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A fibre-reinforced non-linearly elastic tube subject to a finite radially
symmetric deformation given by the combination of axial stretch, radial deformation
and torsion is analysed. The deformation is supported by axial load, internal pressure
and end moment. The materials at hand are neo-Hookean models augmented with
a function that accounts for the existence of a unidirectional reinforcement. This
function endows the material with its anisotropic character and is referred to as
a reinforcing model. The nature of the considered anisotropy has a particular influence
on the shear response of the material, in contrast to previous analyses in which the
reinforcing model was taken to depend only on the stretch in the fibre direction.
Furthermore, the ellipticity analysis of the deformations at hand has been carried
out. It is shown that most of the deformations are non-elliptic, which opens the
possibility to discontinuous solutions.
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1. Introduction

In a recent paper El Hamdaoui et al. [1] examined extension, infla-
tion and torsion of a tube in the context of non-linear elasticity theory. The
strain energy (constitutive equation) was given in terms of an isotropic base
material augmented by a function that accounts for the existence of a unidirec-
tional reinforcement. Two independent invariants are sufficient to characterise
the anisotropic nature of a transversely isotropic material model (such as a fibre-
reinforced material): one is related directly to the fibre stretch and is denoted
by I4; the other invariant, denoted by I5, is also related to the fibre stretch but in-
troduces an additional effect that is related to the behaviour of the reinforcement
under shear deformations (see Merodio and Ogden [2]). Here, our purpose is
to investigate a neo-Hookean material reinforced with a function that depends
on I5, taken as a quadratic model, and to compare the results with those given
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by El Hamdaoui et al. [1] for the corresponding I4 reinforcement. In addition,
we include here the analysis of loss of ellipticity that determines both the defor-

mation associated with the existence of surfaces of weak discontinuity and the
direction of the normal to that surface (see Merodio and Neff [3], Merodio
and Ogden [4]). The ellipticity analysis provides light on the application of this
study since it deals with the analytical solution of the problem at hand.

The so-called standard reinforcing model is a quadratic function that depends
only on I4. It has been widely investigated in the last few years with application
to the behaviour of rubber-like materials as well as to soft tissue in biomechanics.
The same is not the case for the invariant I5 for which there are only a few studies
available in the literature.

In most of the cases, for the loading conditions at hand the fibre reinforce-
ment is under compression. Compressive failure of fibre composites which consist
of an isotropic base material includes fibre kinking and fibre splitting (see Lee
et al. [5]). In this paper, our objective is to present, in the setting of non-linear
elasticity theory, the material instabilities mentioned above for the particular
fibre-reinforced materials at hand. Surfaces of weak discontinuity (or weak sur-
faces) are surfaces across which the second derivative of the displacement field is
discontinuous, while across a fully developed (or strong) surface of discontinuity
the first derivative (i.e., the deformation gradient) suffers a finite jump.

The torsion of isotropic incompressible materials has been studied by many
authors in many papers since the pioneering work of Rivlin and Saunders [6],
among others, as well as the simultaneous extension, inflation and torsion, see
for instance, Rivlin and Saunders [6], Gent and Rivlin [7], Kanner and
Horgan [8], Horgan and Polignone [9] and references therein. Combined
extension and inflation of such materials including bifurcation into non-circular
cylindrical modes of deformation has been presented by Haughton and Og-
den [10] and Merodio and Haughton [11]. An extension to fibre-reinforced
materials of that analysis has been given by Rodríguez and Merodio [12].

In Section 2, we study the basic equations we are using following El Ham-
daoui et al. [1]. Main results are described in Section 3 for the model at hand,
a neo-Hookean material augmented with a reinforcement that depends on the
invariant I5. The ellipticity analysis is carried out in Section 4 and main conclu-
sions of the study are written in Section 5.

2. Preliminaries

2.1. Kinematics and constitutive model

Let X denote the position vector of a material particle in the stress-free
reference configuration and x denote the corresponding position vector in the
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deformed configuration. The deformation gradient tensor is denoted F and has
components ∂xi/∂Xα. The left and right Cauchy-Green deformation tensors,
respectively B and C, are given by

(2.1) B = FFT, C = FTF,

and the principal (isotropic) invariants of C (equivalently of B) are defined by

(2.2) I1 = trC, I2 = I3 tr (C−1), I3 = detC.

In terms of the principal stretches (λ1, λ2, λ3) of the deformation we have

(2.3) I1 = λ2
1 + λ2

2 + λ2
3, I2 = I3(λ

−2
1 + λ−2

2 + λ−2
3 ), I3 = λ2

1λ
2
2λ

2
3.

We consider a fibre reinforcement identified in the undeformed configuration by
the unit vector M. The combination of M and C introduces two additional
invariants, denoted I4 and I5, which are defined by

(2.4) I4 = M · (CM), I5 = M · (C2M).

Let the vector m, resulting from the action of F on M, be m = FM. In this
paper we focus on incompressible elastic materials, so that I3 ≡ 1 and hence

(2.5) λ1λ2λ3 = 1.

The most general incompressible non-linearly elastic material is given by the
strain energy function

(2.6) W = W (I1, I2, I4, I5),

and the corresponding Cauchy stress tensor is given by

(2.7) σ = F
∂W

∂F
− pI,

where the parameter p denotes the Lagrange multiplier arising from the incom-
pressibility constraint.

Using (2.2), (2.4), (2.6) and (2.7), one can write

σ = 2W1B + 2W2 (I1I −B)B + 2W4 m ⊗m(2.8)

+ 2W5 (m ⊗ Bm + Bm ⊗ m) − pI,

where I is the identity tensor and the notation Wi = ∂W/∂Ii, i ∈ {1, 2, 4, 5}
has been used. Furthermore, in the stress-free reference configuration, where
I1 = I2 = 3 and I4 = I5 = 1, it follows that

(2.9) W = 0, 2W1 + 4W2 = p0, W4 + 2W5 = 0,

where p0 is the value of p evaluated in the reference configuration.
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2.2. Deformation

We now describe the basic equations of the deformation. Consider a right
circular cylindrical shell that occupies the region

(2.10) A ≤ R ≤ B, 0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ L,

in its undeformed reference configuration where (R,Θ,Z) are cylindrical coordi-
nates. The position vector of a material point can then be written

(2.11) X = RER(Θ) + Z EZ ,

where ER, EΘ and EZ are unit vectors in the indicated directions.
The cylinder is inflated, extended and twisted so that it remains a circular

cylinder. The inflating pressure is denoted by P , the axial load by N and the
twist moment by M . In this deformed configuration the cylinder is described by

(2.12) x = r er(θ) + z ez, a ≤ r ≤ b, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ ℓ,

where r, θ and z are cylindrical coordinates that are defined by

(2.13) r = r(R), θ = Θ + τλzZ, z = λzZ,

respectively. The deformation gradient takes the form

(2.14) F = λr er ⊗ER + λθ eθ ⊗ EΘ + λz ez ⊗EZ + λzγ eθ ⊗ EZ ,

in which γ = τr is being used. The incompressibility constraint λrλθλz = 1 leads
to the connection

(2.15) r2 − a2 = λ−1
z (R2 −A2).

The tensors given in (2.1) using (2.14) are easily written as

(2.16)

C = λ2
r ER ⊗ ER + λ2

θ EΘ ⊗EΘ + λ2
z(1 + γ2)EZ ⊗ EZ

+ γλzλθ (Eθ ⊗EZ + EZ ⊗EΘ),

B = λ2
r er ⊗ er + (λ2

θ + γ2λ2
z) eθ ⊗ eθ + λ2

z ez ⊗ ez

+ γλ2
z (eθ ⊗ ez + ez ⊗ eθ).

Using (2.16)1, (2.4) and (2.2) it is convenient to introduce a new function, de-
noted W̄ , such that

(2.17) W = W (I1, I2, I4, I5) = W̄ (λθ, λz, γ).

In summary, under the conditions at hand λz is fixed and the (local) simple
shear deformation occurs in planes (EΘ,EZ), normal to ER. Furthermore, the
quantities λθ and λz associated with the azimuthal and axial directions are not,
in general, the principal stretches of the deformation. In particular, we have such
a case only in the absence of torsional deformation, corresponding to γ = 0.
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2.3. Equilibrium

In the absence of body forces the equilibrium equations can be written
(see [1]) as

(2.18) r
d

dr
(σrr) + σrr − σθθ = 0,

d

dr
(r2σrθ) = 0,

d

dr
(rσrz) = 0.

We further consider the radial boundary conditions

(2.19) σrr =

{
−P on r = a,

0 on r = b

which together with the integral of (2.18)1 give

(2.20) P =

b∫

a

(σθθ − σrr)
dr

r
.

Now, a direct integration of (2.18)2,3 gives

(2.21) σrθ =
c1
r2
, σrz =

c2
r
,

where c1 and c2 are two constants. The two solutions given in (2.21) are not
generally compatible with the specific forms of σrθ and σrz that arise from the
constitutive law. This will be clarified later after (3.5) and (3.6).

The axial load and the resultant moment are given by

(2.22) N =

b∫

a

2π∫

0

σrrr dθdr and M =

b∫

a

2π∫

0

σθzr
2 dθdr,

respectively.
Using W̄ , it is possible to write, after some manipulations (see [1])

P =

b∫

a

(
λθ
∂W̄

∂λθ
+ γ

∂W̄

∂γ

)
dr

r
,

Nr = N − πa2P = π

b∫

a

(
2λz

∂W̄

∂λz
− λθ

∂W̄

∂λθ

)
rdr − 3

2
τM,(2.23)

M = 2π

b∫

a

∂W̄

∂γ
r2dr.
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Now, using λrλθλz = 1 and (2.15) one can write

(2.24)
dr

r
=

(
1 − λ2

θλz

)−1 dλθ

λθ
.

It follows that it is possible to change the independent variable from r to λθ in
(2.23). We also note that (2.24) and (2.23)1,2 particularized for τ = 0 yield the
results established in [10] and [11] for the case of extension and inflation.

3. A neo-Hookean transversely isotropic material model

We focus now on the strain energy function

(3.1) W =
µ

2

[
I1 − 3 + ρ(I5 − 1)2

]
,

where µ > 0 is the constant representing the shear modulus of the base (isotropic)
material in the undeformed configuration and ρ > 0 is a constant related to the
degree of anisotropy. The isotropic material is the neo-Hookean model while the
fibre contribution is given by the anisotropic invariant I5 (see Merodio and
Ogden [13]). Using (2.8) and (3.1) one can write

(3.2) σ = 2W1B + 2W5 (m ⊗ Bm + Bm ⊗ m) − pI.

The fibre direction M is

(3.3) M = MRER +MΘEΘ +MZEZ .

Now, the anisotropic invariants I4, I5 upon use of (2.16)1, (2.14) and (2.4) for
the given direction M are

(3.4)

I4 = λ2
rM

2
R + (λθMΘ + γλzMZ)2 + λ2

zM
2
Z ,

I5 = λ4
rM

2
R + λ2

θ(λ
2
θ + γ2λ2

z)M
2
Θ + 2γλθλz(λ

2
θ + λ2

z + γ2λ2
z)MΘMZ

+ λ2
z[γ

2λ2
θ + (1 + γ2)2λ2

z]M
2
Z .

The components rθ and rz of the Cauchy stress tensor (3.2) using (2.16)2, (2.14)
and (3.3) can be written as

σrθ = 2λrMRW5{λθMΘ(λ2
r + λ2

θ + γ2λ2
z)(3.5)

+ γλzMZ(λ2
r + λ2

θ + λ2
z(γ

2 + 1))},

σrz = 2λrMRW5{γλθλ
2
zMΘ + λzMZ(λ2

r + λ2
z(γ

2 + 1))}.(3.6)

It follows that none of these components is consistent with (2.21), unless MR = 1
and MΘ = MZ = 0 or MR = 0 when they both vanish and c1 = c2 = 0.
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Therefore, we focus our attention on these special fibre geometries MR = 1 and
MR = 0. For these two cases the considered deformation is controllable and also
relative-universal in the full class of transversely isotropic elastic materials, for
each case separately (see [1]).

For the model at hand, as opposed to the work developed in [1], expressions
for P ∗, M∗ and N∗

r given by

(3.7) P ∗ =
P

µ
, M∗ =

M

πµA3
, N∗

r =
N − πa2P

πµA2
,

cannot be obtained explicitly. Whence, in the Sections that follow, we consider
for the tube geometry, the material and the axial stretch the parameters given
in Table 1 together with a variety of values of the twist parameter τ .

Table 1. Numerical parameters for the tube geometry (A and B), the material
(ρ) and the axial stretch (λz).

A B ρ λz

1 2 2 1.2

3.1. Radial transverse isotropy MR = 1

First, we consider the case of transverse isotropy in the radial direction,
for which MR = 1 and MΘ = MZ = 0. It follows using (3.4) that I4 = λ2

r and
I5 = I2

4 . The latter identity establishes that under these circumstances the results
are qualitatively similar to the results given in [1]. Nevertheless, we provide some
numerical results to assess the analytical methodology described. In particular,
for ρ = 2 and λz = 1.2 results are shown in Fig. 1 for a series of values of τ .

a) b)

Fig. 1. For the case of radial transverse isotropy the dimensionless pressure P ∗, given in (a),
and reduced axial load N∗

r , given in (b), are plotted against the inner radius a for the
following values of the dimensionless torsional strain τ1,2,3,4 = (0, 0.2, 0.4, 0.5).
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The curves in each plot of Fig. 1 show the same qualitative behaviour for
different values of the dimensionless torsional strain τ . In particular, the curves
in the left plot show that the dimensionless pressure P ∗ has a maximum, i.e.,
for a given value of τ values of P ∗ increase up to a maximum and then decrease
down to a (more or less) constant value for a plateau of values of a. For a given
value of a, greater values of τ are associated with greater values of P ∗. On the
other hand, in the right plot, the curves show that the dimensionless reduced
axial load N∗

r has a maximum, i.e., values of N∗
r increase up to a maximum and

then decrease. For a given value of a, greater values of τ are associated with
smaller values of N∗

r .

3.2. Transverse isotropy MR = 0

The direction M for a general (helical) transverse isotropy is characterized
by

(3.8) M = cos(α)EΘ + sin(α)EZ ,

where α, with 0 ≤ α ≤ π/2, is the angle that the direction makes locally with
the azimuthal direction. In this situation the invariants I4 and I5 using (3.4)
yield

(3.9)

I4 = (λθMΘ + γλzMZ)2 + λ2
zM

2
Z ,

I5 = λ2
θ(λ

2
θ + γ2λ2

z)M
2
Θ + 2γλθλz(λ

2
θ + λ2

z(1 + γ2))MΘMZ

+ λ2
z(γ

2λ2
θ + (1 + γ2)2λ2

z)M
2
Z .

Note that, as opposed to the case in which the fibre was in the radial direction,
σ is not coaxial with B due to the torsion. For the circumferential transverse
isotropy, i.e., MΘ = 1,MZ = 0, the invariant I4 does not depend on γ but I5
depends on γ, which in turn means that the fibre length does not change with
torsion. Furthermore, in general, using (3.9) it can be shown that

(3.10) I5 = I4(I1 − λ−2
θ λ−2

z ) − λ2
θλ

2
z.

For positive γ, both I4 and I5 are monotonically increasing functions of each of
γ, λθ and λz. For γ < 0 and λz fixed, I4 has a minimum, which may be greater
than or less than 1. The situation with I5 is not so straightforward, and for
certain values of α two minima can be found. More in particular, the invariant
I5 has two minima for α ∈ (αmin, αmax) where (i) αmax changes (slightly) with λz

and λθ and (ii) αmin tends to 0 as γ → ∞. For λθ = λz = 1.2 and −8 < γ < 0,
αmin ≈ 3.4◦ and αmax ≈ 15.5◦ (see Fig. 2). This opens the possibility to get
non-smooth solutions, whose study goes beyond this note.
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a) b)

Fig. 2. The curves of (a) give the values (γ, α) obeying ∂I5/∂γ = 0 while the curves of (b)
give the values of I5 vs γ for λθ = λz = 1.2 and α1,2,3 ≈ 14◦, 11◦, 8◦, which obey

α ∈ (αmin, αmax). The adimensional quantities P ∗, M∗ and N∗

r for values of α ∈ (αmin, αmax)
are similar to those corresponding to α = 0.

Fig. 3. The curves give the values of pressure P ∗ vs the inner radius a for τ = −0.1 and
specific values of α.

We further illustrate the results numerically for values ρ = 2 and λθ = λz

= 1.2 as well as for different values of τ and α. The qualitative behaviour of the
curves in Fig. 3 is quite similar. All curves are monotonically increasing. Let us
focus on the curve for which α is equal to 90◦. In this case I5 is a fixed value given
by (3.4)2. It follows by (3.1) that this case is qualitatively (not quantitatively)
associated with the behaviour of a neo-Hookean material.

There is a correspondence between Figures 3, 4 and 5. In particular, Fig. 3
gives the values of P ∗ while under the same circumstances Fig. 4 gives the values
ofM∗ and Fig. 5 gives the values of N∗

r . The plots show that curves may intersect
each other which in turn means coupling among the values of the parameters
involved. It is interesting to note that as the angle α decreases from 90◦ the
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Fig. 4. The curves give the values of moment M∗ vs the inner radius a for τ = −0.1 and
specific values of α.

Fig. 5. The curves give the values of reduced axial load N∗

r vs the inner radius a for
τ = −0.1 and specific values of α.

reduced axial load in Fig. 5 turns from positive to negative as the inner radius
increases.

Finally, we consider a = 1.2 and λz = 1.2 and we plot different values of
the reduced load vs the torque deformation parameter τ for specific fibre angles
in Fig. 6. These values are symmetric with respect to the values of the torque
deformation for fibre angles α = 0 and α = 90◦. In addition, we notice in Fig. 6
that the α = 0-curve is associated with a range of values smaller than the range
of values associated with other angles. This is due to the fact that the fibre is in
the circumferential direction.

It is important to point out that the circular cylindrical configuration is
maintained during loading. The quantities P ∗, M∗ and N∗

r are coupled and
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Fig. 6. Values of the reduced axial load N∗

r vs the torque deformation parameter τ for
a = 1.2, λz = 1.2 and specific values of the fibre angle α.

depend on the deformation variables. Their changes with deformation give the
values that make possible a cylindrical geometry.

4. Ordinary ellipticity

The loss of ordinary ellipticity was given, for instance, by [3] as

(4.1) Q(n) : t ⊗ t = 0,

where

Qij = FpαFqβ
∂2W

∂FjβFiα
npnq

is the acoustic tensor and t and n are two unit vectors satisfying t · n = 0. The
acoustic tensor particularized for (3.1) yields

Q = 2W1(B : n⊗n)I(4.2)

+2W5{2(B : m⊗n)(m·n)I+(B : n⊗n)(m⊗m)

+(m·n)(m⊗n)B+(m·n)B(n⊗m)+(m·n)2B}
+4W55{(B : m⊗n)m+(m·n)Bm}⊗{(B : m⊗n)m+(m·n)Bm}.

The analysis of (4.1) for a given W furnishes the ellipticity status of that par-
ticular strain energy. If, for some pair of orthogonal unit vectors t and n such
that t · n = 0, a given deformation gradient F satisfies equation (4.1), then the
deformation is said to be non-elliptic for that material model. Furthermore, the
unit vector n is identified as the normal vector to a surface (in the deformed
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configuration), referred to as a weak surface, across which some of the differen-
tiability properties required in the derivation of the equilibrium equations are not
satisfied by some or all the variables involved. Once F is specified, it is possible
to check the ellipticity of the deformation. On the other hand, using (2.14), the
incompressibility constraint λrλθλz = 1, as well as (4.2) and (4.1), the ellipticity
condition can be written as a function of (λθ, λz, γ, α, ρ, µ,n). One can assume
that all variables are known except λθ and n and solve for those values. Whence,
using (2.15), one can write λθ = r/

√
λz(r2 − a2) +A2 and, now, choose appro-

priate values for A and B to design a structure subject to elliptic deformations.
Of course, this may not be possible. The following analysis sheds some light on
the discussion. We consider as an example the case of radial transverse isotropy
with MR = 1 and assume that the unit vectors t and n are in either the rz-plane
or in the rθ-plane (see Fig. 7). In the former case, the two directions n and t can
be written as

(4.3) n = − sinϕ er + cosϕ ez, t = cosϕ er + sinϕ ez.

It follows that the condition of loss of ellipticity (4.1) does not depend on γ. The
onset of ellipticity is shown for ρ = 2 and λz = 1 in Fig. 8a and λZ = 1.2 in
Fig. 8b. The former case (λz = 1) corresponds to internal pressure only while
the latter corresponds to combined extension and inflation. The curves in these
plots obey (4.1). In Fig. 8a, ellipticity is lost for λθ > 1 but very close to the
undeformed configuration and the weak surface is perpendicular to the fiber

Fig. 7. Kinematics of fiber kinking in fiber reinforced materials. The boundary of the kink
band in the incipient fiber kinking mechanism is interpreted as a weak surface and is close to

the normal direction of the fiber reinforcement. The unit vector n is perpendicular to the
boundary of the kink. Two possible kink bands are shown. The lower right sketch in the

cylinder considers a kink band with the unit vectors t and n in the rz-plane while the upper
left sketch considers a kink band with these vectors in the rθ-plane.
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a) b)

Fig. 8. The curves in these plots obey (4.1) and show the ellipticity status of a) λθ for ρ = 2
and λz = 1 and b) λZ = 1.2. The kink band is in the rz-plane.

a) b)

Fig. 9. The curves in these plots obey (4.1) and show the ellipticity status of a) λθ for ρ = 4
and λz = 1 and b) λZ = 1.2. The kink band is in the rz-plane.

(ϕ = π/2), which is interpreted as fibre kinking. As λθ increases there could be
two (symmetric) weak surfaces in the rz-plane: one with ϕ > π/2 and the other
with ϕ < π/2. Furthermore, it is possible to obtain a weak surface parallel to
the fibre obeying ϕ = 0, which is interpreted as fibre splitting. The description
applies to the results associated with λz = 1.2. Whence, very moderate inflation
is sufficient to lose ellipticity. Furthermore, it follows that moderate axial tensile
load is just sufficient to lose ellipticity. The fibre is under compression under these
circumstances. For completeness, similar plots are shown for ρ = 4 in Fig. 9. The
two solutions that unfold in Fig. 8a (Fig. 8b), one related to fibre kinking and
the other related to fiber splitting, are fully developed and emerge together in
the curve on the left of Fig. 9a (Fig. 9b).

When the two directions n and t are on the rθ-plane, it follows that

(4.4) n = − sinϕ er − cosϕ eθ, t = cosϕ er − sinϕ eθ.

Under these circumstances, the loss of ellipticity condition (4.1) depends on γ.
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Nevertheless, for γ = 0 results give the situation described previously with the
weak surfaces now in the rθ-plane.

5. Conclusions

Finite elastic deformations of a circular tube made of a fibre reinforced mate-
rial subject to axial load, internal pressure and end moment has been examined.
In particular, the material depends on the invariant I5 and, to the best of our
knowledge, this is one of the few papers dealing with this model. For radial trans-
verse isotropy, the results obtained here are similar qualitatively to the ones given
in [1] with regard to the invariant I4. On the other hand, the couplings among all
the variables for other directions of transverse isotropy (for instance, in certain
directions perpendicular to the radial direction) give results for the model with
the invariant I5 qualitatively different to the results obtained with the model
depending on the invariant I4. In addition, we have shown that most of the de-
formations obtained are non-elliptic, as it is expected also for the invariant I4.
We illustrated the analysis by choosing representative values of the parameters.
For other models, as well as geometries, the possibility of obtaining a wide range
of non-smooth behaviour is possible.

At last, it should also be pointed out that the transversely isotropic constitu-
tive laws at hand are not able in general to fully capture available experimental
data. For instance, it has been shown by [14] that both I4 and I5 have to be
included in the constitutive equation if the infinitesimal longitudinal and trans-
verse shear moduli of the material are different.
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