temperature generalized and fractional order thermoelasticity the-
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ories. The half-space is considered to be made of an isotropic homogeneous ther-
moelastic material. The bounding plane surface is heated by a non-Gaussian laser
beam. An exact solution of the problem is first obtained in Laplace transform
space. The inversion of the Laplace transform will be computed numerically by
using a method based on Fourier’s expansion technique. The numerical estimates
of the conductive temperature, the thermodynamic temperature, the stress and
the strain distributions are obtained. The derived expressions are computed nu-
merically for copper and the results are presented in graphical form. The effects
of the fractional parameter, the two-temperature parameter, and the laser-pulse
and the laser intensity parameters are estimated. Some special cases are also
considered.

2. Governing equation of two-temperature with fractional order

During recent years, several interesting models have been developed by us-
ing fractional calculus to study the physical processes particularly in the area
of heat conduction, diffusion, viscoelasticity, mechanics of solids, control theory,
electricity, dielectrics and semiconductors through polymers to fractals, glasses,
porous, and random media, porous glasses, polymer chains and biological sys-
tems. It has been found that the use of fractional order derivatives and integrals
leads to the formulation of certain physical problems, which is more econom-
ical and useful than the classical approach. There exists many material and
physical situations like amorphous media, colloids, glassy and porous materials,
manmade and biological materials/polymers, transient loading etc., where the
classical thermoelasticity based on Fourier’s type heat conduction breaks down.
In such cases, one needs to use a generalized thermoelasticity theory based on an
anomalous heat conduction model involving time fractional (non-integer order)
derivatives.

The Riemann–Liouville fractional integral is introduced as a natural gener-
alization of the convolution type integral [23, 24, 28, 29]:

(2.1) Iαf(t) =

t∫

0

(t− τ)α−1

Γ (α)
f(τ)dτ , α > 0,

where f(t) is a Lebesgue integrable function, Γ (α) is the gamma function and t
is the time. In the case that f(t) is absolutely continuous, then

(2.2) lim
α→1

dα

dtα
f(t) = f ′(t).

The classical thermoelasticity is based on the principles of the classical theory
of heat conductivity, specifically on the classical Fourier law, which relates the



The fractional effects of a two-temperature generalized. . . 57

heat flux vector q to the temperature gradient as follows:

(2.3) q = −K∇T,

where K is the thermal conductivity of a solid, which together with the energy
equation yields the heat conduction equation or the parabolic heat conduction
equation and is diffusive with the notion of infinite speed of propagation of
thermal disturbances,

(2.4) ρCE
∂T

∂t
+ γ T0

∂

∂t
(∇.u) = −∇ · q +Q,

where ρ is the density, CE is the specific heat, T0 is the reference temperature,
u is the displacement vector, γ = (3λ+ 2µ)αt, λ and µ being Lamé’s constants,
αt being the coefficient of linear thermal expansion and Q is the intensity of heat
source.

Ezzat [30] has constructed a new model of the magneto-thermoelasticity
theory in the context of a new consideration of heat conduction equation by using
the Taylor series expansion of time fractional order, developed by Jumarie [31]
as

(2.5) q +
τα
0

α!

∂αq

∂tα
= −K∇T.

Now, in isotropic media, we assume a new generalized heat conduction equation
of the form

(2.6) q +
τα
0

α!

∂αq

∂tα
= −K∇ϕ,

where ϕ is the conductive temperature that satisfies the relation

(2.7) ϕ− T = bϕ,ii,

where b > 0 is the two-temperature parameter. Now, taking divergence of both
sides of Eq. (2.6), we get

(2.8) (∇ · q) +
τα
0

α!

∂α

∂tα
(∇ · q) = −K∇2ϕ.

Using Eq. (2.4), we obtain

(2.9) K∇2ϕ =

(
δ +

τα
0

α!

∂α

∂tα

) (
ρCE

∂T

∂t
+ γT0

∂

∂t
(∇ · u) −Q

)
,

where δ is an arbitrary parameter. The above equation may be considered as the
fractional ordered generalized heat conduction equation in isotropic, thermoelas-
tic solids in two temperatures. The key element that sets the two-temperature
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thermoelasticity theory apart from the classical theory is the material parame-
ter b. Specifically, in the limit as b → 0, ϕ → θ, and α → 1 the classical theory
(one-temperature generalized thermoelasticity theory 1TT) is recovered.

The equations of motion without body forces take the form

(2.10) (λ+ µ)ui,ij + µui,jj − γθ,i = ρüi,

where θ = T − T0 denotes the thermodynamical temperature. The constitutive
equation takes the form

(2.11) σij = 2µeij + λekkδij − γ(T − T0)δij,

where σij is the stress tensor and δij is the Kronecker delta function.
The following special cases can be obtained from the system of Eqs. (2.7)

and (2.9)–(2.11):
• The equations of a coupled theory of two-temperature thermoelasticity

(CTE): τ0 = 0 and δ = 1.
• The equations of a generalized theory of two-temperature thermoelasticity

(LS): α→ 1 and δ = 1.
• The equations of a generalized two-temperature thermoelasticity without

energy dissipation (GN): τ0 = 1, α→ 1 and δ = 0.
• The equations of one-temperature generalized thermoelasticity theories

with fractional order heat conduction (CTE, LS and GN): b → 0 and
ϕ→ θ.

• The equations of one-temperature generalized thermoelasticity theories
without fractional heat conduction (CTE, LS and GN): b → 0, ϕ → θ
and α→ 1.

3. Statement of the problem

Now, let us consider a homogeneous thermoelastic conducting isotropic solid
occupying a half-space x ≥ 0. This half-space is irradiating uniformly the bound-
ing plane (x = 0) by a laser pulse with non-Gaussian temporal profile. The sys-
tem is initially quiescent where all the state functions are depending only on the
variable x and the time t.

The displacement components for one-dimensional medium have the forms
ux = u(x, t) and uy = uz = 0. The relation between the strain and displacement
can be expressed as e = exx = ∂u/∂x.

The fractional heat conduction equation [10] is given by

(3.1) K
∂2ϕ

∂x2
=

(
δ +

τα
0

α!

∂α

∂tα

) (
ρCE

∂T

∂t
+ γT0

∂e

∂t
−Q

)
.
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The constitutive equation will be

(3.2) σxx = σ = (λ+ 2µ)e− γθ.

The equation of motion takes the form

(3.3) (λ+ 2µ)
∂2u

∂x2
− γ

∂θ

∂x
= ρüi,

or may be written in the form

(3.4)
∂2σ

∂x2
= ρ

∂2e

∂t2
.

The relation between the heat conduction and the thermodynamic heat takes
the form

(3.5) ϕ− θ = b
∂2ϕ

∂x2
.

Next, we introduce the following non-dimensional parameters:

(3.6)

x′ = c1ηx, u′ = c1ηu, τ ′0 = c21ητ0, t′ = c21ηt,

θ′ =
γθ

ρc21
, ϕ′ =

γϕ

ρc21
, σ′ =

σ

ρc21
, Q′ =

Q

Kc21η
2T0

,

where c1 =
√

(λ+ 2µ)/ρ is the longitudinal wave speed and η = ρCE/K is the
thermal viscosity. Then, Eqs. (3.1)–(3.5) can be transformed into the dimension-
less forms:

∂2ϕ

∂x2
=

(
δ +

τα
0

α!

∂α

∂tα

) (
∂θ

∂t
+ ε

∂e

∂t
−Q

)
,(3.7)

∂2e

∂x2
− ∂2θ

∂x2
=
∂2e

∂t2
,(3.8)

ϕ− θ = β
∂2ϕ

∂x2
,(3.9)

where ε = γ2T0/ρ
2CEc

2
1 and β = bc21η

2. Now, let the medium is heated uniformly
by a laser pulse with non-Gaussian form temporal profile [18] as

(3.10) I(t) =
L0t

t2p
e−t/tp ,

where tp is a characteristic time (measured by picoseconds) of the laser-pulse
(the time duration of a laser pulse), L0 is the laser intensity which is defined
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as the total energy carried by a laser pulse per unit area of the laser beam.
The conduction heat transfer in the medium can be modeled as one-dimensional
problem with an energy source Q(x, t) near the surface, i.e.,

(3.11) Q(x, t) =
1 −R

δ1
e(x−h/2)/δ1I(t) =

RaL0

δ1t2p
te(x−h/2)/δ1−t/tp ,

where δ1 is the absorption depth of heating energy and Ra is the surface re-
flectivity [18]. Note that the laser pulse may lie on the surface of the medium
(x = 0). In this case, the energy source takes the form

(3.12) Q(t) =
RaL0

δ1t2p
teh/(2δ1)−t/tp .

4. Initial and boundary conditions

The problem is solved under proper initial and boundary conditions. The
metal film is initially unstrained, unstressed and at ambient temperature T0

throughout. That is, the initial conditions are:

(4.1)

θ(x, t) = ϕ(x, t) = u(x, t) = 0 at t = 0,

∂θ(x, t)

∂t
=
∂ϕ(x, t)

∂t
=
∂u(x, t)

∂t
= 0 at t = 0.

The thermal and mechanical boundary conditions on the bounding plane
x = 0 of the assumed half-space are given as follows:

• Thermal boundary condition: ϕ(0, t) = 0.
• Mechanical boundary condition: σ(0, t) = 0.

5. Exact solution in the Laplace transform domain

Applying Laplace transform with respect to variable t for Eqs. (3.7)–(3.9)
and (2.11) defined by the formula

(5.1) f̄(s) =

∞∫

0

f(t)e−stdt.

Hence, one can get the system of differential equations in the transformed domain
as follows:

d2ϕ̄

dx2
= α1(θ̄ + ε ē) − Ḡ(s),(5.2)

(
d2

dx2
− s2

)
ē =

d2θ̄

dx2
,(5.3)
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θ̄ = ϕ̄− β
d2ϕ̄

dx2
,(5.4)

σ̄ = ē− θ̄,(5.5)

where

(5.6) Ḡ(s) =
γRaL0α1

Kc1δ1(1 + st2p)
2
e−h/(2δ1), α1 = δ +

τα
0 s

α

α!
.

Eliminating θ̄ and ē from these equations, one obtains

(5.7)

(
d4

dx4
−A

d2

dx2
+B

)
ϕ̄ = −F (s),

where

(5.8)

A =
s2(1 + α1β) + α1(1 + ε)

1 + α1β(1 + ε)
, B =

s2α1

1 + α1β(1 + ε)
,

F (s) =
s2Ḡ(s)

1 + α1β(1 + ε)
.

The solution of Eq. (5.7) takes the following form:

(5.9) ϕ̄ = −F (s)

B
+A1e

−m1x +A2e
−m2x,

where A1 and A2 are parameters of s. In a similar manner, one obtains

(5.10)

(
d4

dx4
−A

d2

dx2
+B

)
ē = 0,

thus,

(5.11) ē = B1e
−m1x +B2e

−m2x,

where B1 and B2 are additional parameters of s. Substituting Eqs. (5.9) and
(5.11) into Eqs. (5.4) and (5.5), one obtains

θ̄ = −F (s)

B
+ (1 − βm2

1)A1e
−m1x + (1 − βm2

2)A2e
−m2x,(5.12)

σ̄ = [B1 − (1 − βm2
1)A1]e

−m1x + [B2 − (1 − βm2
2)A2]e

−m2x +
F (s)

B
.(5.13)

Substituting Eqs. (5.11) and (5.12) into Eq. (5.3), one can get

(5.14) Bi =
m2

i (1 − βm2
i )

m2
i − s2

Ai = ΩiAi, i = 1, 2.
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In addition, the thermal and mechanical boundary conditions in the Laplace
domain ϕ̄(0, s) = 0 and σ̄(0, s) = 0 with the aid of Eqs. (5.9) and (5.13), give

(5.15) A1 = − F (s)(Ω2 + βm2
2)

B[Ω1 −Ω2 + β(m2
1 −m2

2)]
, A2 =

F (s)(Ω1 + βm2
1)

B[Ω1 −Ω2 + β(m2
1 −m2

2)]
.

So, one can write the solutions in their final forms as

ū =
F (s)[m2Ω1(Ω2+βm

2
2)e

−m1x−m1Ω2(Ω1+βm
2
1)e

−m2x]

Bm1m2[Ω1−Ω2+β(m2
1−m2

2)]
,(5.16)

θ̄ = −F (s)

B
(5.17)

×
[
1+

(1−β m2
1)(Ω2+βm

2
2)e

−m1x−(1−β m2
2)(Ω1+βm

2
1)e

−m2x

Ω1−Ω2+β(m2
1−m2

2)

]
,

ϕ̄ = −F (s)

B

[
1+

(Ω2+βm
2
2)e

−m1x−(Ω1+βm
2
1)e

−m2x

Ω1−Ω2+β(m2
1−m2

2)

]
,(5.18)

σ̄ =
F (s)

B
(5.19)

×
[
1− (Ω1−1+βm2

1)(Ω2+βm
2
2)e

−m1x−(Ω2−1+β m2
2)(Ω1+βm

2
1)e

−m2x

Ω1−Ω2+β(m2
1−m2

2)

]
,

ē = −F (s)[Ω1(Ω2+βm
2
2)e

−m1x−Ω2(Ω1+βm
2
1)e

−m2x]

B[Ω1−Ω2+β(m2
1−m2

2)]
.(5.20)

This completes the solution in the Laplace transform domain.

6. Numerical inversion of the Laplace transform

Laplace transform method is efficient for solving partial differential equa-
tions. The present research utilizes Laplace transform to suppress the depen-
dence on time concerning the transient response of beam under harmonic heat
with constant angular frequency. In the transformation domain, the boundary
value problems are solved. To invert the solutions to the physical domain, the
inversion of Laplace transform must be made. However, the expressions of the
solutions are usually complicated and cannot be inverted analytically. As an al-
ternative, the numerical inversion is applied. Presently, over 20 methods have
been developed for the inversion.

In order to determine the conductive and thermal temperature as well as
displacement and stress distributions in the time domain, we adopt a numerical
inversion method based on a Fourier series expansion [32]. In this method, the
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inverse f(t) of the Laplace transform f̄(s) is approximated by the relation

(6.1) f(t) =
eζt

t1

(
1

2
f̄(ζ) + Re

{ N∑

k=0

f̄

(
ζ +

ikπt/t1
t1

)
eikπt/t1

})
, 0 ≤ t ≤ t1,

where Re is the real part and i is imaginary number unit and N is a sufficiently
large integer representing the number of terms in the truncated infinite Fourier
series. It must be chosen such that

(6.2) eζteiNπt/t1Re

{
f̄

(
ζ +

iNπ

t1

)}
≤ ε1,

where ε1 is a persecuted small positive number that corresponds to the degree of
accuracy to be achieved. The parameter ζ is a positive free parameter that must
be greater than the real parts of all singularities of f̄(s). The optimal choice of ζ
was obtained according to the criteria described in [32].

7. Numerical results and discussion

To study the effect of the two-temperature parameter, laser-pulse and the
laser intensity coefficients and fractional parameters on wave propagation, the
following physical constants for copper material are used:

K = 368N/Ks, αt = 1.78 × 10−5 K−1, CE = 383.1m2/K, ρ = 8954 kg/m3,

λ = 7.76 × 1010 N/m2, µ = 3.86 × 1010 N/m2, T0 = 293 K.

The computations were carried out for wide range of x (0 ≤ x ≤ 1) at small
value of time t = 0.15 s. The physical quantities are plotted in Figs. 1–15. For
all numerical calculations one takes δ1 = 0.01, τ0 = 0.02, Ra = 0.5 and h = 0.1.
The field quantities such as the conductive temperature, the dynamical temper-
ature, the stress, the strain, and the displacement distributions depend not only
on the time t and space coordinate x, but also on the two-temperature param-
eter β, the time of the laser-pulse tp, the laser intensity L0, and the fractional
order parameter α. The laser intensity L0 is assumed to be of the form L0 =
c× 1011 J/m2 where c is the laser intensity parameter. Numerical calculation is
carried out for three cases.

In the first case, Figs. 1–5 plot the displacement u, the thermo-dynamical
temperature θ, the conductive temperature ϕ, the stress σ and the strain e
distributions with different values of the two-temperature parameter β to stand
on the effect of this parameter on all of the studied fields. The value of β = 0.0
indicates the old situation (one-temperature theory) while β = 0.2 or 0.4 indicate
the two-temperature theory. In this case one takes α = 0.5, c = 1, and tp = 2.
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Fig. 1. Dependence of displacement u on the two temperature parameter β.

From Fig. 1, it can be observed that the medium adjacent to the half-space
surface x = 0 undergoes expansion deformation because of thermal shock while
the others compressive deformation. The deformation is a dynamic process. With
the passage of time, the expansion region moves inside gradually and becomes
larger and larger. Thus, the displacement distribution becomes larger and larger.
At a given instant, the non-zero region of displacement is finite, which is due to
the wave effect of heat. This indicates that heat transfers deep into the medium
with a finite velocity with the time passing. We can see also that the displacement
decreases when the value of two-temperature parameter β increases.

Figure 2 indicates variation of temperature versus distance x. It can be found
that the temperature has a non-zero value only in a bounded region of space at
a given instant. Outside this region the value vanishes and this means that the
region has not undergone thermal disturbance yet. At different instants, the
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Fig. 2. Dependence of thermodynamical temperature θ on the two temperature parameter β.
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non-zero region moves forward correspondingly with the passage of time. This
indicates that heat propagates as a wave with finite velocity in medium. This is
completely different from the case for the classical theories of thermoelasticity
where an infinite speed of propagation is inherent and hence all the considered
functions have a non-zero (although may be very small) value for any point in the
medium. Also these figures indicate that thermodynamic temperature increases
when the value of two-temperature parameter β increases.
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Fig. 3. Dependence of conductive temperature ϕ on the two temperature parameter β.

From Fig. 3, we notice that the conductive temperature ϕ gradually increases
with distance x for fixed time. It also can be found that the conductive heat
decreases when the value of β increases.

In Fig. 4, the thermal stress with distance x for various values of the two-
temperature parameter β is shown. The medium close to the surface x = 0
suffers from tensile stress. This is corresponding to the expansion deformation of
the medium shown in Fig. 1. It can also be noticed that the tensile stress region
becomes larger while the compressed becomes smaller with the time passing,
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which is corresponding to the dynamic expansion effect described above. It can
also be found in Fig. 4 that, at some instant, the non-zero region of stress is
finite, which indirectly proves the wave effect of heat.
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Fig. 5. Dependence of the strain e on the two temperature parameter β.

Figure 5 depicts the distributions of the strain e versus x at the boundary
for different values of two-temperature parameter β. Also we can see that the
strain decreases monotonically with x. Figure 5 shows that the values of strain
e for β = 0.4 are large compared with those for β = 0.2.

We can also mark the difference between the one-temperature generalized
thermoelasticity of Lord and Shulman (β = 0.0) and the two-temperature
generalized thermoelasticity (β = 0.2 or 0.4). The figures show that this pa-
rameter has significant effect on all the fields. The waves reach the steady state
depending on the value of the temperature discrepancy β. Also these figures in-
dicate that the two-temperature generalized theory of thermoelasticity describes
the behavior of the particles of an elastic body more realistically than the one-
temperature theory of generalized thermoelasticity.

In the second case, Figs. 6–10 plot the displacement u, the thermo-dynamical
temperature θ, the conductive temperature ϕ, the stress σ and the strain e dis-
tributions with the characteristic time of the laser-pulse tp and the laser intensity
parameter c to stand on the effect of these parameters on all studied fields. In
this case the temperature discrepancy parameter β remains constant (β = 0.4)
and the fractional parameter α = 0.5. It is found that the parameters tp and c
have significant effects on all fields. The figures show that the laser pulse makes
the difference between the results in the context of the theory of two-temperature
generalized thermoelasticity. The conductive heat and the thermodynamic heat
increase when the value of tp increases while the values of the displacement and
stress decrease.
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Fig. 10. Dependence of the strain e on the time of the laser-pulse and the laser intensity.

In the third case, Figs. 11–15 plot the displacement u, the thermo-dynamical
temperature θ, the conductive temperature ϕ, the stress σ and the strain e
distributions at different fractional parameter α to stand on the effect of this
parameter on all the studied fields. It is found that this parameter has a signif-
icant effects on constancy of β = 0.4, c = 1 and tp = 2. It is observed that the
nature of variations of all field variables for fractional order parameter is signif-
icantly different. The different values of the parameter α describe two types of
conductivity (weak conductivity, 0 < α < 1 and normal conductivity, α = 1),
respectively. The difference is more prominent for higher values of fractional
order α. The following important facts are also observed:

• The displacement distribution shows a large change in comparison to frac-
tional parameter α.
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• The temperature and stress distributions show large differences for different
values of α.

• Figure 13 indicates that the conductive temperature has a maximum value
at boundary. It starts with zero value to satisfy the boundary conditions.

• In Fig. 14, the stress at x = 0 is zero as shown, which agrees with the for-
mulated boundary condition. This coincides with the mechanical boundary
condition that the medium surface is traction-free.

8. Concluding remarks

In this work, a new mathematical model of generalized thermoelasticity the-
ory has been studied in the context of a new consideration of heat conduction
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with fractional order theory. This model is based on the heat conduction equa-
tion with the Caputo fractional derivative of order α. The solution is obtained by
applying the Laplace integral transform. The numerical results for temperature,
displacement and stresses are computed and illustrated graphically. The results
are graphically described for the medium of copper.

The analysis of the results can be summarized as follows:
• The dependence of the fractional parameter has a significant effect on the

thermal and mechanical interactions, and plays a significant role in all the
physical quantities.

• At any point, the distributions of temperature, conductive temperature
and strain fields in the medium are increased with an increase in α but the
effect of fractional parameters is to decrease the values of the displacement
and stress with a wide range (0 < α ≤ 1).

• It is clear from Figs. 1–5 that different two-temperature parameters play
a significant role in all the physical quantities.

• All the physical quantities satisfy the boundary conditions and initial con-
ditions.

• It is also observed that the theories of coupled thermoelasticity and gener-
alized thermoelasticity with one-relaxation time can be obtained as limited
cases.

• The phenomenon of finite speeds of propagation is manifested in all these
figures.

• As a final remark, the results presented in this paper should prove useful for
researchers in material science, designers of new materials, low-temperature
physicists as well as for those working on the development of a theory of
hyperbolic thermoelasticity with fractional order.

• According to these results, we have to construct a new classification to all
materials according to their fractional parameter. This parameter becomes
new indicator of their ability to conduct the thermal energy.
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