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1. Introduction

It is frequently that only lower order formulae can be obtained analytically
for the effective conductivity problem. On the other hand, they cannot be ana-
lytically solved in general case because of the complicated random geometrical
structure of the composite. Therefore, hard numerical computations are applied.
Of course, advanced computational approaches can be useful for practical pur-
poses important for mechanical engineering. But an exact or an accurate approx-
imate formula has its own merits, adding substantially to the problem’s general
understanding. In particular, some sophisticated expressions/approximants can
capture an asymptotic behavior near singular points when numerical methods
usually fail.

In the present paper, we deduce such a formula for a 2D, two-component
composite made from a collection of non-overlapping, identical, ideally conduct-
ing circular disks, embedded randomly in an otherwise uniform locally isotropic
host (see Fig. 1). The effective conductivity problem for an insulating or ideally
conducting inclusions is called the conductivity and superconductivity problem,
respectively [1]. The problem and its approximate solution go back to Maxwell,
see e.g. [2].

There are two important unresolved problems in the theory of random com-
posites:
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Fig. 1. Randomly distributed disks.

1. what quantity should stand for the maximum volume fraction xc of random
composites [3], and

2. theoretical explanation of the values of critical indices for conductivity and
superconductivity denoted by t and s, respectively [1].

Recently, a novel technique for deriving expansions in concentration was sug-
gested [4]. It combines analytic and numeric methods for solving the conductivity
problem directly in the 2D case. It is applicable both for regular [5] and random
cases. Thus, we proceed to the case of a 2D random composite, where the series
in concentration for the effective conductivity by itself, will be presented and
analyzed systematically, following generally to [4, 5]. The series will be used to
estimate the index and the threshold in 2D random case.

The problem of defining the threshold is highly non-trivial, since the random
closest packing of hard spheres turned out to be ill-defined, and cannot stand for
the maximum volume fraction. It depends on the protocol employed to produce
the random packing as well as other system characteristics [3].

The problem seems less acute in two dimensions, where various protocols
seems to agree on what quantity should stand for the maximum volume fraction
of random composites [6, 7, 8, 4, 9]. Namely it is the concentration of π√

12
≈

0.9069, attained only for the regular hexagonal array of disks. The sought value
for a long time was thought to be close to 0.82, and considered as random close
packing value [10]. It was recognized recently, that it does not correspond to the
maximally random jammed state [3]. For volume fractions above 0.82 some local
order is present and irregular packing is polycrystalline, forming rather large
triangular coordination domains-grains. In present paper, a protocol leading to
xc = π√

12
is used, although our method can be applied with another protocol

with unknown xc.
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All attempts to explain the value of critical indices through geometrical quan-
tities of percolation problem, i.e. universally [1, 11], had failed so far and the
indices are considered independent. From the phase interchange theorem [12]
it follows that in two-dimensions, the superconductivity index is equal to the
conductivity index [1, 13, 14].

While it is clear that using expansions in concentration for the conductiv-
ity, one should be able to address the two problems, in practice there are no
more than two terms available for random systems [11], because of the serious
technical difficulties. No method even such powerful as renormalization, or re-
summation approaches can draw reliable conclusions systemically, based on such
short series [11]. “In fact, the age-old method of series expansions is also blocked
by the same difficulties . . . ” [11].

This concerns also the whole family of self consistent methods (SCMs) which
include Maxwell’s approach, effective medium approximations, differential
schemes etc. SCMs are valid only for a dilute composites when interactions be-
tween inclusions do not matter [2]. The idea to correct a self consistent method
(SCM) result t = s = 1 (in all dimensions) using the series in concentration
remained, therefore, practically unattainable (see nevertheless, [15]).

We should also mention an indirect approach to estimating t for resistor
networks from resistive susceptibility via scaling relations [16]. This approach
also is based on a resummation techniques.

2. Series for conductivity, random 2D

In order to correctly define the effective conductivity tensor σ of random com-
posites, the probabilistic distribution of disks of radius r must be introduced,
since already the second order term of σ in concentration depends on the distri-
bution [2]. For macroscopically isotropic composites, the third order term begins
to depend on the distribution [1, 2]. In the present paper, we consider a uni-
form non-overlapping distribution when a set of independent and identically dis-
tributed (i.i.d.) points ai are located in the plane in such a way that |ai−aj| ≥ 2r.

For r = 0 we return to the Poisson distribution and for the maximally possi-
ble concentration xc = π√

12
, the distribution degenerates to the unique location,

the hexagonal array. The tensor σ is expressed through the scalar effective con-
ductivity σ as follows σ = σI, where I is the unit tensor.

In the present paper, the numerical computations are performed only for the
hexagonal representative cell. This assumption does not restrict our investigation
since the number of inclusions per cell can be taken arbitrary large, hence, the
shape of the cell does not impact on the final result.

Consider sufficiently large number of non-overlapping circular disks of radius
r with the centers ak. The formal definition of the random variable has to be
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statistically realized to get numerical results. The protocol for the data gener-
ation is based on the Monte Carlo simulations [4] and can be shortly described
as follows. At the beginning, the centers ak are located at the nodes of the reg-
ular hexagonal lattice and further randomly moved without overlapping. After
sufficiently long random walks the centers form a statistical event satisfying the
considered distribution. Using these locations of disks we compute coefficients of
σ in x many times and take the average. Detailed description of the computa-
tional method and all relevant parameters for simulations can be found in [4, 9].

Consider a set of centers ak = (ak1, ak2) ∈ R
2 expressed by complex numbers

ak = ak1 + iak2 ∈ C (k = 1, 2, . . . , N) in the single representative cell Q(0,0)

(see Fig. 1). The cell Q(0,0) is taken as the rhombus of the unit square with an
angle 600. A rigorous theory of the representative volume elements is described
in [17]. In accordance with simulations performed in [4, 9] the uniform non-
overlapping distribution of disks can be realized by the cell Q(0,0) containing
64–100 disks. Moreover, the effective conductivity of 1500 configurations (events)
have to be averaged to get results practically not depending on the shape of the
cell. Let q be a natural number; k0, k1, . . . , kq run over 1 to N , mj ≥ 2. Let C

be the operator of complex conjugation. The sum over all ks

(2.1) em1...mq :=
1

N1+
m1+···+mq

2

×
∑

k0k1...kq

Em1(ak0 − ak1)Em2(ak1 − ak2) · · ·Cq+1Emq(akq−1 − akq)

is called the basic sum of the multi-order m = (m1, . . . ,mq).
The effective conductivity tensor of 2D composites with non-overlapping

identical disks can be expanded in the concentration [4]

(2.2) σ(x) = 1 + 2ρx(1 +A1x+A2x
2 + . . .),

where

A1 =
1

π
e2, A2 =

1

π2
e22, A3 =

1

π3

[
−22e33 + e222

]
,

A4 =
1

π4
[3e44 − 2(e332 + e233) + e2222] ,

A5 =
1

π5
[−4e55 + (3e442 + 6e343 + 3e244)

− 2(e3322 + e2332 + e2233) + e22222] ,(2.3)

A6 =
1

π6
[5e66 − 4(e255 + 3e354 + 3e453 + e552)

+ (3e2244 + 6e2343 + 4e3333 + 3e2442 + 6e3432 + 3e4422)

− 2(e22233 + e22332 + e23322 + e33222) + e222222)] .

The higher order coefficients An can also be written in a closed form.
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In the general case of a two-phase composite the so-called contrast parame-
ter ρ [4] should be included into consideration explicitly. We are interested here
in the case of a high contrast regular composites, when the conductivity of the
inclusions is much larger than the conductivity of the host. I.e., the highly con-
ducting inclusions are replaced by the ideally conducting inclusions with infinite
conductivity. In this case the contrast parameter is equal to unity and remains
implicit. The conductivity of the matrix is normalized by unity as well. The
case of a high contrast is considered to be the most difficult for the expansion
techniques [1], to the point of becoming meaningless for ρ = 1 [4].

Note, that in regular case the coefficients of the power series expansion of σ(x)
are expressed through elliptic functions by exact formulae and are exact [18, 19].
Using the same formulae as in the regular case but for the random structure
of the composite, yields an approximate power-series. Below, this expansion is
presented in the truncated numerical form following [4, 9]

(2.4) σ(x) = 1 + 2x+ 2x2 + 5.00392x3 + 6.3495x4 +O(x9).

The higher order terms, or remainder ∆(x) in (2.4), can be specified as well

∆(x) = 0.0000186711x9 + 9.57157 × 10−10x10 + 0.0570669x14(2.5)

+ 27.2148x15 + 7.06377x16 + 1.63666 × 10−6x17.

It has highly irregular form and does not contribute to the critical properties or
general expressions for the conductivity discussed in the paper. The coefficients
on xk (k = 5, 6, 7, 8) vanish in (2.4) with the precision 10−10. Since we are dealing
with the limiting case of a perfectly conducting inclusions when the conductivity
of inclusions tends to infinity, the effective conductivity is also expected to tend
to infinity as a power-law, as the concentration x tends to the maximal value xc

for the hexagonal array,

(2.6) σ(x) ≃ A(xc − x)−s.

The critical superconductivity index (exponent) s believed to be close to 4
3 ≈ 1.3

[1, 20]. This value is known from numerical simulations, while rigorously it can
be anywhere between one and two [21]. The critical amplitude A is an unknown
non-universal parameter.

For regular arrays of cylinders the index is much smaller, s = 1
2 [22, 23] and

the critical amplitude is also known with good precision. The critical behavior
of regular composites is practically never mentioned together with other criti-
cal phenomena [24]. It is remarkable that a relatively “simple” Laplace equation
for the potential, when complemented with a non-trivial boundary conditions in
the regular domain of inclusions, behaves critically even without explicit non-
linearity or randomness, typical to the phase transitions and percolation phe-
nomena [24].
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Overall effective conductivity of random systems is expected to be higher by
order(s) of magnitude as the threshold is approached [25]. By punching holes in
a sheet of metal, it was determined that t = s = 1.2 ± 0.1 [26].

Expression (2.4) is different from the regular case of superconducting inclu-
sions forming a hexagonal lattice with the same value of threshold xc [23, 1].

Also there is no explicit expression presented in [23], which can be compared
directly to (2.4), one can use as a proxy their cumulative expression (2.7), written
below for the particular case of the superconducting disks,

(2.7) σ = 1 − 2x
0.075422x6

1−1.06028x12 + x− 1
.

The expansion of (2.7) is characterized by rather regular behavior of the coeffi-
cients,

σreg(x) = 1 + 2x+ 2x2 + 2x3 + 2x4 + 2x5 + 2x6(2.8)

+ 2.15084x7 + 2.30169x8 +O(x9).

Comparing (2.4) and (2.8) one can see how and where the random effects cap-
tured by our procedure contribute most.

Randomness does seem to make the third and fourth order coefficients in the
series much larger, signifying a stronger coupling between the inclusions already
at small concentrations. The starting two (non-trivial) terms are common for the
series (2.4) and (2.8). They are exact and typical for all effective medium type
approximations [36]. One can also anticipate that some different methods will
have to be suggested for the random composite, compared with regular case [5].

The problem of interest can be formulated mathematically as follows. Given
the polynomial approximation (2.4) of the function σ(x), to estimate the con-
vergence radius xc of the Taylor series of σ(x), and to determine parameters
of the asymptotically equivalent approximation(2.6) near x = xc. When such
extrapolation problem is solved, one can derive the formula for all concentra-
tions., i.e, solve an interpolation problem. Alternatively in the latter problem,
one may assume that the critical behavior is known in advance and proceed with
interpolation from the start.

3. Critical point

3.1. Padé approximants

Probably the simplest (technically) way to estimate the position of a critical
point, is to apply the Padé approximants Pn,m(x), which is nothing else but a ra-
tio of the two polynomials Pn(x) and Pm(x) of the order n and m, respectively.
The coefficients are derived directly from the coefficients of the given power series
[27, 28] from the requirement of asymptotic equivalence.
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Padé approximants are the best locally, rational approximations of power
series. Their poles determine singular points of the approximated functions [28].
Calculations with Padé approximants are particularly straightforward and can
be performed with Mathematica

R©
. Their application does not require any pre-

liminary knowledge of the critical index and identifies the critical point with the
position of a simple pole.

But in the case of series (2.4), the direct application of Padé approximants
leads to a poorly convergent results in the diagonal sequence Pn,n, with the
best estimate for the threshold 0.85269, obtained form the approximant P3,3.
The results do not improve significantly if other sequences are considered. We
attribute the problem to the relative shortage of the coefficients in (2.4), and to
the triviality of the lower-order terms.

In order to compensate for the unchanging values of the coefficients in the
starting orders, we considered also transformed in a various ways sequences of
approximants Pn,n. The most significant improvement is achieved when we mul-
tiply the original series (2.4) by the Clausius-Mossotti function p(x) = 1+x

1−x ,
applying then a diagonal Padé approximants. There is now a better estimate
for the critical point, x4 = 0.914241. The percentage error obtained from the
approximant P4,4, equals to 0.8095%. Note, that in order to obtain higher-order
approximants, the Padé technique will routinely use trivial, zero values for the
missing higher-order coefficients in the expansion (2.4). Only a minimal number
of such trivial conditions allowing for a reasonable estimates are utilized. The
same will apply to calculations with different approximants below.

The estimates does not improve if different types of approximants, other
than Padé, are applied. We conclude that some special efforts are in order to
reconstruct the threshold from the series (2.4) more accurately.

3.2. Corrected threshold

Assuming that xc is known approximately from the Padé-estimates above,
let us estimate an improved, or corrected value of threshold, employing general
idea of corrected approximants [29].

The technique of corrected approximants allows to treat different groups
of coefficients in expansion differently and separately if needed. The solution
can be patched together from several different sequences of approximants, not
necessarily of the same type. Such approach is potentially more flexible and
powerful then “classical” technique employing just one type of approximants.
This program will be realized below both for the threshold and critical index.

For the series (2.4), it seems natural to treat the two starting terms sepa-
rately and the rest of the series consider as a correction. Assume also that the
initial threshold value is available from previous Padé-estimates, and is equal to
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x4 = 0.914241. Of course, formulation of the initial approximation is a crucial
step. Note that using the value of 0.85269} as initial guess will lead to the wrong
results.

We will attempt now to correct the value of x4. Also, the value of the critical
index s = 4/3 will be incorporated into the initial approximation. Let us observe
that the factorized approximations to the effective conductivity σ can be always
represented as a product of two factors: critical part C(x) = (1 − x

xc
)−s and of

the rest, i.e. regular part R(x). As shown by Fuchs, such factorization also holds
for non-analytic solutions to the homogeneous linear differential equations [30].
So one can most generally express the threshold

(3.1) xc =
xC1/s(x)

C1/s(x) − 1
.

The subsequent steps are described below for the particular case, but without
any loss of generality.. At first, we should obtain the solution explicitly as a factor
approximant [31, 32]. The simplest factor approximant

(3.2) σ =
(2.94539x+ 1)0.183879

(1 − 1.0938x)4/3
.

Such approximant satisfy the two non-trivial starting terms from the series (2.4),
and incorporates the accepted value of 4/3 for the critical index and the trial
value of threshold x4. Let us look for another solution, supposedly in the same
form, but with an exact, yet unknown threshold xc,

(3.3) σ′ = (2.94539x + 1)0.183879

(
1 − x

xc

)−4/3

.

Such solution retains the regular part R(x) = (2.94539x + 1)0.183879 from the
factor approximant (3.2). One can express the new threshold formally,

(3.4) xc =
x
(

σ′

R(x)

)−1/s

(
σ′

R(x)

)−1/s − 1
,

since σ′(x) is also unknown. To make it practical we are obliged to use for σ′

a concrete expression, namely the series (2.4), so that instead of a true threshold
which is a number, we have an effective threshold Xc(x), given as an expansion
around an approximate threshold x0 = x4,

Xc(x) = 0.914241 − 0.954606x2 + 0.213995x3 + · · ·(3.5)

which should become a number corresponding to the true threshold xc,
as x → xc. Moreover, let us apply re-summation procedure to the expansion
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(3.5) using again factor approximants F ∗(x), and define the sought approximate
threshold X∗

c self-consistently,

(3.6) X∗
c = x0 − 0.954606x3F ∗(X∗

c ).

As we approach the threshold, the RHS of (3.6) should become the threshold.
Since factor approximants are defined as F ∗

k for arbitrary number of terms k, we
will also have a sequence of X∗

c,k. Reasonably solution arises in the six order,

F ∗
6 (x) = (4.75828x+1)0.601565(1−(0.548713−0.738153i)x)−2.31965+3.81508i(3.7)

×(1−(0.548713+0.738153i)x)−2.31965−3.81508i.

Expression (3.7) matches (3.5) up to the 8-order terms included. Solving (3.6),
we obtain X∗

c,6 = 0.910181. In the next even order there is no improvement
for Xc,8.

The percentage error of such estimate is 0.361822%. We indeed managed
to extract a significant part of the threshold value at the first step, producing
reasonable estimate x0 and then, corrected it a bit using higher orders terms
from the series. Mind that the threshold is a purely geometrical quantity, not
very sensitive therefore to the value of critical index employed in the calculations.

The technique of corrected threshold can be successfully applied in the case of
a regular composite [5], with different way to define the initial approximation to
be corrected. It was also tested with good results for the high-temperature series
for the 2D Ising model [33]. In those cases the corresponding series coefficients
behave (increase) regularly and standard methods also work well.

4. Critical index s

Conventionally, one would first apply the following transformation,

(4.1) z =
x

xc − x
⇔ x =

zxc

z + 1

to the original series, to make calculations with different approximants more
convenient. The transformation maps the segment to a half-line.

4.1. Direct application of factor approximants

The most straightforward way to estimate index s is to apply factor ap-
proximants [31, 32] (in terms of the variable z), so that possible corrections
to the “mean-field” value unity, appear additively, by definition. Following the
standard procedure, the simplest factor approximant is written as follows, σ∗3 =
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1 + b1z (b2z + 1)c2 , where c2 = −0.01357, b1 = 1.8138, b2 = 26.6303, and the
critical index is simply 1 + c2 = 0.996504.

In the next order the value of critical index improves significantly,

(4.2) σ∗5 = 1 +
b1x

(
b3x

xc−x + 1
)
c3

(
b2x

xc−x + 1
)
c2

xc − x
,

where b1 = 1.8138, b2 = 1.33199 + 2.39138i, b3 = 1.33199 − 2.39138i, c2 =
0.148893 + 0.102399i, c3 = 0.148893 − 0.102399i. The critical index is equal to
1 + c2 + c3 = 1.297786. Such estimate and corresponding expression (4.2) are
already good. To confirm them we resort to different methods applied below.

4.2. D-Log Padé

Let us see the results of a standard approach to the critical index calcula-
tion [27]. To this end let us again express the original series in terms of z, and to
such transformed series M1(z) apply the D − Log transformation [27, 34] (dif-
ferentiate Log of M1(z) ), and call the transformed series M(z). Applying the
Padé approximants Pn,n+1(z) to M(z). one can readily obtain the sequence of
approximations sn for the critical index s,

(4.3) sn = lim
z→∞

(zPn,n+1(z)).

In the case of (2.4), this method turns to be quite accurate. Namely, the best
(and only) result is s2 = 1.28522. Explicitly we obtain

(4.4) P2,3(z) =
15.7323z2 + 3.89669z + 1.8137993642342

12.241z3 + 9.442z2 + 4.14836z + 1
.

The effective conductivity can be reconstructed [35], from an effective critical
index (or β-function) approximated in our case by the approximant P2,3(z),

(4.5) σ∗(x) = exp

(
x

xc−x∫

0

P2,3(z) dz

)
.

Calculating the integral we obtain

(4.6) σ∗(x) = e1.25174−0.436689 tan−1( 2.05578x+0.389134
0.9069−x

)

×
(

0.574015x + 0.386326

0.9069 − x

)1.08699(x2 − 0.0409192x + 0.186347

(0.9069 − x)2

)0.0991144

.

Also, the critical amplitude evaluates as 1.57888. Eq. (4.6) will be compared
below with other formula for the effective conductivity valid everywhere.
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4.3. Corrected mean-field approximation

Let us look for the solution in the form of a simple pole, also satisfying the
two starting non-trivial terms from the series (2.4),

(4.7) f∗0 (x) =
(1.35495x+ 1)0.662269

1 − 1.10266x
,

so that our zero approximation with s(0) = 1 for the critical index, is typical for
various SCMs.

Let us divide then the original series (2.4) by f∗0 , express the newly found
series in term of variable z, then apply D − Log transformation and call the
transformed series K(z). Applying now the Padé approximants Pn,n+1(z), one
can obtain the following sequence of corrected SCM approximations for the crit-
ical index,

(4.8) sn = s(0) + lim
z→∞

(zPn,n+1(z)).

The “corrected” values for the critical index can be calculated readily and we
have now a unique good estimates, s2 = 1.37959.

Effective conductivity can be reconstructed using the complete expression for
the effective critical index, employing the approximant P2,3(z)),

(4.9) P2,3(z) =
5.98481z2

15.7666z3 + 11.1117z2 + 4.66455z + 1
,

and

(4.10) σ∗(x) = f∗0 (x) exp

(
x

xc−x∫

0

P2,3(z)) dz

)
.

The integral can be found analytically, so that σ∗(x) = f∗0 (x)F (x), with

(4.11) F (x) = 1.68244e0.388802 tan−1(2.19461+ 2.39204
x−0.9069

)

×
(

0.9069

0.9069 − x
+ 0.631139

)0.280524(x(x− 0.00867304) + 0.169156

(0.9069 − x)2

)0.049532

.

4.4. Corrected regular lattice approximation

In a separate paper, we intend to present a generalization of (2.4), i.e. the
transition formula from the regular hexagonal array to the random array (2.4).
We expect to obtain a dependence of the critical index on the degree of random-
ness. For “zero”-randomness we expect to have a regular hexagonal lattice. For



86 S. Gluzman, V. Mityushev

“maximum”-randomness we expect to have a random composite of the present
paper. All cases with intermediate degrees of randomness are expected to fall in
between the two cases. Accordingly, one should be able to describe the regular
and random composites within a single formalism.

To this end let us select the initial approximation to be corrected, as describ-
ing a regular hexagonal array of inclusions, namely

(4.12) f∗0,r(x) =
(0.419645x+ 1)3.45214

√
1 − 1.10266x

.

This formula incorporates the critical index 1/2 of the regular hexagonal lattice,
the threshold for the hexagonal lattice and the two starting, effective medium
terms from the series (2.8, 2.4).

Let us divide the original series (2.4) by f∗0,r, thus extracting the part corre-
sponding to the random effects only.

Then express the newly found series in term of variable z, then apply
D − P Log transformation and call the transformed series Kr(z). Let us also
process the transformed series

(4.13) Kr(z) = 7.52332z2 − 35.008z3 + 86.1167z4 − 141.937z5 + · · ·

with different approximants, such as iterated roots [29]. One can obtain the
following sequence of corrected approximations to the critical index,

(4.14) sn = 1/2 + lim
z→∞

(z rn(z)),

where rn(z) stands for the iterated root of nth order [29], constructed for the
series Kr(z) with such a power at infinity that defines constant correction to s(0).
Calculations with iterated roots are really easy since at each step we need to
compute only one new coefficient, while keeping all preceding from previous
steps. The power at infinity is selected in order to compensate for the factor z
and extract the correction to regular lattice value. Namely,

(4.15) r1(z) =
7.52332z2

(1.55109z + 1)3
, r2(z) =

7.52332z2

(1.99241z2 + (1.55109z + 1)2)3/2
.

Correspondingly,

(4.16) σ∗(x) = f∗0,r(x) exp

(
x

xc−x∫

0

r2(z) dz

)
.



Series, index and threshold for random 2D composite 87

The following result for the critical index s follows, approximated by s2 =
1.31561.

(4.17) σ∗(x) = 0.121708f∗0,r(x)

× exp

(
(0.64454x − 1.38151)x+ 0.72278

(x− 0.9069)2
√

x(1x+0.435329)+0.3582
(x−0.9069)2

− 0.815613 sinh−1

(
2.0171(x+ 0.494058)

x− 0.9069

))
.

Similar techniques were applied also to the regular case [5] with the goal of
calculating independently the critical index. In the random case we proceed by
extrapolating from the side of a diluted regime and to the high-concentration
regime close to xc; while in the regular case we first derived an approximation
to the high-concentration regime and then extrapolated to the less concentrated
regime. There are indications that physics of a 2D regular and irregular compos-
ites is related to the so-called “necks”, certain areas between closely spaced disks
[22, 25]. Randomness eases the necks formation.

5. Final formula for all concentrations

We proceed to derivation of the formula valid for all concentrations assuming
now that the critical index and threshold are both known. Such program is less
ambitious but still entails calculation of the critical amplitude not known in
advance. Let us discuss briefly some formulae for the effective conductivity from
[4, 36] valid for all concentrations. The first formula (Eq. (22), [4]) is nothing
else but an improved Padé conditioned by appearance of a simple pole at xc, [4],

(5.1) σM (x) =
0.014x+ 0.001

x2 + 0.261x + 0.076
+

3.223

x− 1.247
− 3.237

x− 0.9069
.

We also employ Eq. (5) from [36], adjusting it with regard to the threshold and
critical index values. It exemplifies a crossover from the diluted regime where
SCM is valid, to the percolation regime with typical critical behavior. as de-
scribed generally in [39, 40]. The expression below represents a quasi-fractional
extension of the two-point Padé approximants, according to [37],

(5.2) σA =

x2( x
0.9069 −x

+1)
4/3

(0.9069−x)2
+ 1.97425x

0.9069−x + 1

0.877834x2

(0.9069−x)2
+ 0.160454x

0.9069−x + 1
.
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5.1. Modified Padé formula

Our suggestion for the conductivity valid for all concentrations in the random
case is based on [38, 5]. To derive an explicit formula, let us first apply to the
series M1(z) another transformation, T (z) = M1(z)

−1/s, with s = 4/3, in order
to get rid of the power-law behavior at infinity. Applying Padé approximants to
T (z) one can readily obtain the sequence of approximations An for the critical
amplitude A,

(5.3) An = xs
c lim

z→∞
(zPn,n+1(z)))

−s,

There are only few reasonable estimates for the amplitude, A0 = 1.32316, A1 =
1.20082 and A2 = 1.54817.

Following the prescription above, we obtain can reconstruct the effective con-
ductivity explicitly (for n = 2),

(5.4) σ∗p(x) =

(
x(x(0.651542 − 1.16957x) − 0.0407068) + 0.373419

x(x(x+ 1.01058) + 0.519422) + 0.373419

)−4/3

.

5.2. Factors

Let us also apply factor approximants to the series M1(z) directly. There is a
convergence now with increasing number of terms. The best factor approximant
appears to be given as follows,

(5.5) F ∗
5 (z) = (B1z + 1)c1(B2z + 1)c2(B3z + 1)s−c1−c2 ,

where B1 = 1.00734 − 2.05598i, B2 = 2.2771, B3 = 1.00734 + 2.05598i, c1 =
0.0705011−0.253723i, c2 = 1.19233. The critical amplitude is simply, the limiting
value of the approximant F ∗

5 (z) calculated as z → ∞,

(5.6) A = xs
cB

c1
1 B

c2
2 B

s−c1−c2
3 = 1.49445.

To finalize, one should apply to the formula (5.5) an inverse transformation (4.1).
Expression (5.5) and (5.4) appear to be very close.

Various expressions are shown in Fig.2. Note, that significant deviations of
the Padé formula (5.1) (with typical value of the critical index s = 1) compared
to our results, start around x = 0.82. The two formulae, (4.17) and (5.4), happen
to be very close to each other everywhere, although the former is the result of
extrapolation from the low-concentration region, and the latter is an interpo-
lation between the two limiting behaviors. Another numerical formula (4.10) is
slightly higher than (5.4), while formula (4.6) gives result lower than (5.4).

Closed-form expression for the effective conductivity of the regular hexagonal
array of disks is presented in [23], see (2.7). Since it is supposed to be defined
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Fig. 2. Our formulae (4.10) (dot-dashed), (5.4) (solid) are compared with improved Padé
approximant (5.1) from [4] (dashed) and quasi-fractional approximant (5.2) from [36]

(dotted).

in the same domain of concentrations as in the random case, a comparison can
explicitly quantify the role of a randomness (irregularity) of the composite. But
in the most interesting region of large x, the relevant formula (2.7) fails. In
order to estimate an enhancement factor due to randomness we can still use
the numerical results tabulated in [23]. In particular, an enhancement factor at
x = 0.9, is about 20, compared with (5.5) and (5.4).

6. Discussion

In this paper, we developed a direct approach to the effective conductivity
of the random 2D arrangements of an ideally conducting cylinders, based on the
series (2.4). Despite its relatively short length, such series turned out to be very
informative. Due to such favorable concatenation we are able to confine our study
to closed form expressions fro the effective conductivity for all volume fractions,
possibly suggesting that the problem of 2D high-contrast random composite is
tractable.

We confirm the position of a threshold for the effective conductivity and cal-
culate accurately the value of a superconductivity critical index by four differ-
ent methods. Finally we obtain a crossover expression (5.4), valid for arbitrary
concentrations. Original resummation techniques had to get involved and ex-
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tended in order to solve the three above mentioned problems. Most notably it
includes the method of corrected approximants extensions for the critical point
and critical index calculation [29, 5]. The methods of corrected critical point and
corrected critical index are in the same mold as the traditional renormalization
group [41, 42, 43, 35, 34].

Our main achievement is a direct (independent on other indices) calculation
of the critical index for superconductivity s = 4

3 ≈ 1.3 from the series in concen-
tration, starting from the equations describing the composite. Randomness does
tend to make the series coefficients (2.4) to become larger compared with regular
case. Our method of corrected critical index allows thus to correct effectively the
value of the critical index given by the large family of self consistent methods,
the most popular among them being ever useful effective medium approximation
[11, 2]. We cannot yet completely exclude the possibility that s may depend on
the protocol. Further studies are needed with different protocols.

Interestingly, the effective viscosity of two-dimensional suspensions also di-
verges near the threshold xc with the critical exponent 4

3 [45]. Although a rig-
orous analogy does not hold for viscosity and conductivity, it seems to hold in
practice, including three-dimensional case [46]. Such quantities as a 2D fluid per-
meability [1], and the effective elastic modulus for the 2D system of antiplane
cracks [47], are expected to be characterized by the same value of critical expo-
nent 4

3 . It would be both extremely interesting and challenging to explain such
universality based on the series in concentration and applying the techniques de-
scribed in the paper. On the other hand, an elastic properties characterized by
the effective Young modulus [1], are characterized by more than 3 times larger
value of the index analogous to t, while the so-called superelasticity index anal-
ogous to s, seems to have close value of 1.24. Explanation of such differences
directly from the series, presents another challenge.

We believe that construction of series analogous to (2.4) by the method [48]
will yield accurate results also in 3D .
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