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Laminar and turbulent convective heat transfer in a ventilated and non-
ventilated cavity was analyzed by heatlines. Heatlines show that in non-ventilated
cavities it is possible to estimate the energy path using the streamlines for turbulent
flow regime. In ventilated cavities, heatlines allow to observe that thermal energy
travels along the top, by the bottom or by both paths due to the inertial force, the
buoyant force or a combination of both, respectively. In the laminar regime, these
situations are well established for the Rayleigh number (Ra). Nevertheless, in the
turbulent regime, it was found that the combined effect of the inertial and buoyant
forces on the energy path is disrupted when Ra > 109. Furthermore, heatlines in con-
junction with temperature and velocity profiles allow to see that natural convection
is preferred when cooling is required, while the forced convection is a better choice if
heating is needed.
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Notations

C1ε, C2ε, C3ε, Cµ coefficients of the turbulence model,
Cp specific heat, J kg−1 K−1,
Gk buoyancy production/destruction of kinetic energy,

g gravity acceleration, 9.81 m · s−2,
H heat function,
H∗ dimensionless heat function (H/ΓT ∆T ),
J thermal energy flow vector per unit area, W · m−2,
k turbulence kinetic energy, m2 · s−2,
L length and height of the cavity, m,
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La distance of the opening, m,
n normal unit vector,
Nu average Nusselt number,
P pressure, N · m−2,
P k production of turbulent kinetic energy,
Pr Prandtl number (µCp/λ),
q heat flux, W · m−2,
Ra Rayleigh number (ρgβ∆TL3/µα),
Re Reynolds number (ρUinL/µ),
T temperature, K,
T ∗ dimensionless temperature (T − TC/TH − TC),
T0 average temperature (TH + TC/2),
Uin inlet velocity (Reµ/ρL),
U0 buoyancy reference velocity (gβ∆TL)0.5,
u, v horizontal and vertical velocities, m · s−1,
u∗, v∗ dimensionless horizontal and vertical velocity components (u/U0, v/U0),
x, y dimensional coordinates, m,
x∗, y∗ dimensionless coordinates (x/L, y/L).

Greek symbols

α thermal diffusivity, m2 · s−1,
β thermal expansion coefficient, K−1,
∆T temperature difference (TH − TC),
ε rate of dissipation of k, m2 · s−3,
λ thermal conductivity, W · m−1 · K−1,
µ dynamic viscosity, kg · m−1 · s−1,
µt turbulent viscosity, kg · m−1 · s−1,
ρ density, kg · m−3,
σk Prandtl number for k,
σε Prandtl number for ε,
σT Prandtl number for T ,
ψ stream function,
ψ∗ dimensionless stream function (ψ/U0L).

Subscripts

conv convective,
in inlet,
ref reference for calculating the heat function.

1. Introduction

Generally, in transport phenomena, the study of the behavior of the
variables is carried out with isolines, while in fluid flows, it is common to use
streamlines to visualize flow fields. In conduction heat transfer problems where
the heat flux is perpendicular to the isothermals, isotherms are used for the
analysis of results. However, heat transfer by convection involves a combination
of both heat diffusion and advection of thermal energy, which makes convec-
tion a more complex phenomenon than conduction. This complexity has led the
scientific community to draw upon streamlines and isothermals for interpreta-
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tion and discussion of results of problems involving heat convection. However,
isotherms and streamlines only provide the temperature field and the path of
the fluid flow, respectively. If the interest lies in knowing the path of the thermal
energy, it is necessary to analyze the isotherms and the streamlines to estimate
the heat flux path; this situation may lead to misinterpretations of the results
in problems that are highly advective, because the energy flow is not necessarily
perpendicular to the isothermals in this type of problems.

To overcome this limitation in the analysis of convective energy transport,
Kimura and Bejan proposed a visualization tool for two-dimensional flows that
allows to observe the actual path of the thermal energy flow [1], taking into
account the diffusive and advective contributions. From the energy equation,
and using an equivalent development to the deduction of the stream function,
the authors mathematically defined the heat function. The isolines of the heat
function are called heatlines, and they are the appropriate tool to visualize the
path of thermal energy. The authors obtained a Poisson-type equation which was
solved numerically in order to get the heatlines. In a later work, Aggarwal and
Manhapra determined the heat function by direct integration of the equations
that define it [2]. Therefore, the authors concluded that the iterative solution of
the Poisson equation method is not necessary. Zhao et al. showed that similar
results are obtained if the heat function is determined by the Poisson equation
method or by the direct integration method [3]. The authors also concluded
that the convergence errors are different for the two different methods. Recently,
Biswal and Basak found that the magnitudes of heat functions change drasti-
cally with the selection of the location of the heat function data. Nevertheless,
the heat flux patterns remain the same irrespective of the heat function bound-
ary conditions [4]. In heat transfer by convection, many studies on rectangular
cavities have used heatlines for the interpretation and analysis of results. Such
studies include natural convection problems [5–8], mixed convection [9, 10] and
conjugated heat transfer [11–13]. However, all these studies were developed for
laminar flow regime problems. In turbulent regime flow, only two studies on
convective heat transfer problems have used heatlines. One study concerns the
turbulent natural convection problem of a plane plate dissipating heat to the
environment [14], and the second one is a study of cooling in a gas turbine [15].
Nevertheless, it is important to apply Bejan’s heatlines to systems involving
turbulent flow regime which is present in such an important daily processes as
ventilation of buildings. The knowledge of the actual path of the thermal en-
ergy flow can help to improve the bioclimatic building design and passive solar
systems.

Therefore, the purpose of this work is to analyze and visualize the results
in laminar and turbulent forced, mixed and natural convection in closed and
ventilated square cavities by using heatlines. Thereby, for the first time it will
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be possible to depict the path of the thermal energy inside cavities with tur-
bulent flow using heatlines. In order to handle this situation, two problems are
considered. The first problem studies the heat transfer by natural convection in
a square cavity heated on the vertical walls. The second problem studies the
convection heat transfer in a ventilated cavity. In the latter problem, three cases
are analyzed: (i) forced convection (Ri = 0.1), (ii) mixed convection (Ri = 1)
and (iii) natural convection (Ri = 10).

2. Physical model

The steady state convective heat transfer in a square cavity is considered.
The cavity, with the length L, is filled with air (Pr = 0.71). In order to es-
tablish two-dimensional flow, the dimension in “z” direction is supposed to be
much longer than dimensions in “x” and “y” directions. Air inside the cavity
is considered as a continuum, isotropic and homogeneous medium that behaves
as a Newtonian and incompressible fluid. On the other hand, the medium is
affected only by the gravitational field acting in “y” negative direction. Finally,
physical properties are considered independent of pressure and temperature, ex-
cept for the density in the buoyancy term, where the Boussinesq approximation
is used.

2.1. Physical model of the closed cavity

The enclosure was modeled as a closed cavity heated differentially in the
horizontal direction as shown in Fig. 1a. The temperature on the left vertical
wall (TH) is higher than on the right vertical wall (TC), whereas the upper and
lower horizontal walls are adiabatic. On the wall surfaces, non-slip condition
prevails, so the velocity components are equal to zero on all of them.

(a) (b)

Fig. 1. Physical model: (a) closed cavity and (b) ventilated cavity.
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2.2. Physical model of the ventilated cavity

The ventilated cavity has two openings. The inlet is located on the bottom
side of the left vertical wall. The outlet is located on the top side of the right
vertical wall. The dimensions of the openings are La, where L = 10La. Moreover,
air flow enters at the velocity Uin and temperature Tin = TC , which is equal to
the temperature surface of the right vertical wall, which, in turn, is at a lower
temperature than the left vertical wall. Figure 1b shows the physical model of
the ventilated cavity.

3. Mathematical model

3.1. Governing equations

The governing equations for the turbulent convective heat transfer in a steady
state are the conservation equations of mass, momentum and energy averaged
in time. These equations are given below:

∂(ρ ui)

∂ xi
= 0,(3.1)

∂(ρ uiuj)

∂ xj
= −

∂P

∂ xj
+

∂

∂ xj

(

µ
∂ ui

∂ xj
− ρu′iu

′

j

)

− ρ giβ(T − To),(3.2)

∂(ρ uiT )

∂ xi
=

∂

∂ xi

(

λ

Cp

∂T

∂ xi
− ρu′iT

′

)

.(3.3)

For the laminar flow, it is clear that both the Reynolds stress tensor and the
turbulent heat flux vector are null:

ρu′iu
′

j = 0,(3.4)

ρu′iT
′ = 0.(3.5)

In the case of turbulent flow, the Reynolds stress tensor is determined by the
Boussinesq hypothesis, whereas the turbulent heat flux vector is obtained apply-
ing the Reynolds analogy. This way, the Reynolds stress tensor and the turbulent
heat flux vector are modeled using the following mathematical expressions:

ρu′iu
′

j = −µt

(

∂ ui

∂ xj
+
∂ uj

∂ xi

)

+
2

3
ρ kδij ,(3.6)

ρu′iT
′ = −

µt

σt

∂T

∂ xi
.(3.7)

On the other hand, the turbulent viscosity is computed as

(3.8) µt = Cµ
ρ k2

ε
.
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Finally, to close the system of equations, it is necessary to include the equations
of turbulent kinetic energy transport and turbulent kinetic energy dissipation:

∂(ρ uik)

∂ xi
=

∂

∂ xi

[(

µ+
µt

σk

)

∂ k

∂ xi

]

+ Pk +Gk − ρε,(3.9)

∂(ρ uiε)

∂ xi
=

∂

∂ xi

[(

µ+
µt

σε

)

∂ε

∂ xi

]

+ [C1ε(Pε +Gε + C3ε) − C2ερ ε]
ε

k
.(3.10)

where Pk andGk are the shearing production and the generation/destruction of
buoyancy turbulent kinetic energy. The values of the coefficients for the turbu-
lence model are Cµ = 0.09, C1ε = 1.44, C2ε = 1.92C1ε = tanh v/u, σk = 1.0 and
σε = 1.3 [16].

3.2. Boundary conditions

Based on the no-slip condition, the velocity components over the wall surfaces
are null. Furthermore, the thermal boundary conditions are ∂T/∂y = 0 for the
adiabatic boundaries, whereas the temperatures for the isothermal walls are
T = TH = 300 K (27◦C) and T = TC = 288 K (15◦C) for x = 0 and x = L,
respectively. The boundary conditions for the turbulence model are k = 0 and
ε = ∞. According to [16], the boundary condition for ε can be assigned as a
large numerical value. In this study it was ε = 100. Additionally, for the case of
ventilated cavity the following assumptions were considered: u = Uin = f(Re),
T = Tin = TC , kin = 1.5(0.04Uin)2 and εin = (kin)1.5/(0.1Lin) at the air inlet
zone; open boundary conditions for all the variables at the air outlet zone were
considered as ∂φ/∂x = 0 (φ = variable).

3.3. Heat function equation

According to [1], equations (3.11) and (3.12) define the heat function for heat
convection problems in the laminar flow regime as follows:

∂H

∂x
= −ρv(T − Tref ) +

λ

Cp

∂T

∂y
,(3.11)

∂H

∂y
= ρu(T − Tref ) −

λ

Cp

∂T

∂x
.(3.12)

Also, we develop a Poisson-type equation from Eqs. (3.11) and (3.12) to numer-
ically determine the heat function:

(3.13) (3.13)
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With Eqs. (3.11) and (3.12) it is possible to obtain the heat function by the
method of integration, while using Eq. (3.13), the heat function is obtained by
solving the Poisson equation.

In order to determine the relationships that define the heat function in tur-
bulent flow, it is necessary to start from the energy equation in its form averaged
in time for two dimensions and at a temperature (T − Tref ):

(3.14)
∂(ρuT )

∂x
+
∂(ρvT )

∂y

=
∂
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(

λ
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+
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)

,

where, according to equation (3.7), the turbulent heat flux can be modeled as

(3.15) ρu′i(T
′ − Tref ) = −

µt

σt

∂T

∂xi
.

In this way, substituting Eq. (3.15) into Eq. (3.14) and after some mathe-
matical manipulation and rearrangement of terms we obtain the following:

(3.16)
∂

∂x

[

ρu(T − Tref ) −

(

λ
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+
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)
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]
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∂
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)
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]
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This equation allows to define the arguments of the derivates as the components
of thermal energy flow per unit area:

(3.17) Ji = ρui(T − Tref ) − ΓT
∂T

∂xi
,

where ΓT =
(

λ
Cp

+ µt

σT

)

is the effective diffusive property for T .
Thus, Eq. (3.16) can be expressed as

(3.18)
∂Jx

∂x
+
∂Jy

∂y
= 0.

Moreover, based on Fig. 2, the thermal energy flux passing through a control
surface element dA can be determined as

(3.19) dH = J · ndA.

Since the flow is two-dimensional, the surface differential element is ds × 1;
therefore we obtain

(3.20) dH = J · nds
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Fig. 2. Differential element of a heatline to determine the heat function.

leading to

(3.21) dH = −Jydx+ Jxdy.

Besides, taking into account the definition of the total derivate, the differen-
tial of the heat function can be expressed as

(3.22) dH =

(

∂H

∂x

)

dx+

(

∂H

∂y

)

dy.

Thus, analyzing Eqs. (3.21) and (3.22) it is found that

∂H

∂x
= −Jy,(3.23)

∂H

∂y
= Jx.(3.24)

This way, the relationships that define the heat function for the turbulent flow
regime are:

∂H

∂x
= −ρv(T − Tref ) + ΓT

∂T

∂y
,(3.25)

∂H

∂y
= ρu(T − Tref ) − ΓT

∂T

∂x
.(3.26)

In order to determine the Poisson equation, Eqs. (3.25) and (3.26) are divided
by the effective diffusive property, derived with respect to the corresponding
direction and finally added to both equations [17, 18]:

(3.27)
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−
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4. Methodology of solution and verification

The governing equations of fluid flow and heat transfer, as well as the equa-
tion of the heat function (Eqs. 3.25–3.27), were solved numerically using the
finite volume method [19]. In order to implement the numerical algorithm, the
mathematical model was represented by the convection-diffusion general equa-
tion:

(4.1)
∂

∂xi
(ρuiφ) =

∂

∂xi

(

Γ
∂φ

∂xi

)

+ Sφ.

This equation was integrated over the corresponding control volume, which gen-
erated a system of algebraic equations that can be summarized in the following
expression:

(4.2) aPφ
n+1
P =

∑

nb=E,W,N,S

anbφ
n+1
nb + bn,

where φ is the variable to be discretized over the control volume, n is the number
of the iteration, nb are the coefficients of the nodes neighbor to the node of
interest and b is the source term.

A stretching function was used to intensify the number of computational
nodes over the regions close to the walls in order to include the boundary layer.
The velocity components were computed on a staggered grid whereas the scalar
variables were located on the main grid. The coupling between the equations
of momentum and continuity was carried out using the SIMPLEC algorithm
[20]. The central scheme was used for the diffusive terms whereas the hybrid
scheme was used for the convective terms. The resulting system of equations
was solved using the line by line Gauss–Seidel method with alternating direc-
tions (LGS-ADI). The convergence criterion was set as 10−10 for each equation;
additionally, under-relaxation was introduced using a false transient formula-
tion.

In order to verify the numerical codes, a benchmark problem was reproduced.
This problem is a differentially heated cavity reported in the literature for both
laminar and turbulent flow [21–24]. Table 1 shows the comparison of results
obtained for laminar and turbulent flow regimes. For the laminar flow regime,
the percentage differences are below 4.06%. For the turbulent flow, the maximum
percentage difference is 3.43%, which corresponds to the case of Ra = 109. Thus,
based on these results, it can be considered that both codes provide acceptable
results.

A numerical subroutine in FORTRAN was developed to calculate the heat
function for the problem of the differentially heated cavity in the laminar flow
regime using the integration and the Poisson equation methods (Eqs. 3.11–3.13).
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Table 1a. Comparison of the average Nusselt number obtained
from the studies reported in laminar flow regime.

Ra De Vahl Davis [21] Markatos [23] Fusegi [22] Barakos et al. [24] Present work

103 1.117 (0.09) 1.108 (0.01) 1.105 (1.17) 1.114 (0.35) 1.118

104 2.238 (0.45) 2.201 (2.13) 2.203 (2.04) 2.245 (0.13) 2.248

105 4.509 (0.84) 4.430 (0.60) 4.646 (4.06) 4.510 (1.17) 4.457

106 8.817 (0.54) 8.754 (1.26) 9.012 (1.61) 8.806 (0.66) 8.865

Note: values in’ ( )’ are the corresponding percentage differences

Table 1b. Comparison of the average Nusselt number obtained
from the studies reported in turbulent flow regime.

Ra Markatos [23] Henkes [16] Barakos et al. [24] Present work

109 74.957 (0.82) 58.510 (0.81) 60.100 (3.43) 58.033

1010 159.887 (0.01) 137.500 (0.09) 134.600 (2.24) 137.626

1011 341.046 (0.75) 320.960 (0.75) — 318.539

1012 727.468 (2.57) 744.680 (2.56) — 725.571

Note: values in ‘( )’ are the corresponding percentage differences

Figure 3 shows a good agreement in the qualitative comparison of the heat func-
tion for both methods. Quantitatively, the largest percentage difference was ap-
proximately 3%, which corresponds to the case Ra = 106. These results allow
us to assure that the two methods provide acceptable heatlines, with the only
difference that the Poisson equation method requires more computational time
for processing an iterative solution. Therefore, based on these results, the inte-
gration method was chosen for verification. In order to verify the subroutine, the
values of the heatlines were compared to the results obtained by [12]. Table 2
shows the comparison of the maximum value for the heatline corresponding to
Ra = 103–106, where the maximum percentage difference was 0.70%. According
to the advantages of the integration method mentioned above (Eqs. 3.25–3.26),
this method was used to compute the heatlines in all the cases of turbulent
regime flow (what is the main contribution of this work).

Table 2. Comparison of the maximum heatline for the problem of the

differentially heated cavity in laminar flow regime.

Ra Deng and Tang [12] Present work ∆

103 1.118 1.117 0.09 %

104 2.254 2.245 0.40 %

105 4.557 4.525 0.70 %

106 8.826 8.843 0.19%
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The accuracy of the numerical results was verified through numerous tests
based on the grid size effect. Since each problem was solved for the two flow
regimes using a different code, it was necessary to apply the study of indepen-
dence of grid to the laminar and turbulent flow code for both the closed cavity
and the ventilated cavity, respectively. In the case of natural convection problem
(closed cavity), the computational grid that gives grid independent solutions was
91 × 91 with a maximum deviation of 0.09% and 0.35% for the average Nusselt
number for the laminar (Ra = 106) and for the turbulent regime (Ra = 1012),
respectively. In the case of mixed convection (ventilated cavity) in laminar and
turbulent regime Ri = 1, Ra = 106 and Ra = 1011 were used as conditions that
may be representative of other situations. In this case, the computational grid
that gives grid independent solutions was 111 × 111 with a maximum deviation
of 0.5% for the average Nusselt number in the laminar regime (Ra = 106), and
5% in the turbulent regime (Ra = 1011).

(a) Ra = 103 (b) Ra = 104

(c) Ra = 105 (d) Ra = 106

Fig. 3. Qualitative comparison of the dimensionless heatlines obtained from the integration
method (dashed line) and the Poisson equation method (continuous line).
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5. Results and discussion

For natural convection in the closed cavity, the parameter of study for mod-
eling the heat transfer was the Rayleigh number (Ra), and the Rayleigh and
the Richardson number for forced, mixed and natural convection in the venti-
lated cavity. The dimensions of the cavity were determined from Ra values and
are shown in Table 3. The temperatures on the isothermal walls were set as
300 K and 288 K. For the case of the ventilated cavity, the Reynolds number
(Re) is a function of the Rayleigh and Richardson numbers from the expres-
sion (Re = [Ra/PrRi]1/2). The velocity at the inlet of the cavity was determined
from Re. Both the Uin and the Re for Ra = 103, 106 and 109 are presented in Ta-
ble 4. Air temperature at the inlet is taken as 288 K (Tin = TC). The results for
the heat function are determined using Tref = TC . The thermal properties were
computed at the average temperature T0 and their values are: ρ = 1.177 kg/m3,
λ = 26.0E-03 W/m · K, Cp = 1.0E+03 J/kg · K, β = 3.322E-03 K−1 and
µ = 1.847E-05 kg/m · s.

Table 3. Dimensions of the cavity used for the calculations.

Ra L (m) Ra L (m)
(Laminar regime) (Turbulent regime)

103 9.60E-03 109 0.96

104 2.07E-02 1010 2.07

105 4.46E-02 1011 4.46

106 9.60E-02 1012 9.60

Table 4. Reynolds number and inlet velocity for Ra = 103, 106 and 109.

Ra

Ri

0.1 1.0 10

Re Uin Re Uin Re Uin

103 118 0.19 37.5 0.06 11.8 0.01

106 3750 0.61 1180 0.19 375 0.06

109 1.18E+05 1.80 3.75E+04 0.56 1180 0.18

5.1. Closed cavity

The problem was analyzed using the Rayleigh number (Ra) as a reference
to cover both laminar and turbulent regime. Figure 4 shows the results for the
dimensionless isothermals and heatlines in the laminar flow regime. For different
values of Ra, according to the heatlines, the transport of thermal energy occurs
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Fig. 4. Dimensionless streamlines, isothermals and heatlines for different Ra in laminar
regime.
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mainly at the upper zone of the cavity, whereas at the central zone, a recirculation
of energy occurs. For a Ra = 103-105, the heatlines emerge perpendicularly from
the hot wall on the left boundary, and they reach the cold wall perpendicularly
as well. The fluid recirculation at the center of the cavity causes a distortion
of the heatlines causing thermal energy to flow from the hot wall to the upper
zone of the cavity, being more evident as the Rayleigh number increases. For
a Ra = 106, after emerging from the hot wall, the heatlines become almost
parallel in the vicinity of that wall, as an indication that the diffusive process
is increasingly confined to the isothermal walls, whereas the advective transport
becomes stronger at the center of the cavity.

For the turbulent regime, Fig. 5 shows that the heatlines exhibit a pattern
similar to the streamlines, whereas they are parallel to the isothermals in most
part of the cavity. This is because of higher values of Rayleigh, the temperature
gradients are more intense at the boundary layer, and become almost zero at the
center of the cavity. This way, the energy transport depends mostly on the fluid
flow. This is the main cause of the similarity between the streamlines and the
heatlines; nevertheless, the heatlines are not as symmetric as the streamlines,
that is to say, there is an equal number of streamlines on the upper side of
the cavity than on the lower side, as an indication that the fluid recirculates
completely inside the cavity. However, there is an increased number of heatlines
on the upper side of the cavity in comparison to the lower side. This can be
interpreted as an indication that the energy transfers from the hot wall to the
cold wall over the upper side; this situation cannot be explained through the
isothermals.

Figures 6 and 7 show the behavior of the dimensionless heat function, tem-
perature and velocities at the center of the cavity all along x∗ = 0.5 and y∗ = 0.5
for the laminar and turbulent flow regime, respectively. It can be observed that
for all the cases, negative values of the heat function are present below the re-
gion close to y∗ = 0.8. These values indicate that thermal energy recirculation is
present. After this region, the heat function grows until it reaches its maximum
value, which in all the cases occurs at y∗ = 1.0, indicating that the thermal
energy transfer is carried out mainly at the upper side of the cavity; this be-
havior occurs because the hot fluid flows in this region once it has moved from
the region adjacent to the hot wall. Moreover, along y∗ = 0.5 the heat function
shows a parabolic profile, which indicates that more intense gradients for the
heat function are at the regions close to the isothermal walls. In addition, the
gradients for the heat function are null within the region 0.1 < x∗ < 0.9, as an
indication that the energy flow in that zone is minimum due to the stratification
of the fluid. This stratification can be observed in the temperature and the ver-
tical velocity in Figs. 6b, 6c, 7b and 7c. For Ra < 106, the Rayleigh number has
a strong effect on the heat function, temperature and vertical velocity profiles.
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ψ∗ T ∗ H∗

Fig. 5. Dimensionless streamlines, isothermals and heatlines for different Ra in turbulent
regime.
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(a)

(b)

(c)

Fig. 6. Behaviour of the dimensionless heat function, temperature and velocities along the
coordinate x∗ = 0.5 (left) and the coordinate y∗ = 0.5 (right) for Ra = 105.

Nevertheless, for Ra > 109 there is no appreciable effect neither on temperature
nor vertical velocity, but the effect is noticeable for the heat function. This effect
may be due to the recirculation of fluid in the core of the cavity. This recircula-
tion is influenced by the horizontal velocity and the temperature as can be seen
in the profiles along x∗ = 0.5 (Figs. 7b and 7c). Besides, as the Ra increases this
recirculation becomes stronger, which makes more evident the increment on the
dependency of the advective effect.
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(a)

(b)

(c)

Fig. 7. Behaviour of the dimensionless heat function, temperature and velocities along the
coordinate x∗ = 0.5 (left) and the coordinate y∗ = 0.5 (right) for Ra = 109.

5.2. Ventilated cavity

Figures 8–11 show the flow patterns for different Rayleigh numbers (103, 105,
109 and 1011) and for each Richardson number considered in this study (0.1, 1
and 10).

For the case of Ra = 103 (Fig. 8) the heatlines show that the heat diffusion
process occurs in most of the cavity. For Ri = 0.1 it can be observed that the
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ψ∗ T ∗ H∗

(a) Ri = 0.1

(b) Ri = 1

(c) Ri = 10

Fig. 8. Dimensionless streamlines, isothermals and heatlines for Ra = 103: (a) Ri = 0.1,
(b) Ri = 1 and (c) Ri = 10.

energy flow starts at the hot wall and suddenly changes its path because the air
flow transports energy to the cold wall, becoming more intense at the air outlet.
Instead, for Ri = 1 the heat flux starts at the hot wall, causing the energy flow
to be present in most of the cavity, as shown by the heatlines. For Ri = 10 the
heatlines pattern is very similar to the mixed convection case, but unlike the
first case, the heatlines show a slight perturbation at the center of the cavity
due to the recirculation of the fluid in this area. Besides, the heatlines show
that there is a small energy flow going from the lower side of the hot wall to
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ψ∗ T ∗ H∗

(a) Ri = 0.1

(b) Ri = 1

(c) Ri = 10

Fig. 9. Dimensionless streamlines, isothermals and heatlines for Ra = 105: (a) Ri = 0.1,
(b) Ri = 1 and (c) Ri = 10.

the air inlet. The energy flow goes opposite to the fluid flow because the energy
transport in this region is mainly by diffusion, this phenomenon can be observed
only through the heatlines. In Fig. 9, it is shown that for Ra = 105 the heatlines
reveal that the energy transport is mostly due to the advective process. This way,
the heatlines are very similar to the streamlines in most of the cavity. Moreover,
the diffusive process is limited to the regions close to the isothermal walls. It can
be observed that for Ri = 0.1 and Ri = 10 the maximum values are achieved
for the heatlines of 14 and 6.5 respectively, indicating that forced convection
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ψ∗ T ∗ H∗

(a) Ri = 0.1

(b) Ri = 1

(c) Ri = 10

Fig. 10. Dimensionless streamlines, isothermals and heatlines for Ra = 109: (a) Ri = 0.1,
(b) Ri = 1 and (c) Ri = 10.

is better for transporting the thermal energy in the cavity. This effect is very
strong for Ra = 106, where the maximum values for the heatlines are 55 and 12
for Ri = 0.1 and Ri = 10, respectively.

In Figs. 10–11, it is shown that for Ra = 109 and 1011 the flow patterns
indicate that the heat transfer is due to the energy advection. This way, heat
diffusion is confined to the boundary layer. It can be observed that for Ri = 0.1,
the heatlines and streamlines patterns are very similar, with the only difference
that the first ones emerge from the hot wall, while the last ones emerge from the
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ψ∗ T ∗ H∗

(a) Ri = 0.1

(b) Ri = 1

(c) Ri = 10

Fig. 11. Dimensionless streamlines, isothermals and heatlines for Ra = 1011: (a) Ri = 0.1,
(b) Ri = 1 and (c) Ri = 10.

fluid inlet. For Ri = 10, the thermal energy transport is carried out through the
top of the cavity. On the other hand, for Ri = 1 the heatlines show a separation
of the energy flow; a fraction of this energy is transported through the upper side
of the cavity, while the other one is transported through the lower side, meeting
each other at the air outlet. However, heatlines indicate that this separation is
broken when the Ra is greater than 109 making the energy transport the same
as in the case of Ri = 0.1.
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(a)

(b)

(c)

Fig. 12. Behaviour of the dimensionless (a) heat function, (b) temperature and (c) velocities
along the coordinate x∗ = 0.5 (left) and the coordinate y∗ = 0.5 (right) for Ra = 105.

Finally, the heat function, temperature and velocity profiles at the center of
the cavity for the cases Ra = 105 and Ra = 109 are shown in Figs. 12 and 13,
respectively. For Ra = 105, the heatline profile has a parabolic behavior when the
Ri = 0.1, showing that there is a high level of energy recirculation. For Ri = 0 and
Ri = 10, the major changes on the heatline are an indication that the thermal
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(a)

(b)

(c)

Fig. 13. Behaviour of the dimensionless: (a) heat function, (b) temperature and (c) velocities
along the coordinate x∗ = 0.5 (left) and the coordinate y∗ = 0.5 (right) for Ra = 109.

flow occurs at the highest part of the cavity, along the adjacent region of the
hot wall. Regarding natural convection, thermal energy is dragged in a similar
way as the closed cavity, i.e., the buoyant forces drive the energy between the
region y∗ = 0.8 and y∗ = 1.0. In the case of Ra = 109, the heat function profiles
indicate that the thermal energy transport is greater than when Ri = 0.1. As
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the Ri increases, the numerical value of the heat function and the temperature
drops abruptly. For Ri = 0.1, the temperature is constant and homogenized in
the cavity at T ∗ = 0.6, as it is seen in Fig. 13b. Additionally, Fig. 13c allows
to observe that velocity profiles are quite different from each other. The profiles
for Ri = 0.1 are the biggest, while the profiles for Ri = 10 are the smallest. The
velocity profiles for Ri = 1 have characteristics of the other ones, they have high
values in the lowest part and near the hot wall like in the cases when Ri = 0.1
and Ri = 10, respectively. However, temperature is very different for each case.
The difference between the temperature and velocity profiles is the main reason
that the energy transport is different. For Ri = 1 and Ri = 10, it can be observed
that the behavior of the heat function is very similar and almost constant, i.e.,
heat transfer by mixed and natural convection has the same order of magnitude,
whereas in forced convection it is greater. This is a consequence of the inertia of
the fluid due to the inlet velocity. The results allow to see that forced convection
tends to homogenize the temperature of the cavity to a value near the average
of the isothermal walls, while natural convection has the same behavior to the
value of Ri = 0.1. This fact may help in making a decision when ventilation
or heating is required, e.g., if the inlet temperature is the comfort temperature,
natural convection is preferred for ventilation, whereas, if heating is required,
forced convection is the choice.

6. Conclusions

The heatline concept has been used to visualize and interpret the result
of problems on (1) natural convective heat transfer in a closed differentially
heated cavity and (2) forced, mixed and natural convective heat transfer in
a ventilated differentially heated cavity. The calculations were carried out for
laminar and turbulent regime flows, and regarding the ventilated cavity three
cases of convection defined by Ri = 0.1, 1.0 and 10 were studied.

Based on the obtained results it can be concluded that:
1. In the closed cavity with natural heat convection, the isothermals are very

useful for analysis purposes when Ra is under 103, as shown by the heatlines;
the energy flow is almost perpendicular to the isothermals. Nevertheless, as Ra
increases, the heatlines begin to look like the streamlines. Thereby, it is possible
to estimate the path of the thermal energy using the streamlines when the Ra is
high, especially in the turbulent regime. In addition, the heatlines let us visualize
that the transport of thermal energy is always performed through the top of the
cavity.

2. The interaction of the buoyancy and the inertial forces play an important
role in the path of the energy. Unlike the case of the closed cavity, in the venti-
lated cavity the transport of thermal energy is not always performed along the
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top of the cavity. There are three possible situations for the thermal energy flow:
(i) it is dragged by the incoming fluid from the hot wall to the outlet when the
inertial force is greater than the buoyant one (Ri = 0.1), (ii) it is carried by the
buoyant force through the top of the cavity when Ri = 10 and (iii) the transport
of the thermal energy is dragged by both the buoyancy force and the inertial
force (Ri = 1.0). In the laminar regime, it is found that the path of the energy
flow is independent of Ra. In the turbulent regime when Ri = 0.1 and 10, the
path of the energy flow is also independent. However, for Ri = 1.0 the separation
of the energy flow changes its pattern when Ra is greater than 109.

3. The order of magnitude of the heatline profiles shows that the transport
of thermal energy for Ri = 0.1 is higher than for Ri = 1.0 and Ri = 10. This
effect is due to the advective component for Ri = 0.1 (forced convection); it is
higher than the advective component for Ri = 1.0 and 10 (mixed and natural
convection). In addition, such an effect is stronger in the turbulent regime than
in the laminar regime.

4. For the ventilated system, the use of heat lines in conjunction with the
temperature and velocity profiles allows to see that natural convection is pre-
ferred when cooling is required, while the forced convection is a better choice if
heating is needed.
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