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Abstract

This paper is concerned with micropolar thermoelastic materials with double porosity 
structure. The system of the equations of the assumed model is based on the equations of motion, 
equilibrated stress equations of motion and heat conduction equation for material with double 
porosity. The explicit expressions for the fundamental solution of the system of equations in case 
of steady vibrations are presented. The desired solutions are constructed by the use of elementary 
functions. Some basic properties are also established. The aspect of the particular cases of 
Scarpetta et al.[25], Scarpetta [42], Ciarlette et al [45] and Svanadze [51] are also deduced form 
the present investigation.
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1. Introduction

Porous media theories play an important role in many branches of engineering including 
material science, the petroleum industry, chemical engineering, biomechanics and other such 
fields of engineering. The construction and the intensive investigation of the theories of continua 
with microstructures arise by the wide use of porous materials into engineering and technology. 
Representation of a fluid saturated porous medium as a single phase material has been virtually 
discarded. The material with the pore spaces such as concrete can be treated easily because all 
concrete ingredients have the same motion if the concrete body is deformed. However the 
situation is more complicated if the pores are filled with liquid and in that case the solid and 
liquid phases have different motions. Due to these different motions, the different material 
properties and the complicated geometry of pore structures, the mechanical behavior of a fluid 
saturated porous thermoelastic medium becomes very difficult. So researchers from time to time, 
have tried to overcome this difficulty and we see many porous media in the literature. A brief 
historical background of these theories is given by de Boer [1,2].

As far as modern era is concerned Biot [3] proposed a general theory of three-
dimensional deformation of fluid saturated porous salts. Biot theory is based on the assumption 
of compressible constituents and till recently, some of his results have been taken as standard 



references and basis for subsequent analysis in acoustic, geophysics and other such fields. 
Another interesting theory is given by Bowen [4], de Boer and Ehlers [5] in which all the 
constituents of a porous medium are assumed to be incompressible. The fluid saturated porous 
material is modeled as a two phase system composed of an incompressible solid phase and 
incompressible fluid phase, thus meeting the many problems in engineering practice, e.g. in soil 
mechanics. One important generalization of Biot’s theory of poroelasticity that has been studied 
extensively started with the works by Barenblatt et al. [6], where the double porosity model was 
first proposed to express the fluid flow in hydrocarbon reservoirs and aquifers.

The double porosity model represents a new possibility for the study of important 
problems concerning the civil engineering. It is well-known that, under super- saturation 
conditions due to water of other fluid effects, the so called neutral pressures generate unbearable 
stress states on the solid matrix and on the fracture faces, with severe (sometimes disastrous) 
instability effects like landslides, rock fall or soil fluidization (typical phenomenon connected 
with propagation of seismic waves). In such a context it seems possible, acting suitably on the 
boundary pressure state, to regulate the internal pressures in order to deactivate the noxious 
effects related to neutral pressures; finally, a further but connected positive effect could be 
lightening of the solid matrix/fluid system.

Wilson and Aifanits [7] presented the theory of consolidation with the double porosity. 
Khaled, Beskos and Aifantis [8] employed a finite element method to consider the numerical 
solutions of the differential equation of the theory of consolidation with double porosity 
developed by Aifantis[7]. Wilson and Aifantis [9] discussed the propagation of acoustics waves 
in a fluid saturated porous medium. The propagation of acoustic waves in a fluid-saturated 
porous medium containing a continuously distributed system of fractures is discussed. The 
porous medium is assumed to consist of two degrees of porosity and the resulting model thus 
yields three types of longitudinal waves, one associated with the elastic properties of the matrix 
material and one each for the fluids in the pore space and the fracture space.

Beskos and Aifantis [10] presented the theory of consolidation with double porosity-II 
and obtained the analytical solutions to two boundary value problems. Khalili and Valliappan 
[11] studied the unified theory of  flow and deformation in double porous media. Aifantis [12-
15] introduced a multi-porous system and studied the mechanics of diffusion in solids. 
Moutsopoulos et al. [16] obtained the numerical simulation of transport phenomena by using the 
double porosity/ diffusivity continuum model.  Khalili and Selvadurai [17] presented  a  fully 
coupled constitutive model for thermo-hydro –mechanical analysis in elastic media with double 
porosity structure. Pride and Berryman [18] studied the linear dynamics of double –porosity 
dual-permeability materials. Straughan  [19] studied the  stability and uniqueness in double 
porous elastic media .

Svanadze [20-24] investigated some problems on elastic solids, viscoelastic solids and 
thermoelastic solids with double porosity. Scarpetta et al. [25, 26] proved the uniqueness 



theorems in the theory of thermoelasticity for solids with double porosity and also obtained the 
fundamental solutions in the theory of thermoelasticity for solids with double porosity.

Nunziato and Cowin [27] developed a nonlinear theory of elastic material with voids. 
Later, cowin and nunziato [28] developed a theory of linear elastic materials with voids for the 
mathematical study of the mechanical behavior of porous solids. They also considered several 
applications of the linear theory by investigating the response of the materials to homogeneous 
deformations, pure bending of beams and small amplitudes of acoustic waves. Nunziato and 
Cowin have established a theory for the behavior of porous solids in which the skeletal or matrix 
materials are elastic and the interstices are voids of material. 

Iesan and Quintanilla [29] used the Nunziato-Cowin theory of materials with voids to 
derive a theory of thermoelastic solids, which have a double porosity structure. This theory is not 
based on Darcy’s law. In contrast with the classical theory of elastic materials with the double 
porosity, the double porosity structure in the case of equilibrium is influenced by the 
displacement field. Marin et al. [56] presented a new model for micropolar bodies with double 
porosity.

The mechanical behavior of solids with voids, solids containing microscopic components, 
cannot be described by means of the classical theory of elasticity. In reality, almost all materials 
possess microstructure and in such materials, microstructural motions cannot be ignored. Eringen 
[30] introduced the theory of micropolar elasticity which  has aroused much interest in recent 
years because of its possible utility in investigating the deformation properties of solids for 
which the classical theory in adequate. The micropolar theory has been useful in investigating 
material consisting of bar like molecules, which exhibit the microrotational effects and can 
support body and surface couples. A micropolar continuum is a collection of interconnected 
particles in the form of small rigid bodies undergoing both translational and rotational motions. 
The force at a point of the surface element of bodies is completely characterized by stress vector 
and couple stress vector at that point.

The linear theory of micropolar thermoelasticity was developed by extending the theory 
of micropolar continua thermal effect. The comprehensive review on this theory was given by 
Eringen[31] and Nowacki [32]. Touchert et al. [33] derived the basic equations of the linear 
theory of micropolar coulpled thermoelasticity. Chandrasekharaiah [34] developed a heat flux 
dependent micropolar thermoelasticity. Boschi and Iesan [35] extended a generalized theory of 
micropolar thermoelasticity that permits the transmission of heat as thermal waves at finite 
speed.

The construction of fundamental solutions has great importance in many mathematical, 
physical  and engineering problems.To investigate the boundary value problems of the theory of 
elasticity and thermoelasticity by potential method, it is necessary to construct a fundamental 
solution of systems of partial differential equations and to establish their basic properties 



respectively. Hetnarski [36,37]studied the fundamental solutions in the classical theory of 
coupled thermoelasticity. The information related to fundamental solutions of differential 
equations is contained in the books of H o rmander [38,39].Various authors [41-54] have derived 
the fundamental solutions in different theories of continuum mechanics.
       In the present paper, the fundamental solution of system of equations in the case of steady 
vibrations in terms of elementary functions are constructed and basic properties of the 
fundamental solution are established. Some particular cases of interest have also been deduced.
2. Basic equations

Let 1 2 3( , , )x x xx be the point of the Euclidean three-dimensional space 
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D and let t denote the time variable. 

Following Marin et al. [56], the basic equations for isotropic, homogeneous micropolar 
thermoelastic material with double porosity structure in the absence of body forces, body 
couples, extrinsic equilibrated body forces and heat sources are:

   
    0 0

1 1 3 1 0 1

1 0 3 2 2 0 2

*
0 1 0 2

graddiv curl grad grad grad

2 graddiv curl grad grad

div div

div  div

div

j

b d T u

c d

b b T c

b d T d

K T T T

        

       

         

         

   

        

       

        

        

   

u u

u

u

u

u













  




*

0T C T                          (1)

where 1 2 3( , , )u u uu = is the displacement vector; 1 2 3( , , )  = is the microrotation 

vector,  and  are Lame’s constants;   is the mass density; j is cofficient of inertia;

   3 2 t     ;  t is the linear thermal expansion; * C is the specific heat at constant strain;   iu

is the displacement components; 1 and 2 are coefficients of equilibrated inertia; ' and  ' are 

the volume fraction fields corresponding to pores  and fissures respectively ; *K is the 

coefficient of  thermal conductivity and 1 1 20 0 0, ,  , , , , , ,dd b cb     are constitutive coefficients;   ij

is the Kronecker’s delta; T is the temperature change measured form the absolute temperature 

 0 0 0T T  ; a superposed dot represents differentiation with respect to time variable t and  is 

the Laplacian operator.

If the displacement vector u , microrotation vector  ,volume fractions fields ,  and

temperature distribution T have a harmonic time variation as                          

                   , , , , ( , t) Re { , , , , }( ) i tT T e        u x u x 
                                       (2)



Using (2) in (1) yield the system of steady vibrations as
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where  is the oscillation frequency  0 ,  and
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Introducing the matrix differential operator
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mn is the Kronecker’s delta and mrn is the alternating symbol.

The system (3) can be written as



                          x( ) ( ) E D U x 0

where ( , , , ,T) U u  is a nine-component vector function on 3.R

We assume that 
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the elliptic differential operator [38].

Definition: The fundamental solution of the system (3) (the fundamental matrix of operator E )

is the matrix
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where  is the Dirac delta,   
9 9gh


I is the unit matrix, and 3.Rx

Now we construct the matrix (x) in terms of elementary functions and also establish some 

basic properties.

3. Fundamental solution of the system of equations of steady vibrations 

We consider the system of equations
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where 'F and ''F are three-component vector functions on 3R ; ' '',f f and '''f are scalar 

functions on 3R .

The system (6) may be written in the form
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where trE is the transpose of matrix E , ' '' ' '' '''( , , , , )f f f F FQ is the nine-component vector 

function on 3,R and 3Rx .

Applying the operator div to first and second equations of system (6), we get
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The system (8) can be written as
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The system (8) may be written as 
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where 2 , 1, 2,3, 4,5m m  are the roots of the equation 1( ) 0   (with respect to  ).
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It is evident that 12 21( ) ( ).r r   From Eqs. (18) and (20) ,by virtue of Eqs.(12) and (23), we 
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In view of Eqs. (7) and (25), from Eq. (22) ,it is found that = tr trU N E U .  It is evident that

tr tr  N E and hence

( ) ( ) = (Δ)x xE D N D                                        (27)



We assume that

                      2 2 0m n   ,       , 1,2,...,7m n  and .m n

Let

6

19 9
1

7

3, 3 2
5

4

77 88 99 3
1

(x) ( ) , (x) (x),

(x) (x),

(x) (x) (x) (x),

(x) 0, 1, 2,3 , 1, 2,...,9

ej x mm n n
n

m m n n
n

n n
n

ej

Z Z s

Z s

Z Z Z s

Z m e j e j










 




 



  

   







Z D

where

x

6
2 2 1

1
1

7
2 2 1

2
5

4
2 2 1

3
1

1
(x)

4 x

( - ) , 1, 2,3, 4,5,6

( - ) , 5,6,7

( - ) , 1, 2,3, 4

ni
n

l m l
m
m l

e m e
m
m e

j m j
m
m j

e

s l

s e

s j




 

 

 
















 

 

 

 







    (28)

Therefore, the matrix Z is the fundamental matrix of operator ( ) , that is

                                                ( ) (x) (x) (x) Z I (29)

Introducing the matrix

                                                 (x) ( ) (x)x N D Z    (30)

On using (29), in Eqs. (27) and (30), we obtain
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Hence, (x) is the solution of Eq.(5).

We will prove the following theorem.



Theorem 1. The matrix (x) defined by Eq. (31) is the fundamental solution of system (3).

Remark. The fundamental solution (x) of system (3) is constructed for

0 ( , 1, 2,...,7and )m n m n m n     . Evidently, by the above method, it is possible to 

construct the fundamental solution of system (3) for the cases where 0and .m m n   

4. Basic properties of the matrix (x)

Corollary 1. Each column of the matrix (x) is the solution of the system (3) at every point 
3x R except the origin.

Corollary 2.  If conditions (4) are satisfied, then the fundamental solution of the system
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Lemma 2. If conditions (4) are satisfied and 3 \{ }x R 0 , then
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Proof.   We obtain Eqs.(34) on using the following equality
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Other formulae of Theorem 2 can be proved in the similar manner.

Theorem 3. The relations
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From Eq. (41), in the neighborhood of the origin , we have

5
1(1)

1
1 0 4

5 5 5
2 (3)

1 1 1
1 1 14

7 7 7
(2) 2 (4)

1 1 1
6 6 6

1 1
( ) 2

8 !

1 2 1
( )

8 4

1 2 1
( ) ( )

8 4

n n
nm

m
m n

m m m m m
m m m

e e e e e
e e e

i
v

n

i
v v v

i
v v v


 

  
  

   
   




 

  

  

 
   

 
  

       
  

  
         

 

  

  

x x x

x x
x

x x x
x

  (42)

where
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Therefore, from Eq. (43), in the neighborhood of the origin , we obtain
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By virtue of Eq. (42) and the inequalities
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From Eq. (41), we get

(3) (4)( ) grad div (x) curlcurl (x)  G x (46)



On using Eqs.(44) and (45) in Eq. (40), we obtain  the relation 1(38) for , 1,2,3.g h 

Similarly, other formulae of Eq. (38) can be proved.

We can obtain inequalities (39) from Eqs.(38) as
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Hence, the matrix ( )x is the singular part of the fundamental matrix ( )x in the neighborhood 

of the origin.

5. Special cases

(i) Neglecting the thermal and micropolarity effect in system of equations(3), yield the 
system of steady vibrations for homogeneous isotropic elastic material with double 
porosity as :
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          (47)                 

The derived fundamental solution for  the system of equations (47) is similar as 
obtained by Svanadze [51] .

(ii) In the absence of  single porosity parameter in the system of equations (3), we obtain 
the system of steady vibrations for homogeneous isotropic micropolar thermoelastic 
material with voids as
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Obtaining the fundamental solution of the system of equations (48) is same as given 
by Ciarlette et al.[45].

(iii) In absence of single porosity parameter and thermal effect in the  system of 
equations(3),  the system of steady vibrations for homogeneous isotropic micropolar 
elastic material with voids is 
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The resulting fundamental solution obtained from the system of equations (49) is in 
agreement with those obtained by Scarpetta [42].

(iv) In absence of micropolarity effect, we obtain the system of steady vibrations for 
homogeneous isotropic thermoelastic material with double porosity as :
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(50)

The derived fundamental solution from the system of equations (50) is similar as 
obtained by Scarpetta et al.[25] with some modification.

6. Concluding remarks
1. The constructed fundamental solution ( )x of the system (3) can be used

(i) to  solve the boundary value problems by using boundary element method.  
(ii) for constructing the surface and volume potentials and establishing their basic 
properties[40]
(iii) for investigating three-dimensional boundary value problems in micropolar 
thermoelastic materials with double porosity   by potential method [40]

     2.   By the method applied in this paper, it is possible to represent the fundamental solutions     
of the systems of equations in the different theories of continuum mechanics.

REFERENCES

1. R. DE BOER, Theory of Porous Media , Springer-Verleg, New York, 2000.
2. R. DE BOER., W. EHLERS., A Historical review of the foundation of porous media theories, 

Acta Mech.,74, 1-8, 1988.
3. M. A. BIOT, General theory of three-dimensional consolidation, J. Appl. Phys., 12,155-164,

1941.
4. R. M. BOWEN, Incompressible Porous media models by use of the theory of mixtures, Int. J. 

Engg. Sci, 18,1129-1148, 1980.
5. R. DE BOER, W. EHLERS, Uplift, friction and capillarity-Three fundamental effects for liquid 

saturated porous solids, Int.  J. Solid Struc.,26, 43-57, 1990.



6. G. I. BARENBLATT., I. P. ZHELTOV, I. N. KOCHINA, Basic Concept in the theory of 
seepage of homogeneous liquids in fissured rocks (strata), J. Appl. Math. Mech.24, 1286-1303,
1960.

7. R. K. WILSON, E. C. AIFANTIS, On the theory of consolidation with double porosity, Int. J. 
Engg. Sci.,20(9), 1009-1035, 1982.

8. M. Y. KHALED, D. E. BESKOS, E. C. AIFANTIS, On the theory of consolidation with double 
porosity-III, Int.J. Numer.Analy. Meth. Geomech., 8,101-123, 1984.

9. R. K. WILSON., E. C. AIFANTIS, A Double Porosity Model for Acoustic Wave propagation in 
fractured porous rock, Int. J. Engg. Sci., 22, no. 8-10:1209-1227, 1984

10. D. E. BESKOS , E. C. AIFANTIS, On the theory of consolidation with Double Porosity-II, Int. 
J. Engg. Sci. , 24(111), 1697-1716, 1986.

11. N. KHALILI, S. VALLIAPPAN, Unified theory of flow and deformation in double porous 
media, Eur.J. Mech. A, Solids, 15, 321-336 , 1996.

12. E. C. AIFANTIS, Introducing a multi –porous medium, Developments in Mechanics, 8, 209-
211, 1977.

13. E. C. AIFANTIS, On the response of fissured rocks, Developments in Mechanics, 10, 249-253,
1979.

14. E. C. AIFANTIS, On the Problem of Diffusion in Solids, Acta  Mechanica.,37, 265-296, 1980.
15. E. C. AIFANTIS, The mechanics of diffusion in solids, T.A.M. Report No. 440, Dept. of Theor. 

Appl. Mech., University of Illinois, Urbana, Illinois, 1980.
16. K. N. MOUTSOPOULOS, I. E. ELEFTHERIADIS, E. C. AIFANTIS, Numerical Simulation of 

Transport phenomena by using the double porosity/ diffusivity Continuum model, Mechanics 
Research Communications, 23( 6), 577-582, 1996.

17. N. KHALILI , A. P. S. SELVADURAI, A Fully Coupled Constitutive Model for Thermo-hydro –
mechanical Analysis in Elastic Media with Double Porosity, Geophys. Res. Lett., 30, 2268-2271, 
2003.

18. S. R .PRIDE., J. G.BERRYMAN., Linear Dynamics of Double –Porosity Dual-Permeability 
Materials-I, Phys. Rev. E 68,036603, 2003.

19. B. STRAUGHAN , Stability and Uniqueness in Double Porosity Elasticity, Int. J. Eng. Sci.,65, 
1-8, 2013

20. M. SVANADZE , Fundamental solution in the theory of consolidation with double porosity, 
J.Mech. Behav. Mater.,16, 123-130, 2005.

21. M. SVANADZE, Dynamical Problems on the Theory of Elasticity for Solids with Double 
Porosity, Proc. Appl. Math. Mech.,10, 209-310, 2010

22. M. SVANADZE, Plane Waves and Boundary  Value Problems in the Theory of Elasticity for 
solids with Double Porosity, Acta Appl. Math., 122, 461-470, 2012.

23. M. SVANADZE , On the Theory of Viscoelasticity for materials with Double Porosity, Disc. 
and Cont. Dynam. Syst.Ser. B , 19(7), 2335-2352, 2014.

24. M. SVANADZE , Uniqueness theorems in the theory of thermoelasticity for solids with double 
porosity, Meccanica, 49, 2099-2108, 2014.



25. E. SCARPETTA, M. SVANADZE., V. ZAMPOLI, Fundamental Solutions in the Theory of 
Thermoelasticity for Solids with Double Porosity, J.Therm. Stresses, 37(6),727-748, 2014.

26. E. SCARPETTA , M. SVANADZE , Uniqueness Theorems in the quasi-static Theory of 
Thermo elasticity for solids with Double Porosity, J. Elasticity.,117, 2014.

27. J.W. NUNZIATO, S.C. COWIN, A nonlinear theory of elastic materials with voids, Arch. Rat. 
Mech. Anal., 72, 175-201, 1979. 

28. S.C. COWIN, J. W. NUNZIATO, Linear elastic materials with voids, J. Elasticity, 13, 125-147, 
1983.

29. D. IESAN., R. QUINTANILLA, On a theory of thermoelastic materials with a double porosity 
structure, J. Therm. Stresses, 37, 1017-1036, 2014.

30. A. C. ERINGEN, Linear theory of micropolar elasticity, Journal of Applied Mathematics and 
Mechanics, 15, 909-923, 1966.

31. A.C. ERINGEN , Foundations of micropolar thermoelasticity, International centre for 
Mechanical science, Udline Course and lectures, No. 23, Springer-Verlag, Berlin,1970.

32. W. NOWACKI, Theory of  Asymmetric Elasticity, Oxford:Pergamon. 1986.
33. T. R. TOUCHERT, W.D. JR. CLAUS , T. ARIMAN. The linear theory of micropolar 

thermoelasticity, International journal of engineering science, 6, 37-47, 1968.
34. D. S. CHANDRASEKHARAIAH, Heat flux dependent micropolar thermoelasticity,

International journal of engineering science, 24, 1389-1395,1986.
35. E. BOSCHI , D. IESAN, A generalized theory of micropolar thermoelasticity, Meccanica, 7, 

154-157, 1973.
36. R. B. HETNARSKI, The fundamental solution of the coupled thermoelastic problemfor small 

times, Archwm. Mech.Stosow., 16, 23-31, 1964
37. R. B. HETNARSKI, Solution of the coupled problem of thermoelasticity in form of a series of 

functions, Archwm. Mech.Stosow., 16, 919-941, 1964
38. L. H oRMANDER, Linear Partial Differential operators. Springer-Verlag: Berlin ,1963.
39. L. H oRMANDER, The analysis of linear partial differential Operators II: Differential

operators with constant coefficients. Springer-Verlag: Berlin ,1983.
40. V. D. KUPRADZE, T. G. GEGELIA, M. O. BASHELEISHVILI, T. V. BURCHULADZE,

Three- Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity,
North-Holland, Amsterdam, New York, Oxford, 1979.

41. R. BURRIDGE , C. A. VARGAS, The Fundamental Solution in Dynamic Poroelasticity, 
Geophysical Journal of the Royal Astronomical Society,  58, 61–90, 1979.

42. E. SCARPETTA, On the fundamental solution in micropolar elasticity with voids, Acta 
Mechanica, 82, 151–158, 1990.

43. R. DE BOER, M. SVANADZE, Fundamental Solution of the System of Equations of Steady 
Oscillations in the Theory of Fluid-saturated Porous Media, Transport in Porous Media, 56,  
39–50, 2004.

44. M. SVANADZE,  Fundamental solutions of the equations of the theory of  thermoelasticity with 
microtemperatures, J. Thermal stresses, 27, 151-170, 2004.



45. M CIARLETTE., A. SCALIA, M. SVANADZE, Fundamental solution in the theory of 
micropolar thermoelasticity for  materials with voids, J. Thermal stresses, 30, 213-229, 2007.

46. M. SVANADZE ,  Fundamental solutions of the system of equations of steady oscillations in the 
theory of thermomicrostretch elastic solids, International journal of engineering science,43, 417-
431,2005.

47. M. SVANADZE, R. TRACINA, Representations of Solutions in the Theory of Thermoelasticity 
with Microtemperatures for Microstretch Solids, Journal of Thermal Stresses, 34, 161–178, 
2011.

48. R. KUMAR, T.KANSAL, Fundamental solution in the theory of thermomicrostretch elastic  
diffusive solids, ISRN Applied Mathematics,  1-15, 2011.

49. R. KUMAR, T.KANSAL, Fundamental solution in the theory of micropolar thermoelastic
diffusion with voids, computational and applied mathematics, 31, 169-189, 2012.

50. K. SHARMA, P. KUMAR, Propagation of plane waves and fundamental solution in 
thermoviscoelastic medium with voids, Journal of thermal stresses, 36, 94-111, 2013.

51. M.  SVANADZE., Fundamental solutions in the linear theory of consolidation for elastic solids 
with double porosity, Journal of mathematical science, 195, no. 2, 258-268, 2013  .

52. S. SHARMA, K. SHARMA, R. R. BHARGAV, Plane wave and fundamental solution in an 
electro-microstretch elastic solids, Afrika Matematika, 25, 483-497, 2014.

53. R. KUMAR, D. TANEJA, K. KUMAR, Fundamental and plane wave solution in swelling 
pororus medium, Journal of the African mathematical Union, Afrika matematika, 25, no.2, 397-
410, 2014.

54. R. KUMAR, M. KAUR , S. C. RAJVANSHI, Representation of fundamental and plane waves 
solutions in the theory of micropolar generalized thermoelastic solid with two temperatures,
Journal of Computational and Theoretical Nanoscience, 12, 691-702, 2015.

55. T. GEGELIA , L. JENTSCH, Potential  Methods in Continuum Mechanics, Georgian 
mathematical Journal, 1, 599-640, 1994.

56. M. MARIN, S. VLASE, M. PAUN, Considerations on double porosity structure for micropolar 
bodies, AIP Advances, 5, doi:10.1063/1.4914912, 2015.


