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Model order reduction for a flow past a wall-mounted cylinder
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Reduced order models allow quickly predict fluid behaviour and to better under-
stand flow phenomena. They are the key enablers of closed-loop flow control. In this
paper, reduced-order model (ROM) of an incompressible flow around a wall-mounted
cylinder is constructed, by means of Galerkin projection of Navier–Stokes equations
onto space spanned by the most dominant eigenmodes of dynamic mode decomposi-
tion (DMD). Additionally, genetic algorithm-based calibration is applied to improve
the predictive performance of the model. The resulting low-dimensional model of the
flow consists of six degrees of freedom and precisely reproduces the dynamics of limit
cycle oscillations.
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1. Introduction

Numerical simulations of fluid flow, based on the direct numerical simu-
lation (DNS) of Navier–Stokes equations, provide fundamental knowledge about
flow phenomena that occur at low-Reynolds numbers and that persist at high-
Reynolds number regimes [1].

However, this approach, as well as even simpler models like large eddy simula-
tion (LES), detached eddy simulation (DES) or even Reynolds-averaged Navier–
Stokes (RANS), are too time-consuming to be used in real-time, feedback control
of fluid flow.

All of these “high-fidelity” models require computational grids of the order
of thousands (2D) or millions (3D) of degrees of freedom to cover all important
vertex scales and capture the flow physics.
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Consequently, they are very time-consuming – especially when complex ge-
ometries are analyzed.

More importantly, the models with a large number of degrees of freedom are
not robust – to provide for real-time feedback flow control, the number of inputs
and outputs of the controller have to be as small as possible.

The problems of being too time comsuming and not being robust enough
can be solved by using low-fidelity, reduced order models (ROMs) instead of the
models mentioned above. These robust models, consisting of a few equations, are
key enablers of feedback flow control [2]–[5]. A review of techniques for nonlinear
model-based flow control can be found in [6].

In this paper, model order reduction, based on Galerkin’ projection onto
space spanned by empirical modes calculated for direct numerical simulation
(DNS) data, is done for flow past a wall-mounted cylinder.

2. Test case description

Circular cylinders are extensively investigated in fluid mechanics [7, 8, 9] due
to their importance in fundamental research as well as engineering applications.
In the latter case, cylinder-shaped objects are usually finite in length, with one
end mounted on a flat wall, for example chimneys, stacks, high-rise buildings
and legs of oil platforms [10].

The geometry of wall-mounted cylinders is quite simple, however they are
a source of complex, three-dimensional structures in their near wake. In addi-
tion to the von Karman vortices known from infinite cylinders, structures like
horseshoe vortices (near the wall) and – in the case of finite cylinders – trailing
vortices [11] form.

These phenomena lead to the need to consider many important factors, dur-
ing the design of free-standing structures [12]. These include structural loading
associated with velocity and pressure fluctuations [13], heat and mass transfer
influenced by high-turbulence mixing zones in the wake (relevant for heat ex-
changers, heat stacks and wind turbines [14, 15]) and downburst phenomena in
the wake, which might transport contamination from chimney stacks or debris
from buildings, bringing discomfort and danger to pedestrians [16].

While flows past infinite cylinders are well-studied and many ROM for such
flows have been constructed [17, 18], the Galerkin models for the flow past wall-
mounted cylinders are much less common [16]. It is expected, that the different
behavior of the flow near wall boundary will influence the basis expansion and
might be an additional challenge for model order reduction.

In this study, a semi-infinite cylinder mounted on the bottom plane as pre-
sented in Fig. 1, is analyzed. The flow domain spans 20 diameters in a streamwise
direction, with a rectangular cross-section of size 10×8 diameters. The domain is
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Fig. 1. Computational domain (top) and the mesh partitioned for 16 sub-domains (bottom).

discretized using finite element mesh containing 702 379 second-order tetrahedra
elements.

For such configuration, DNS of Navier–Stokes equations was performed using
an in-house, parallel solver UNS3 [19, 20], based on the second-order finite ele-
ment method with Galerkin formulation and quadratic interpolation functions.
A penalty formulation with an LBB condition [21] was used to eliminate the
pressure from the equations. Nonlinear equations were solved using the iterative
Newton–Raphson approach.

The message passing interface (MPI) library provided the communication
between the computational nodes and the domain partitioning was done using
the Metis package.

Incompressible flow past a wall-mounted cylinder was analyzed for Reynolds
number Re = 400. Velocity on the inlet, normal to the front surface, was set to
U = Ux = 1 for all the nodes with a z-coordinate higher than D. Between the
bottom wall (z = 0) and z = D, the parabolic velocity gradient was used. On
the side walls and the top of the domain (z = 8D), symmetry planes were used.

As an initial solution, steady flow for the same Reynolds number (Re = 400)
was chosen (Fig. 2, left). For these operating conditions, a steady solution is
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Fig. 2. Flow around a wall-mounted cylinder at Re = 400. Velocity isosurfaces for a steady
flow (initial solution, left) and an instantaneous solution from fully-developed periodic wake

(right).

unstable and difficult to be obtained using a steady solver. Therefore an unsteady
solver was used, and the size of the time step was gradually increased. Using
this artificial damping, oscillations were suppressed and the flow was stabilized.
Finally, the steady solver was used to obtain the fully converged solution.

Next, the unsteady simulation, performed on 16 nodes of a PC-based cluster,
resulted in a fully-developed periodic wake, as depicted in Fig. 2 (right).

The cycle interval for the obtained flow is approximately T = 5.7 s, which
gives predominant vortex shedding frequency f = 0.175 Hz.

3. Modal decomposition

The mode bases used in the model reduction can be classified in terms of
mathematical, physical and empirical approaches, as discussed in [3]. In the em-
pirical approach, the modes are determined in the decomposition of (previously
obtained) experimental or numerical data.

For years, the most popular method of decomposing the spatio-temporal sig-
nal was proper orthogonal decomposition (POD) [22] and its variant, called the
method of snapshots [23]. The known limitations of these methods, especially in
the reconstruction of transitional flow (increasing the amplitude of oscillation)
and in further application in reduced order modelling, resulted in intensive re-
search being conducted on decomposition methods. The original idea of POD has
been expanded, leading to techniques like bi-orthogonal decomposition (BOD)
[24], double POD (DPOD) [25] and balanced POD (BPOD) [26]. On the other
hand, the inspection of preexisting methods used in the other ares like principal
oscillation patterns (POP) [27, 28] and Koopman analysis of nonlinear dynam-
ical systems [29, 30] has led to the development of techniques like oscillation
pattern decomposition (OPD) [31] and dynamic mode decomposition (DMD)
[32, 33, 34].
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A comprehensive survey of the decomposition methods used in fluid dynamics
can be found in [31].

In this paper, dynamic mode decomposition, originally introduced to CFD
by Schmid [33] and Rowley [32], is used to compute global modes based on
the snapshots of the flow from DNS.

In this method, the time-varying process is approximated by the use of linear
operator Ã = e△tA on the current state vector:

(3.1) q(t+ △t) ≈ e△tAq(t).

The right-hand side of the equation above might be approximated by mul-
tiplying the sequence of known solutions V0...n = {q0, q1, q2, . . . , qn} with the
companion matrix S:

ÃV0...n ≈ V0...nS,(3.2)

where

S =













0 0 . . . 0 c0
1 0 . . . 0 c1
0 1 . . . 0 c2
. . . . . . . . . . . . . . .
0 0 . . . 1 cn













,(3.3)

The coefficients c0, . . . , cn of the companion matrix S are obtained from the
solution of the overdetermined system of equations (3.1) (minimizing the norm
‖V0...nC − Vn+1‖2). The eigenvectors of matrix S are used to obtain the DMD
modes, while real and imaginary parts of the eigenvalues determine modal growth
rates σj and frequencies ωj :

σj =
1

△tRe(log(λj)),

fj =
1

2π△tIm(log(λj)),(3.4)

For flow past a wall-mounted cylinder, 171 snapshots from the last three
cycles (with sampling frequency f = 10 Hz) were used to compute the time-
average and DMD modes (Figs. 3–5).

For each complex mode pair, growth rates and frequencies were computed
(Fig. 6).

The mode pairs are sorted with respect to the mode norm. The first three
mode pairs, after orthonormalization, represent 86% of the turbulent kinetic
energy (TKE), and the first six mode pairs represent 98% of TKE.

It can be seen, that the first modes are saturated and the higher modes are
more and more damped. Explanation of these decaying growth rates is given
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Fig. 3. Isosurfaces of the imaginary (left) and real (right) parts of the first DMD mode pair
(frequency f1 = 0.176 Hz, growth rate r1 = −0.002).

Fig. 4. Isosurfaces of the imaginary (left) and real (right) parts of the second DMD mode
pair (frequency f2 = 0.352 Hz, growth rate r2 = −0.005).

Fig. 5. Isosurfaces of the imaginary (left) and real (right) parts of the third DMD mode pair
(frequency f3 = 0.527 Hz, growth rate r3 = −0.006).
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Fig. 6. Growth rates (left) and frequencies (right) for DMD mode pairs.

by Bagheri [35]: “for any stable limit cycle (. . . ) the remaining eigenvalues
j 6= 0 are decaying and describe the transient behaviour of flow in the local stable
manifold of the limit cycle”.

The frequencies of the further modes are harmonics of the first, fundamental
frequency f1 = 0.176 Hz. Mode pairs 4 and 5 are one exception, as they seem to
be switched. In a limit cycle, the modes related to the highest frequencies might
be neglected [35].

In consideration of the above, the first one mode pair and the first three
modes pairs were chosen to build ROMs of the flow.

4. Model reduction using Galerkin projection

One of the methods of reducing the flow model is Galerkin approxima-
tion of the variables (e.g., velocities) with base solution u0 (steady or time-
averaged flow) and a number modes uj multiplied by time-dependent mode
amplitudes aj (4.1):

(4.1) u[N ] = u0 +

N
∑

j=1

ajuj =

N
∑

j=0

ajuj , a0 ≡ 1.

In this paper, the mode basis used in the approximation results from the
DMD of the snapshots from three cycles of periodic wake flow. Before the mod-
elling, real and imaginary parts of DMD modes were separated and orthonor-
malized.

The projection of the residual of the approximated Navier–Stokes equation
onto the space spanned by the modes (4.2) results in a system of ordinary dif-
ferential equations, with mode amplitudes as unknowns (4.3).

(ui, R
[N ])Ω =

∫

Ω

uiR
[N ]dΩ = 0,(4.2)

ȧi =
1

Re

N
∑

j=0

ajlij +

N
∑

j=0

N
∑

k=0

ajakqijk,(4.3)
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where:

(4.4) lij = (ui,△uj)Ω and qijk = −(ui,∇ · (uj ⊗ uk))Ω.

To achieve the robustness required in flow control applications, low dimen-
sional models of flow past a wall-mounted cylinder were designed using two and
six of the most dominant modes from DMD.

The truncation of the mode basis and the possible inconsistency of reduced
order formulation and full-dimensional data lead to a loss of quality, which might
be improved by using model calibration [36, 37].

Additionally, the truncation of the modal basis to one pair of (the most dom-
inant) modes resulted in instability of the model – the amplitude of oscillation
grew to infinity.

To resolve this problem, shift mode u△ [3], also known as zero mode [38],
was introduced as a critical enabler for the transient representation of empirical
Galerkin models. This additional mode (Fig. 7, right), defined as a normalized
mean-field correction, represents the difference between short-term averaged flow
and the space spanned by expansion modes (like POD modes) [3]. An overview
of shift mode design techniques is given in [39].

Fig. 7. Isosurfaces of a velocity for time-averaged flow for fully-developed wake (left) and
shift mode (right).

Shift mode was orthonormalized with respect to the rest of expansion modes
used, i.e.,

(u△,ui)Ω = 0, i = 1, . . . N.(4.5)

Galerkin models incorporating shift mode are stable [40] – they have bounded
amplitudes of mode coefficients (Fig. 8).

In the case of the model based on two DMD modes (one pair) and shift mode,
the amplitude of modes is 1.5 times larger than the one expected for limit-cycle
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Fig. 8. Fourier coeficients (amplitudes) for the first DMD mode, resulting from Galerkin
models based on shift mode and two (left) and six (right) DMD modes.

oscillations. The addition of further four modes improves the model – the ampli-
tudes of the modes (especially the first ones), resulting from the solution of the
Galerkin system resemble the ones obtained from the projection of snapshots
onto DMD modes (Fig. 9). Unfortunately, the modal frequencies resulting from
the reduced model are slightly lower than those obtained from DMD.
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Fig. 9. Fourier coeficients (amplitudes) for the first and third DMD modes used in the
Galerkin model, as obtained from the reduced-order Galerkin model and from projection

onto snapshots from DNS.

To achieve better agreement in the frequency of vortex shedding and keep the
dimension of the model as low as possible, genetic algorithm-based calibration of
linear and quadratic terms of the Galerkin system was done, using the approach
described in [37]. In this case, objective function F to be minimized was related
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to the combined square error of the frequencies fi and amplitudes ai of N mode
coefficients:

(4.6) F =
N

∑

i=1

(

α

(

fDNS
i − fROM

i

fDNS
i

)2

+ (aDNS
i − aROM

i )2
)

,

with the reference modal frequencies fDNS
i and amplitudes aDNS

i (Table 1) ob-
tained from the projection of the DNS-based snapshots onto the space spanned
by DMD modes.

Table 1. Reference modal frequencies and amplitudes used in the callibration, as
obtained from DNS/DMD.

mode i frequency fDNS
i amplitude aDNS

i

1/2 0.176 4.20

3/4 0.352 1.40

5/6 0.528 0.75
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Fig. 10. Fourier coeficients (amplitudes) for six DMD modes used in the Galerkin model, as
obtained from the callibrated reduced order Galerkin model and from projection onto

snapshots from DNS.
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The resulting model accurately captures the level of turbulent kinetic energy
K for limit cycle oscillations (Fig. 12). However, the dynamics of the transition
from the steady solution could still be improved.

The coefficient α = 10 was chosen in order to balance the influence of the
frequency and the amplitude differences.

After calibration of the model, the frequencies and amplitudes of mode co-
efficients (depicted in Fig. 10) agree with the results obtained from DNS and
projected onto DMD modes.

The value of the objective function (combined error measure) was reduced
almost 400 times, from F = 3.4695 to F = 0.0089.
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Fig. 11. Generalized phase-average mode behavior; phase portraits for the first four DMD
modes and shift-mode (mean field paraboloid, top-left).
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Fig. 12. TKE for the calibrated Galerkin model, compared to DNS.

The obtained low-dimensional (seven-equation) model of flow around the
semi-infinite cylinder, mounted to a wall at one end, experienced the dynamics
known for flows around cylindrical bodies. Due to this, mean-field theory can
be applied. Phase portraits for the mode coefficients (Fig. 11) can be compared
with their counterparts from other experiments, for example for flow past a wall-
mounted, square cylinder [16].

The model lacks information about the mode shapes in the steady state and
their deformation in the transition between the two operating conditions (fixed
point and attractor). Accurate modeling of that transition requires the parame-
terization of mode basis. One of such methods is continuous mode interpolation
[41, 42]. This, as well as the long-term, decaying variation of K, will be the
subject of further research.

5. Summary

In this paper, a model reduction technique was demonstrated using the exam-
ple of 3D, viscous flow around a semi-infinite, wall-mounted cylinder at Re = 400.

DMD of the snapshots from DNS revealed one fundamental frequency related
to the most dominant DMD mode and higher harmonics associated with further
modes. The mode basis was truncated and the low-dimensional subspace was
spanned on first two and six DMD modes, sorted by mode norm.
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The model of the flow was derived using Galerkin projection of the resid-
ual of (approximated) Navier–Stokes equations onto space spanned by the most
dominant modes. Additionally, the use of shift mode stabilized the model and
improved its accuracy.

While the models based on two DMD modes were unacceptable due to large
(or even going to infinity) mode amplitudes, Galerkin models based on six DMD
modes reproduced the high-dimensional data much better. However, the ampli-
tudes of modes, especially the higher ones, were slightly underestimated.

The Galerkin model based on six DMD modes, with additional calibration
based on a genetic algorithm, adequately captured the vortex shedding frequen-
cies for different vortex scales of fully-developed von Karman vortices street. The
dynamics of the transition from steady state to fully-developed wake could be
improved, by enhancing the model using physical modes representing fixed-point
dynamics and, for example, using the technique of continuous interpolation of
mode basis [41].
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