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Random composite: stirred or shaken?
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A James Bond’s (JB) catchphrase “shaken, not stirred" is explored for the
problem of effective conductivity of composites. The superconductivity critical index
s for the conductivity of random non-overlapping disks turns out to be distinctly
different for shaking and stirring protocols. In the case of stirring modeled by random
walks the formula s(τ) = 0.5 + 0.8 3

√
τ is deduced for evolution of the critical index

with the normalized time 0 ≤ τ ≤ 1, which is proportional to the number of random
walks and serving as the disorder measure. Strikingly, the coefficient 0.8 is very close
to the critical index for shaking protocol and 0.5 is the critical index for regular
lattices. The obtained formula for s is based on the analytical solution to the 2D
conductivity problem of randomly distributed disks up to O(x19), where x denotes
the concentration of inclusions and its extension to special 3D composites.
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1. Introduction

Estimation of the effective properties began with Maxwell’s approach
(1873) and Clausius-Mossotti (1850) formula for dilute random composites. The
modern constructive homogenization theory is still of great interest in connection
with vital fields of nanocomposites [1–5], interdependent networks [6], and in
research of an invisibility cloak (see [7] and the works cited therein).

First, we discuss 2D problems. We consider the most prolific case of ide-
ally conducting circular discs with the concentration x, embedded regularly or
randomly in an otherwise uniform locally isotropic host. The conductivity of
the host is normalized to unity. The considered problem is called the super-
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conductivity problem. The term random can be described from the probabilis-
tic point of view. To this end, we introduce a parameter τ , corresponding to
a probabilistic distribution of disks. In particular, regular and, generally, de-
terministic locations of disks correspond to degenerate distributions with a sin-
gle probabilistic event. The effective conductivity is presented then in the form
of series in the volume fraction x (concentration) of the disks on the plane

σ(τ)(x) = 1 + 2x + 2x2 + a
(τ)
3 x3 + a

(τ)
4 x4 + · · · . The effective properties of dilute

composites are described by famous Clausius–Mossotti formula obtained from
the series by cutting the terms O(x3). Rayleigh (1893), and McPhedran et al.

[12, 13], calculated a number terms for the series of regular composites.
Bruggeman (see, e.g., [19]), suggested a self-consistent formalism leading to

the family of effective medium approximations (EMAs) [1, 2, 3, 16, 20]. EMAs
could be applied to various mixtures [21], including even quantum tunneling in
the most intriguing case of nanocomposites [4, 5]. For macroscopically isotropic
composites, the second-order term in x does not depend on the location of in-
clusions, while the third-order term does [8, 9, 10, 11]. This implies that any
EMA is valid only up to the third-order term. For macroscopically anisotropic
composites, the EMA can be applied with confidence only within the first-order
approximation, that is, it is impossible to write a universal formula indepen-

dent of τ . We focus our attention on estimation of the coefficients a
(τ)
m for ran-

domly located inclusions and refer to [16, 17, 18] for the theory of correspond-
ing bounds. Every deterministic or random composite has its series represen-
tation σ(τ) and the same statement holds for the dependence of critical index
on τ .

Recently, a novel approach in the theory of 2D composites was suggested
in [8]. The line of thought dedicated to derivation of an arbitrary long series in
x, and allowing to take into account the particles spatial arrangements (e.g., dis-
tribution of particles in a matrix) was developed. The latter task accomplished
through a direct computer simulations for lattice, or by means of some Monte
Carlo (MC) algorithm (protocol depending on τ) for off-lattice continuum per-
colation models [22].

In the current work, we compare two different protocols: rather intuitive
shaking and stirring. In the context of 2D problems, shaking and stirring mean
locations of the infinitely long unidirectional cylinders (fibers) in which ran-
dom perturbations of fibers take place in the section plane perpendicular to
fibers. We find that the critical index for superconductivity (or conductivity) is
protocol-dependent as well. In the framework of random walks, the interpola-
tion formula is deduced for evolution of the critical index s with the measure of
disorder τ :

(1.1) s(τ) = 0.5 + 0.8 3
√

τ , 0 ≤ τ ≤ 1.
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The method of section can be applied to random protocols for 3D composites
similar to [25], and it is performed in Section 6 for the special type of random
composites.

2. Elements of theory

The deterministic boundary value problem governed by Laplace’s equation,
in the case of non-overlapping disks can be solved exactly for arbitrary locations
of inclusions [8, 9, 10, 11]. The effective conductivity is written as an expression
which contains the geometrical and physical parameters, such as radius of the
disk and material constants, explicitly in a symbolic form. The exact formula
does not contain any free parameters. It is written in the form presented above,

with all coefficients a
(τ)
m being expressed in exact closed form. In practice one

should truncate the series, hence an approximate formula arises.
In the random case, the local conductivity tensor can be considered as a ran-

dom function of spatial variables. First, deterministic boundary value problem
should be solved for arbitrary locations of inclusions, i.e., for all events in the con-
sidered probabilistic space by the method of functional equations [8, 9, 10, 11].
When an approximate formula for the deterministic case is deduced, the ran-
dom case is treated through the ensemble averaging performed through direct

MC computations. More precisely, the mathematical expectation 〈a(τ)
m 〉 is calcu-

lated in the framework of the fixed probabilistic distribution of disks. Thus we

avoid computation of the correlation functions [18], and compute 〈a(τ)
m 〉 through

their weighted moments, conveniently expressed through the sums of products
of Eisenstein functions [8, 9, 10, 11]. These moments yield a direct method for
computation of the effective properties, which does not involve knowledge of the
correlation functions. It follows from simulations for the uniform distribution of
a non-overlapping disks, that in order to reach high accuracy in the effective
conductivity one needs to solve the corresponding boundary value problems for
at least 81 inclusions per cell, repeated at least 1500 times.

The effective properties are obtained after averaging explicit analytical ex-
pressions for the deterministic composites over the probabilistic space. The struc-
ture of the space reflects the actual physical means to create randomness, such
as shaking and stirring. The resulting truncated long series for square, hexagonal
and fully random structures were explicitly presented in [26, 27, 28]. The method
to extract the critical index s from the polynomials was also described.

In the present paper, we construct a set of truncated series considering τ
as a non-negative disorder parameter, τ = 0 corresponds to regular arrays and
τ = ∞ to the theoretically disordered location of disks obeying the uniform non-
overlapping distribution. This sets of polynomial yields the dependence s = s(τ)
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of the critical index on the degree of disorder τ . The effective conductivity is
expected to tend to infinity as a power-law, as the concentration x tends to the
maximal value xc for the hexagonal array σ(x) ≃ A(xc−x)−s. The critical super-
conductivity index (exponent) s for the lattice percolation problem is believed to
be close to 1.3 [29]. The critical amplitude A is a non-universal parameter. From
the phase interchange theorem [33] it follows that in two-dimensions, the super-
conductivity index is equal to the conductivity index t. Various experiments con-
firm the value of t ≈ 1.3 [34, 35, 36, 37]. For regular arrays of cylinders, the index
is much smaller, s = 1

2 [1, 2, 3, 12, 13, 14, 15] and the critical amplitude is also
known with good precision for square and hexagonal lattices [12, 13, 14, 15, 26].

In the general case of continuum percolation, the value of t can be much
larger than 1.3 [38, 39, 40, 41, 42, 43], which is in agreement with the experiments
in [1]. It is believed that continuum percolation problems can be mapped into
the lattice problems with conducting bonds whose conductivity is drawn from
a probability density law [38, 39, 40, 41, 42, 43].

In this paper, the representative hexagonal cell serves as the domain where
random composite is generated as a probabilistic distribution of non-overlapping
disks, by means of some Monte-Carlo algorithm (protocol). The number of in-
clusions per cell can be taken arbitrarily large and still the shape of the cell does
somewhat influences the final result.

In [26, 27, 28], the random sequential addition (RSA) protocol was utilized.
This RSA-protocol produced the following series in concentration [26]: σRSA =
1+2x+2x2 +5.00392x3 +6.3495x4. The coefficients on xk (k = 5, 6, 7, 8) vanish
with very high precision. A good estimate for the critical index s was obtained by
applying the D−Log Padé method [44]. The result is s = 1.28522 for the critical
index. The corrected regular lattice approximation [26, 27, 28], gives a higher
value of s = 1.31561.

3. Random walks

Random walks (RWs) [8, 9], can be considered as a model of mechanical
stirring (!) of the host particles with matrix [45]. Initially, random points (100
points per periodicity cell is taken in simulation) are generated, at first being put
onto the nodes of the hexagonal array. Let each point move in a randomly chosen
direction with some step. Thus, each center obtains a new coordinate. This move
is repeated many times, without particles overlap. If particle does overlap with
some previously generated particle, it remains an overlap of particles blocked
at this step. After a large number of walks (steps), the obtained locations of
the centers can be considered as a sought statistical realization, defining ran-
dom composite. The number of steps N is proportional to the real time scale.
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The coefficients a
(τ)
i for disordered locations do not differ much after 30 steps.

Hence, we introduce the time scale τ = N/30 which is equal to unity when the
full disorder is achieved in our simulations. All the sought properties should be
considered as functions of τ . In particular, approximation polynomials for the
effective conductivity (truncated power series) acquire the “time" dependence, as
well as the critical index s(τ) and the amplitude A(τ) extrapolated from them.
The RW protocol can be applied for arbitrary concentrations including those
very close to xc, where xc = π√

12
stands also for the maximum volume fraction

of 2D composites achieved for the regular hexagonal array of disks.
Below, the series in the truncated numerical form are presented for τ = 1

(3.1) σRW(x) = 1 + 2x + 2x2 + 5.13057x3 + 5.9969x4 + ∆(x).

The coefficients on xk (k = 5, 6, 7, 8) are small. The remainder ∆(x) has a highly
irregular form (see Supplementary Material1), and does not contribute to the
critical properties or general expressions for the conductivity. The approxima-
tion polynomials σRW and σRSA appear numerically as almost the same. The
polynomial σRSA was constructed by fitting at x = 0.1, 0.2, . . . , 0.9, while σRW

by fitting at x = 0.3, 0.35, . . . , 0.9. Always present starting terms, 1 + 2x + 2x2,
ensure that the region of small concentrations is approximated properly. When
the set of points x = 0.1, 0.2, . . . , 0.9 is used to construct σRW, the results for
critical properties appear worse [26, 27, 28].

Let us employ a standard approach to the critical index calculation [44]. To
this end, let us apply the following transformation:

(3.2) z =
x

xc − x

to the original series, to make calculations with different approximants more
convenient. To such transformed series we apply the D − Log transformation.
By applying the Padé approximants Pn,n+1(z) to the transformed series one can
readily obtain the sequence of approximations sn = limz→∞(zPn,n+1(z)). The
result s2 = 1.24078 is reasonably good, but can be further improved.

The corrected regular lattice approximation rests on the idea of corrected
approximants [26, 27, 28, 46, 47, 48]. To start such approximation one has to
select the initial approximation to be corrected, in order to describe regular
hexagonal array of inclusions, namely

(3.3) f∗
0,r(x) =

(0.419645x + 1)3.45214

√
1 − 1.10266x

.

This formula incorporates the critical index 1
2 of the regular hexagonal lattice,

the threshold for the hexagonal lattice and the two starting, effective medium

1See: http://am.ippt.pan.pl/supplementary/am-v68p229-suppl.pdf
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terms from the series. Let us divide the original series by f∗
0,r, extracting the

part corresponding to the random effects only. Then, let us express the new
series in terms of z, apply D−Log transformation and call the transformed series
Kr(z). The transformed series can be processed with different approximants, e.g.,
iterated roots [46, 47, 48]. The following sequence of corrected approximations
the critical index arises:

(3.4) sn = s(0) + lim
z→∞

(z rn(z)),

where rn(z) stands for the iterated root of n-th order[26], constructed for the
series Kr(z) with such a power at infinity that defines constant correction to the
initial approximation s(0) = 1/2. The second-order iterated root has a simple
form

r2(z) =
v0z

2

(v2z2 + (v1z + 1) 2) 3/2
.

The parameters vi are computed from the series Kr(z). The effective conductivity
can be expressed in a closed form [26]. For a very large N = 300, the results
s2 = 1.3367 and A2 = 1.6651 are close to RSA and they tend to depend very
weakly on ∆. If we simply set ∆ = 0, then they change to s = 1.3275 and
A = 1.6837, which supports our view that only the starting four terms are
relevant when the critical region is concerned.

4. Random shaking

Randomness can be also by introduced to the MC simulation by gentle shak-
ing, through the random locations of the centers of the disks [49]. According
to JB, stirring should be avoided and shaking is preferred.

Following [49], let us consider the unit cell with identical inclusions whose
centers are random variables. Each center is uniformly distributed in a disk of the
radius d called the shaking parameter. Centers of these disks form a hexagonal
array on the plane whereas the disks by themselves do not form the periodic
array. Hence, we investigate a random shaking of the disks about the periodic
hexagonal array. The shaking parameter d does not have to be small and therefore
our results are not perturbative. The parameter d is chosen so that the disks
cannot touch each other. The original approach to random shaking (RS) in [49]
did not include the threshold for continuum percolation.

Heuristically, the shaking geometries provide a reasonable approximation for
random mixtures at not very high concentrations. There is not much room for
the inclusions to move around, when their density is relatively high. Therefore,
the inclusions can naturally form some kind of a random shaking pattern. For the
shaking model, the cubic term depends on the random locations of inclusions.
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The expansion is presented in the truncated numerical form as follows:

(4.1) σRS(x) = 1 + 2x + 2x2 + 2.50496x3 + 1.34794x4 + 2.28669x5 + · · · ,

up to to the terms of 18-th order inclusively (see Supplementary Material). Ap-
plying the D − Log Padé technique we find: s1 = 0.944643, s2 = 0.803755,
s3 = 0.79748, s4 = 0.808613, s5 = 0.440396, s6 = 0.329953, s7 = 0.812099,
s8 = 0.816668, and s9 = 0.812114. The critical amplitude for n = 9 equals
1.53383. The result s = 0.812114 is weakly sensitive to the value of shaking pa-
rameter d used for computations. Thus, JB prefers the shaken composite (“mar-
tini") with the critical index of 0.81 − 0.82, which is very much different from
the stirred result 1.3.

5. Temporal crossover for RW

In this section we intend to obtain a dependence of the critical index and
critical amplitude for the RW protocol, dependent on the degree of disorder
quantified by the time τ . The formula is going to be constructed in such a man-
ner that for “zero"-randomness (τ = 0) it is going to behave as the regular
hexagonal lattice. For “maximum"-randomness τ → ∞, we expect to have a ran-
dom composite. All the cases with intermediate degrees of randomness for finite
τ , are expected to fall in between the two cases of τ described above. The critical
behavior of regular composites occurs for x very close to xc, due to the direct
contact of particles in the whole area of composite, with s = 1/2 without an
explicit non-linearity or randomness. On the other hand, randomness dominates
in the case of continuum percolation.

We concede that the two limiting cases of small τ (quasi-regular composite),
and the large τ (random composite), should be considered separately. Final for-
mula will be obtained by matching the two behaviors, as a “regular-to-random”
crossover. In the case of large τ , we literally apply the technique of corrected
regular lattice approximation described above, since it is fairly accurate for the
random case for the number of steps N = 30. For very small τ , we have a regular
hexagonal array of disks, and we consider a peculiar critical phenomena using
different initial approximation, f∗

0,h(τ = 0), in place of f∗
0,r. General form:

f∗
0,h = b0 + b1

1√
xc − x

+ b2

√
xc − x + b3(xc − x)

is the same as in [26, 27, 28], where the coefficients of the series were obtained
from the exact formulae. In the present work, we derive approximating polyno-
mial for the regular case following exactly the same procedure as for the ran-
dom case. The following values for the coefficients in f∗

0,h(τ = 0) are as follows:
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Fig. 1. Interpolation curve for the critical index s(τ) = 0.5 + 0.8 3
√

τ (shown as solid line),
between the two sets of calculations. The upper set corresponds to the initial approximation

f∗

0,r, while the lower set of points to the initial approximation F ∗

0,h.

b0 = −6.94364, b1 = 5.18603, b2 = 3.33683 and b3 = −0.749575. The calcu-
lations of s and A for arbitrary τ , are identical to the random case described
above. Complete expressions for the approximating polynomials for all τ can be
found in Supplementary Material. Interpolation between the two sets of calcu-
lations for the critical index s(τ) and the curve (1.1) are shown and explained
in Fig. 1. Good saturation of the results is achieved already at N = 30. Thus,
for small and moderately large times the value of index is bounded by its reg-
ular and random values, 0.5 ≤ t ≤ 1.3. It is believed that physics of 2D regular
and irregular composites is related to the so-called “necks" certain areas be-
tween closely spaced disks. Randomness (stirring) adds to the regularly formed
necks an additional random component. For a very strong disorder this addi-
tional contribution is, the above part estimated with a good precision for the
shaking protocol. Similar statement holds for the critical amplitude. The initial
approximation f∗

0,r underestimates critical amplitude at small τ , while the initial
approximation f∗

0,h(τ = 0) overestimates the amplitude at large τ . The ampli-
tude is bounded by its random and regular values, 1.71 ≤ A ≤ 5.19. In addition,
not only regular or random cases but the whole spectrum of composites can be
studied.

6. 3D extensions

The homogenization theory of random media [50] demonstrates that the ef-
fective properties of composites can be precisely determined as the mathematical
expectation of the effective constants of the statistically representative cells. Con-
sider a 3D cuboid cell Q000 = {(x, y, z) ∈ R

3 : 0 < x < a, 0 < y < a, 0 < z < h}
of the size a × a × h displayed in Fig. 2. It is assumed that unidirectional
cylinders have the height h and their axis is parallel to the axis OZ. We have
a disks distribution in each section of the cell perpendicular to the axis OZ.
It is assumed that this distribution is isotropic in the plane XY . Let the cell
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Q000 with fixed inclusions represents 3D random composites. Let all the cells
Qklm = {(x, y, z) ∈ R

3 : k < x < a + k, l < y < a + l, m < z < h + m}
(k, l, m run over integers) to be obtained by the same random distribution of
cylinders but with different statistical realizations. Examples of such composites
for regular, shaken and RW distributions are displayed in Fig. 3. According to
the homogenization theory [50], the 3D composite consisting of the cells Qklm

has the effective conductivity tensor

(6.1) S =





σ 0 0
0 σ 0
0 0 σz



 .

The component σ coincides with the effective conductivity of 2D composites
discussed above. The component σz is equal to infinity because of percolation in
the regular and shaken cases displayed in Fig. 3. The random case displayed in
the third picture of Fig. 3 requires a separate investigation.

Fig. 2. Unidirectional cylinders in the 3D cuboid cell of the size a × a × h.
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y

z

x

y

z

x

y

z

Fig. 3. 3D composites corresponding to regular, shaken and RW 2D structures.
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7. Conclusion

The main result of the present paper is the interpolation formula (1.1) de-
duced for evolution of the critical index. We conclude that both shaking and stir-
ring can, in principle, produce the same effective conductivity. However, shaking
(RS protocol) is preferable to stirring (RW protocol) because in practice it is
easier to control the shaking parameter d, then the stirring parameter τ . On
the other hand, stirring is much better than shaking when one needs to create
a random composite.

Interpolation is suggested for evolution of the critical index with numbers
of steps (time), with a small-time limit dominated by regular composite critical
behavior, and large-time limit dominated by random composite. Two different
methods had to be applied to capture the different behaviors. Modern 3D print-
ing techniques might be able eventually to produce actual composite from any
pattern generated by any protocol.

Note that in the mechanics of continuum, the anti-plane elasticity can be
solved by analogy to 2D conductivity problem. Hence, formula (1.1) is valid for
the anti-plane elasticity problem for fibrous composites.
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