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Notations

λ, µ Lamé’s constants,
CE specific heat at constant strains,
K = λ + (2/3)µ, bulk modulus,
C2

0 = K/ρ, longitudinal wave speed,
εij components of strain tensor,
eij components of strain deviator tensor,
σij components of stress tensor,
Sij components of stress deviator tensor,
e = εii, dilatation,
H strength of the applied magnetic field,
J electric current density,
B magnetic induction vector,
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D electric induction vector,
h induced magnetic field,
E induced electric field,
µ0 magnetic permeability,
ε0 electric permeability,
σ0 electrical conductivity,
k thermal conductivity,
R(t, β) relaxation functions,
T absolute temperature,
ui components of displacement vector,
αT coefficient of linear thermal expansion,
γ = 3KαT ,
δij Kronecker’s delta,
T0 reference temperature,
ε = γ2T0/(kη0ρC2

0 ), thermal coupling parameter,
Θ = T − T0, such that |Θ/T0| ≪ 1,
ρ mass density,
τ , υ two relaxation times,
τq phase lag of heat flux,
τΘ phase lag of temperature gradient,
α, β fractional orders,
t time,
Γ (.) gamma function,
n, t1, t2 constants.

1. Introduction

Due to the recent large-scale development and utilization of polymers and
composite materials, the linear-viscoelasticity remains an important area of re-
search. Linear viscoelastic materials are rheological materials that exhibit time-
temperature rate-of-loading dependence. A general overview of time-dependent
material properties has been presented by Tschoegl [1]. The mechanical model
representation of linear viscoelastic behavior results was investigated by Gross

[2]. One can refer to Atkinson and Craster [3] for a review of fracture me-
chanics and generalizations of the viscoelastic materials, and to Rajagopal

and Saccomandi for non-linear theory [4]. The solutions of some boundary
value problems of thermo-viscoelasticity were investigated by Ilioushin and
Pobedria [5]. The works of Biot [6], Morland and Lee [7], Tanner [8],
and Huilgol and Phan-Thien [9] have made great strides in the last decade
in finding solutions to boundary value problems for linear viscoelastic materials
including temperature variations in both quasi-static and dynamic problems.

The classical uncoupled theory [11] of thermoelasticity predicts two phenom-
ena that are not compatible with the physical observations. First, the equation
of heat conduction of this theory does not contain any elastic terms; second, the
heat equation is of a parabolic type, predicting infinite speeds of propagation
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for heat waves. The coupled theory of thermoelasticity (CTE) [12] was proposed
to overcome the first shortcoming. The equations of elasticity and heat conduc-
tion for this theory are both coupled, which eliminates the first paradox of the
classical uncoupled theory. However, both theories share the second shortcoming
since the heat equation for the coupled theory is also parabolic.

Cattaneo’s theory [13] allows for the existence of thermal waves which prop-
agate at finite speeds. Starting from Maxwell’s idea [14] and from the paper [13],
an extensive amount of the literature [15–16] has contributed to the elimination
of the paradox of instantaneous propagation of thermal disturbances. The ap-
proach used is known as extended irreversible thermodynamics, which introduces
time derivative of the heat flux vector, and Cauchy stress tensor and its trace
into the classical Fourier law by preserving the entropy principle. A history of
heat conduction also appears in the review article [17], in which the authors dis-
cussed the low temperature heat propagation in dielectric solids in which second
sound effects are present.

Several generalizations to the coupled theory of thermoelasticity are intro-
duced. The mathematical aspects of Lord and Shulman’s [18] theory (LS)
are explained and illustrated in detail in the work of Ignaczak and Ostoja-

Starzeweski [19]. Joseph and Preziosi [20] stated that the Cattaneo heat
conduction law [13] is the most obvious and the simplest generalization of the
Fourier law that gives rise to a finite propagation speed. One can refer to
Ignaczak [21] and Chandrasekharaiah [22] for the review and presenta-
tion of generalized theories. Hetnarski and Ignaczak [23], in their survey
article, examined five generalizations of the coupled theory and obtained a num-
ber of important analytical results. Hetnarski and Eslami [24] introduced
a unified generalized thermoelasticity theory and presented the advanced theory
and applications of classical thermoelasticity, generalized thermoelasticity, and
mathematical and mechanical background of thermodynamics and theory of elas-
ticity as well. The uniqueness theorem for generalized thermoelasticity with one
relaxation time under different conditions was proved by many researchers (e.g.,
see [25, 26]). The fundamental solution to this theory was obtained in [27]. El-

Karamany and Ezzat [28] introduced a formulation of the boundary integral
equation method for generalized thermoviscoelasticity with one relaxation time.
The propagation of discontinuities of solutions in this theory was investigated
in [29, 30].

The second generalization of the coupled theory of elasticity is what is known
as the theory of thermoelasticity with two relaxation times or the theory of
temperature-rate-dependent thermoelasticity. Müller [31], in a review of the
thermodynamics of thermoelastic solids, proposed an entropy production in-
equality, with the help of which he considered restrictions on a class of consti-
tutive equations. A generalization of this inequality was proposed by Green
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and Laws [32]. Green and Lindsay obtained an explicit version of the con-
stitutive equations in [33]. These equations were also obtained independently
by Suhubi [34]. They contain two constants that act as relaxation times and
modify all the equations of the coupled theory, not only the heat equation. The
classical Fourier law of heat conduction is not violated if the medium under con-
sideration has a center of symmetry. Sherief [35] and Ezzat [36] obtained the
fundamental solution for this theory. Ezzat and El-Karamany [37] proved the
uniqueness and reciprocity theorems for thermo-viscoelastic anisotropic media,
and El-Karamany and Ezzat [38] introduced a formulation of the boundary
integral equation method for generalized thermo-viscoelasticity with two relax-
ation times. Roychoudhuri and Mukhopadhyay [39] studied the propagation
of harmonically time-dependent thermo-viscoelastic plane waves of assigned fre-
quency in an infinite visco-elastic solid of Kelvin-Voigt type, when the entire
medium rotates with a uniform angular velocity. Ezzat [40] introduced the
model of the equations of generalized thermoviscoelasticity with one and two
relaxation times, when the relaxation effects of the volume properties of the ma-
terial are taken into account, respectively, and solved some problems by using
state-space approach [41].

Another hyperbolic thermoelasticity theory was proposed by Tzou [42],
where a dual-phase-lag (DPL) heat conduction law was proposed, in which two
different phase-lags, one for the heat flux vector τq and another for the tem-
perature gradient τθ, have been introduced into the Fourier law to capture the
microstructural effects of heat transport mechanism into the delayed response
in time in the macroscopic formulation. The dual-phase-lag model, which re-
duces to Fourier’s law in the limit of τq − τθ → 0, describes the process in which
a temperature gradient that is established across the material volume at time
t+ τθ will not produce the thermal flux at point x within that volume until the
later time t+ τq. More information on the dual-phase-lag model can be found in
Antaki [44], Horgan and Quintanilla [45], Jou and Criado-Sancho [46],
and El-Karamny and Ezzat [47, 48].

Differential equations of fractional order have been the focus of many stud-
ies due to their frequent appearance in various applications in fluid mechanics,
viscoelasticity, biology, physics, and engineering. The most important advantage
of using fractional differential equations in the above mentioned and other ap-
plications is their non-local property. It is well known that the integer-order
differential operator is a local operator, however the fractional-order differential
operator is non-local. This means that the next state of a system depends not
only on its current state but also on all of its historical states. This is more
realistic, and it is one reason why fractional calculus has become more and more
popular. Although the tools of fractional calculus were available and applica-
ble to various fields of study for some time, the investigation into the theory
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of fractional differential equations began quite recently. The differential equa-
tions involving the Riemann–Liouville differential operators of fractional order
0 < α < 1 appear to be important in modeling of several physical phenomena
[49–51]; therefore, they seem to deserve an independent study of their theory,
parallel to the well-known theory of ordinary differential equations. Caputo

[52] found a good agreement with experimental results when using fractional
derivatives for description of viscoelastic materials and established the connec-
tion between fractional derivatives and the theory of linear viscoelasticity. One
can refer to Podlubny for a survey of fractional calculus applications [53].

Recently, a considerable research effort has been expended to study the
anomalous diffusion, which is characterized by the time-fractional diffusion-wave
equation presented by Kimmich in [54]:

(1.1) ρC = −λIα∇2C, 0 < α ≤ 2,

where C is the concentration and the notion Iα is the Riemann–Liouville frac-
tional integral, which was introduced as a natural generalization of the well-
known n-fold repeated integral Inwritten in a convolution-type form [55]:

(1.2) Iαf(y, t) =
1

Γ (α)

t
∫

0

(t− ξ)f(ξ) dξ, I0f(t) = f(t), 0 < α ≤ 2.

According to Kimmich [54], Eq. (1.1) describes the different cases of dif-
fusion where 0 < α < 1 corresponds to weak diffusion (subdiffusion), α = 1
corresponds to normal diffusion, 0 < α < 2 corresponds to strong diffusion (su-
perdiffusion), and α = 2 corresponds to ballistic diffusion. It should be noted
that the term diffusion is often used in a more generalized sense including vari-
ous transport phenomena. Equation (1.1) is a mathematical model with a wide
range of important physical phenomena; for example, the subdiffusive transport
occurs in widely different systems ranging from dielectrics and semiconductors
through polymers to fractals, glasses, porous and random media. Superdiffusion
is comparatively rare and has been observed in porous glasses, polymer chain,
biological systems, and in transport of organic molecules and atomic clusters on
the surface. One might expect the anomalous heat conduction in the media in
which the anomalous diffusion is observed.

Fujita [56] considered the constitutive equation for the heat flux in the form:

(1.3) qi = −kIα−1∇T, 1 < α ≤ 2.

Povstenko [57] used the Caputo heat wave equation to define the fractional
heat conduction equation in the form:

(1.4) qi = −kIα−1∇T, 0 < α ≤ 2.
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Sherief et al. [58] introduced the formula of heat conduction as

(1.5) qi + τ0
∂αqi
∂tα

= −k∇T, 0 < α ≤ 1.

And by taking into account the following consideration:

(1.6)
∂α

∂tα
f(y, t) =























f(y, t) − f(y, 0) α→ 0,

Iα−1∂f(y, t)

∂t
0 < α < 1,

∂f(y, t)

∂t
α = 1,

they proved the uniqueness theorem and derived the reciprocity relation and the
variational principle.

Youssef [59] introduced another formula of heat conduction by taking into
consideration (1.3)–(1.5):

(1.7) qi + τ0
∂αqi
∂tα

= −kIα−1∇T, 0 < α ≤ 2.

Thus, the uniqueness theorem has been proved.
Ezzat [60–62] established a new model of fractional heat conduction equation

using the Taylor–Riemann series expansion of time-fractional order which was
developed by Jumarie [62]. El.-Karamany and Ezzat [63, 64] introduced
two general models of fractional heat conduction law for a non-homogeneous
anisotropic elastic solid. Uniqueness and reciprocal theorems were proved and
the convolutional variational principle was established and used to prove the
uniqueness theorem with no restriction on the elasticity or thermal conductivity
tensors, except symmetry conditions. One can refer to Ezzat at el. [65–70] for
a survey of fractional calculus applications in magneto-thermo-elasticity and
viscoelasticity.

The purpose of the present research is to introduce the unified model for the
linear theory of fractional thermo-viscoelasticity based on the Lord–Shulman
theory, the Green–Lindsay theory, and the Tzou theory, as well as introduce the
unified model to the coupled theory. We shall use the Caputo [52] definition
of fractional derivatives of order α ∈ (0, 1] of the absolutely continuous function
f(t) given by

(1.8)
dα

dtα
f(t) = I1−αf ′(t),

where Iβ is the fractional integral of the function f(t) of order β [55]. The
resulting formulation is applied to one-dimensional problems for a half-space
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of perfectly conducting electric solid. The bounding surface is assumed to be
traction free and subjected to a time-dependent thermal shock in the presence
of magnetic field. The Laplace transform technique is used. The inversion of
the Laplace transforms is carried out using a numerical approach. Numerical
results for the temperature, stress and displacement distributions are given and
illustrated graphically for given problems further in this paper.

2. The mathematical model

The system of governing equations of the fractional linear magneto-thermo-
viscoelasticity theory in a perfectly conducting medium consists of the following:

1. Maxwell’s equations valid for slowly moving media:

curlh = J + ε0
∂E

∂t
,(2.1)

curlE = −µ0
∂h

∂t
,(2.2)

divh = 0, divE = 0,(2.3)

B = µ0(H + h), D = ε0E.(2.4)

These equations are supplemented by Ohm’s law:

(2.5) J = σ0[E + µ0V × H].

2. The constitutive equation:

(2.6) Sij(x, t) =

t
∫

0

Rβ(t− ξ)
∂eij(x, ξ)

∂ξ
dξ = R̂β(eij), 0 < β ≤ 1,

where R(t) is the relaxation modulus function such that R(∞) > 0,

(2.7) R̂β(f) =
R0τ

β

Γ (1 − β)

t
∫

0

(t− ξ)−β ∂f(x, ξ)

∂ξ
dξ, 0 < β ≤ 1,

Sij = σij − σkk
3 δij , εij = 1

2(ui,j + uj,i), eij = εij − e
3δij , e = εkk, x = (x1, x2, x3),

and

(2.8) R(t, β) =
R0

Γ (1 − β)
(t/τ)−β , 0 < β ≤ 1.

3. The stress-strain temperature relationship:

(2.9) σij = R̂β

(

εij −
e

3
δij

)

+Keδij − γ

(

1 +
υα

α!

∂α

∂tα

)

Θδij .
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4. The equation of motion:

(2.10) ρüi = R̂β

(

1

2
∇2ui +

1

6
e,i

)

+Ke,i−γ
[(

1 +
υα

α!

∂α

∂tα

)

Θ

]

,i

+µ0(J ∧ H)i.

5. The heat equation:

k

(

1 +
τα
θ

α!

∂α

∂ tα

)

Θ,ii = ρCE
∂

∂t

(

1 +
τα

α!

∂α

∂tα
+
τ2α
q

2α!

∂2α

∂t2α

)

Θ(2.11)

+ γT0
∂

∂t

(

1 + n
τα

α!

∂α

∂tα
+
τ2α
q

2α!

∂2α

∂t2α

)

e.

Equations (2.9)–(2.11) represent the unified model of fractional magneto-
thermo-viscoelasticity involving fractional relaxation operator.

Limiting cases

Coupled thermoelasticity theory

1. The model of equations (2.9)–(2.11) in the limiting case, τθ = τq = τ =
υ = n = 0, α = 0, R0 = 2µ, transforms to the one given by Biot (CTE) in [12].

Coupled thermo-viscelasticity theory

2. The model of equations (2.9)–(2.11) in the limiting case, τθ = τq = τ =
υ = n = α = β = 0, transforms to the one given by Gross [2] and Atkinson

and Craster [3].
3. The model of equations (2.9)–(2.11) in the limiting case, τθ = τq = τ =

υ = n = α = 0, β = 1, transforms to the one presented by of Koltunov [10].

Generalized thermoelasticity theory

4. The model of equations (2.9)–(2.11) in the limiting case, α → 1, τθ =
τq = υ = 0, τ > 0, n = 1, R0 = 2µ, transforms to the one given by Lord

and Shulman (LS) [18], Glass and Vick [15], Joseph and Preziosi [20],
Ignaczak [21], and Sherief [27] for thermoelasticity with one relaxation time.

5. The model of equations (2.9)–(2.11) in the limiting case, α→ 1, τq = τθ =
n = 0, υ ≥ τ > 0, R0 = 2µ, transforms to the one given by Green and Lindsay

(GL) [34] and Ezzat [36] for thermoelasticity with two relaxation times.

6. The model of equations (2.9)–(2.11) in the limiting case, α → 1, τθ >
τq > 0, τ = τq, υ = 0, n = 1, R0 = 2µ, transforms to the one presented by
Tzou (DFL) [42], Quintanilla and Racke [43], Abbas and Zenkour [47],
and El-Karamany and Ezzat [46] for dual-phase-lag thermoelasticity.

Generalized thermo-viscelasticity theory

7. The model of equations (2.9)–(2.11) in the limiting case, τθ = τq = υ =
α = β = 0, τ > 0, n = 1, transforms to the one presented by El-Karamany

and Ezzat [28, 29].
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8. The model of equations (2.9)–(2.11) in the limiting case, τθ = τq = α =
β = n = 0, υ ≥ τ > 0, transforms to the one given by Ezzat [36], Ezzat and
El-Karamany [37], El-Karamany and Ezzat [38], and Roychoudhuri and
Mukhopadhyay.

9. The model of equations (2.9)–(2.11) in the limiting case, τθ = τq = α =
υ = 0, n = β = 1, τ > 0, transforms to the one by El-Karamany and Ezzat

[29].
10. The model of equations (2.9)–(2.11) in the limiting case, τθ = τq = α =

n = 0, β = 1, υ ≥ τ > 0, transforms to the one by Ezzat [40].
11. The model of equations (2.9)–(2.11) in the limiting case, α→ 1, τθ > τq >

0, τ = τq, β = υ = 0, n = 1 transforms to the one presented by El-Karamany

and Ezzat [29].

Fractional thermoelasticity theory

12. The model of equations (2.9)–(2.11) in the limiting case, τθ = υ = 0,
n = 1, τq = τ > 0, 1 > α > 0, R0 = 2µ, transforms to the one by of Sherief

at el. [58], Ezzat [60–62], El-Karamany, Ezzat [63, 64] and Ezzat et al.

[67, 70].
13. The model of equations (2.9)–(2.11) in the limiting case, τθ > τq > 0,

τ = τq, β = υ = 0, n = 1, 1 > α > 0, R0 = 2µ, transforms to the one by Ezzat

at el. [70].
14. The model of equations (2.9)–(2.11) in the limiting case, τθ = τq = 0,

n = 0, υ ≥ τ > 0, 1 > α > 0, R0 = 2µ, transforms to the one by Hamza [71].

Fractional thermo-viscoelasticity theory

15. The model of equations (2.9)–(2.11) in the limiting case, τθ = τq = υ =
β = 0, n = 1, τ > 0, 1 > α > 0, transforms to the one by Ezzat and El-

Karamany [72].
16. The model of equations (2.9)–(2.11) in the limiting case, τθ = τq = υ = 0,

n = 1, τ > 0, 1 > β > 0, 1 > α > 0, transforms to the one by Ezzat et al. [73].

3. The analytical solutions in the Laplace-transform domain

Now, we shall consider an infinite homogeneous isotropic perfectly conduct-
ing thermo-viscoelastic medium permeated by the initial magnetic field H ≡
(0, 0,H0) occupying the region x ≥ 0, which is initially quiescent and where all
the state functions depend only on the dimension x and the time t. The x-axis is
taken perpendicular to the bounding plane pointing inwards. Due to the effect of
this magnetic field, the induced magnetic field h ≡ (0, 0, h) and the induced elec-
tric field E ≡ (0, E, 0) appear in the conducting medium. Also, the force F (the
Lorentz force) appears. Due to the effect of this force, the points on the medium
undergo the displacement u ≡ (u, 0, 0), which increases temperature. The sys-
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tem of fractional magneto-thermo-viscoelasticity with two relaxation times and
fractional relaxation operator for a medium with a perfect electric conductivity
can be written [47] as follows.

The displacement vector has the following components:

(3.1) ux = u(x, t), uy = uz = 0.

The strain component takes the form:

(3.2) e = εxx =
∂u

∂x
.

The linearized equations of electromagnetism for a perfectly conducting
medium are:

J = −
(

∂h

∂x
+ ε0µ0H0

∂2u

∂t2

)

,(3.3)

h = −H0
∂u

∂x
,(3.4)

E = µ0H0
∂u

∂t
.(3.5)

The equation of motion takes the form:

(3.6) (ρ+ ε0µ
2
0H

2
0 )
∂2u

∂t2
=

(

2

3
R̂β +K

)

∂2u

∂x2
+ µ0H

2
0

∂2u

∂x2

− γ
∂

∂x

(

1 +
υα

α!

∂α

∂tα

)

Θ, 0 < β ≤ 1, 0 < α ≤ 1.

The constitutive equation yields:

(3.7) σ =

(

2

3
R̂β +K

)

∂u

∂x
− γ

(

Θ +
υα

α!

∂αΘ

∂tα

)

, 0 < β ≤ 1, 0 < α ≤ 1.

The heat conduction equation is given by:

(3.8) k

(

1 +
τα
θ

α!

∂α

∂tα

)

∂2Θ

∂x2
= ρCE

∂

∂t

(

1 +
τα

α!

∂α

∂tα
+
τ2α
q

2α!

∂2α

∂t2α

)

Θ

+ γT0
∂

∂t

(

1 + n
τα

α!

∂α

∂tα
+
τ2α
q

2α!

∂2α

∂t2α

)

e, 0 < α ≤ 1.

The previous equations constitute a complete system of fractional magneto-
thermo-viscoelasticity involving fractional relaxation operator in the absence of
heat sources in perfectly conducting medium.
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Let us introduce the following non-dimensional variables:

x∗ = C0η0x, u
∗ = C0η0u, t

∗ = C2
0η0t,

τ∗ = C2
0η0τ, υ

∗ = C2
0η0υ, ε =

δ0γ

ρCE
, Θ∗ =

γΘ

ρC2
0

,

C2
0 =

K

ρ
, η0 =

ρCE

K
, σ∗ =

σ

K
, R∗

0 =
2

3K
R0, h

∗ =
h

H0
, E∗ =

E

µ0H0C0
.

In terms of these non-dimensional variables, we have (dropping asterisks for
convenience):

h = −∂u
∂x
,(3.9)

E =
∂u

∂t
,(3.10)

(

1 +
τα
θ

α!

∂α

∂tα

)

∂2Θ

∂x2
=

∂

∂t

(

1 +
τα

α!

∂α

∂tα
+
τ2α
q

2α!

∂2α

∂t2α

)

Θ(3.11)

+ ε
∂2

∂x∂, t

(

1 + n
τα

α!

∂α

∂tα
+
τ2α
q

2α!

∂2α

∂t2α

)

u, 0 < α ≤ 1,

a
∂2u

∂t2
= b

∂2u

∂x2
− ∂

∂x

(

1 +
υα

α!

∂α

∂tα

)

Θ(3.12)

+
R0τ

β

Γ (1 − β)

t
∫

0

(t− ξ)−β ∂

∂ξ
(
∂2u(x, ξ)

∂ x2
) dξ, 0 < β ≤ 1, 0 < α ≤ 1,

σ =
∂u

∂x
−

(

1 +
υα

α!

∂α

∂tα

)

Θ +
R0τ

β

Γ (1 − β)

t
∫

0

(t− ξ)−β ∂

∂ξ

(

∂u(x, ξ)

∂x

)

dξ,(3.13)

0 < β ≤ 1, 0 < α ≤ 1,

where a = 1 + (a0/c)
2, a0 = [µ0H

2
0/ρ]

1/2 is the Alfven velocity, c = 1/
√
ε0µ0 is

the light speed and b = 1 + a2
0.

We assume that the boundary conditions have the form:

(3.14) Θ(0, t) = f(t), Θ(∞, t) = 0, σ(0, t) = σ(∞, t) = 0,

and the initial state of the medium is quiescent, i.e.,

(3.15) u(x, 0) = u̇(x, 0) = σ(x, 0) = σ̇(x, 0) = Θ(x, 0) = Θ̇(x, 0) = 0.

Using the Laplace transform, defined by the following relationship:

ḡ(s) =

∞
∫

0

e−stg(t) dt,
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on both sides Eqs. (3.6)–(3.13), we obtain

h̄ = −Dū,(3.16)

Ē = sū,(3.17)

(D2 − c)Θ̄ = ε dsDū,(3.18)

(D2 − a̟s2)ū = ̟mDΘ̄,(3.19)

σ̄ =
1

̟
Dū−mΘ̄,(3.20)

where

c = s

(

1 +
τα

α!
sα +

τ2α
q

2α!
s2α

)

/p,

d =

(

1 + n
τα

α!
sα +

τ2α
q

2α!
s2α

)

/p, p = 1 +
τα
θ

α!
sα,

m =

(

1 +
υα

α!
sα

)

, ̟ =
1

(b+Mβsβ)
, Mβ = R0τ

β ,

since L{t−β} = Γ (1−β)/s1−β, the Laplace transform of the relaxation modulus
can be written in the form:

(3.21) L{R(t, β)} = R0(sτ)
β

(

1

s

)

, 0 < β ≤ 1.

And the boundary conditions take the form:

(3.22) Θ̄(0, s) = f̄(s), σ̄(0, s) = 0.

Eliminating Θ̄ in Eqs. (3.18) and (3.19), we get

(3.23) {D4 − [a̟s2 + c+ ε̟s dm]D2 + ca̟s2}ū = 0.

The general solution of Eq. (3.23), which is bounded at infinity, can be written
as

(3.24) ū = −k1C1e
−k1x − k2C2e

−k2x,

where C1 and C2 are the parameters depending on s only, and k1 and k2 are the
roots with positive real parts of the characteristic equation

(3.25) k4 − [a̟s2 + c+ ε̟dsn]k2 + a̟s2c = 0.

From Eqs. (3.25) and (3.30), we get

(3.26) Θ̄ =
1

m̟
[C1(k

2
1 − a̟s2)e−k1x + C2(k

2
2 − a̟s2)e−k2x].
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Substituting Eqs. (3.24) and (3.26) into Eq. (3.20), we obtain

(3.27) σ̄ =
as2

̟
(C1e

−k1x + C2e
−k2x).

In order to determine C1 and C2 we shall use the Laplace transform of the
boundary conditions (3.30) to obtain

C1 = −C2 =
m̟

k2
1 − k2

2

f̄(s).

Equations (3.16)–(3.20) become

ū(x, s) =
−m̟(k1e

−k1x − k2e
−k2x)

k2
1 − k2

2

f̄(s),(3.28)

Θ̄(x, s) =
[(k2

1 − a̟s2)e−k1x − (k2
2 − a̟s2)e−k2x]

k2
1 − k2

2

f̄(s),(3.29)

σ̄(x, s) =
ams2(e−k1x − e−k2x)

k2
1 − k2

2

f̄(s),(3.30)

h̄(x, s) =
m̟(k2

1e
−k1x − k2

2e
−k2x)

k2
1 − k2

2

f̄(s),(3.31)

Ē(x, s) =
−m̟s(k1e

−k1x − k2e
−k2x)

k2
1 − k2

2

f̄(s).(3.32)

These complete the solutions in the Laplace transform domain.

4. Inversion of the Laplace transforms

We shall now outline the method used to invert the Laplace transforms in
the above equations. Let f̄(s) be the Laplace transform of a function f(t). The
inversion formula for Laplace transforms can be written as Honig and Hirdes

presented in [76]

f(t) =
edt

2π

∞
∫

−∞

eityf̄(d+ iy) dy,

where d is an arbitrary real number greater than all the real parts of the singu-
larities of f̄(s).

Expanding the function h(t) = exp(−dt)f(t) into a Fourier series in the
interval [0, 2L], we obtain the approximate formula presented in [76]

(4.1) f(t) ≈ fN (t) =
1

2
c0 +

N
∑

k=1

ck, for 0 ≤ t ≤ 2L,
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where

(4.2) ck =
edt

L
Re[eikπt/Lf̄(d+ ikπ/L)].

Two methods are used to reduce the total error. First, the ‘Korrektur’ method
is used to reduce the discretization error. Next, the ε-algorithm is used to reduce
the truncation error and therefore to accelerate convergence.

The Korrektur method uses the following formula to evaluate the function
f(t):

(4.3) f(t) = fNK(t) = fN (t) − e−2dLf ′N (2L+ t).

We shall now describe the ε-algorithm that is used to accelerate the con-
vergence of the series in (4.1). Let N be an odd natural number and let sm =
∑m

k=1 ck be the sequence of partial sums of (4.1). We define the ε-sequence as

ε0,m = 0, ε1,m = sm, m = 1, 2, . . . .

and εn+1,m = εn−1,m+1 + 1/(εn,m+1 − εn,m), n,m = 1, 2, . . . .
It is shown in [76] that the sequence ε1,1, ε3,1, . . . , εN,1, . . . converges to

f(t) − c0/2 faster than the sequence of partial sums.

5. Numerical results and discussion

In this section, we aim to illustrate the numerical results of the analytical ex-
pressions obtained in the previous section and explain the influence of fractional
orders and relaxation times on the behavior of the field quantities. In order
to interpret the numerical computations, we consider material properties of a
polymethyl methacrylate (Plexiglas) material. The following values of physical
constants are shown in Table 1 [77].

Table 1.

ρ = 1.2 × 103 kg/m3 k = 0.55 J/m. sec .K E = 525 × 107 N/m2

CE = 1.4 × 103 J/kg · K λ = 453.7 × 107 N/m2 µ = 194 × 107 N/m2

γ = 210 × 104 N/m2K η0 = 3.36 × 106 sec/m2 C0 = 2200 m/ sec

H0 = 1 Tesla T0 = 293 K αT = 13 × 10−5 K−1

ε = 0.12 a = 1.005 b = 1.01

The calculations were carried out for two cases of arbitrary function f(t), as
follows:
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Case 1 : Periodically varying heat sources:

f(t) =







sin

(

πt

ℓ

)

0 ≤ t ≤ ℓ or f̄(s) =
πℓ(1 + e−ℓs)

ℓ2s2 + π2
,

0 otherwise.

Case 2: A thermal shock problem subjected to a ramp-type heating:

f(t) =



















0 0 ≤ t,

Θ0
t

t0
0 ≤ t ≤ t0,

Θ0 t > 0

or f̄(s) =
Θ0(1 − e−st0)

t0s2
,

where t0 indicates the length of time to the heat.
For each case, we apply the following procedure:
The computations are carried out for one value of time: t = 0.1, two different

values of relaxation times: τ = 0.02 and υ = 0.04, and the orders of relaxation
operator are β = 0.0, 0.5 and 1.0, while the differential fractional orders are
α = 0.0, 1.0, 0.5. The temperature, stress and displacement distributions are
obtained and plotted. Case 1 is shown in Figs. 1–3, while Case 2 is shown in
Figs. 4–8. In the first group of figures, the solid lines represent the solution ob-
tained in the frame of the new unified model of magneto-thermo-viscoelasticity

Fig. 1. The variation of temperature for different theories for α = β = 0.5.
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Fig. 2. The variation of stress for different theories for α = β = 0.5.

Fig. 3. The variation of displacement for different theories for α = β = 0.5.

and other lines represent the different theories. The effects of the Alfven ve-
locity and ramping parameter on all fields are shown in the second group of
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Fig. 4. The variation of temperature for different values of ramping parameter t0.

Fig. 5. The variation of stress for different values of Alfven velocity α0 and ramping
parameter t0.

figures. The numerical results are obtained with the help of Mathematica soft-
ware (Version 6). Subsequently, a comparative study of analytical and numerical
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Fig. 6. The variation of displacement for different values of Alfven velocity α0 and ramping
parameter t0.

Fig. 7. The variation of induced magnetic field for different values of Alfven velocity α0 and
ramping parameter t0.
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Fig. 8. The variation of induced electric field for different values of Alfven velocity α0 and
ramping parameter t0.

results is conducted to analyze the effect of fractional order parameters in details.
While conducting this analysis, we found the following highlighted results:

In all figures, we noticed that the speed of the wave propagation of fractional
thermoelastic variable fields is finite and coincides with the physical behaviors
of elastic materials.

1. The speed of the wave propagation in fractional thermoelastic variable
fields according to the new model is finite like in the generalized theories and
coincides with the physical behaviors of elastic materials.

2. The response to the thermal and mechanical effects does not reach infinity
instantaneously but remains in the bounded region of space that expands with
the passing of time.

3. It is noticed that the fractional orders α (0 < α ≤ 1) and β (0 < β ≤ 1)
have a significant effect on all fields.

4. In the new unified framework, it is observed that the thermal waves are
continuous smooth functions and they reach the steady state depending on the
values of α and β, which means that the particles transport the heat to the other
particles easily and this makes the decreasing rate of the temperature greater
than the other ones.

5. The effect of ramp-type heating parameter t0 on temperature field is stud-
ied in Fig. 4. A significant difference in the value of temperature is noticed for
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different values of the ramping time parameter t0 in the context of the unified
model and it increases when this parameter decreases.

6. The effects of Alfven velocity a0 and ramp-type heating parameter t0 on
stress, displacement and induced magnetic field as well as induced electric field
are shown in Figs. 5–8. Their effects are more noticeable as it is shown in these
figures. The magnetic field causes a decrease of the fields. This is mainly due
to the fact that the magnetic field corresponds to the term signifying a positive
force that tends to accelerate the charge carriers. The ramping parameter t0 has
the same effect on these fields.

7. The changes of magnetic parameters M = σ0µ
2
0H

2
0/(ρC

2
0η0), where σ0 is

is the electric conductivity that is caused by different technological processes
that have been conducted in many laboratories, and which affects stress and
deformation in thermoelastic materials [74].

8. This model enables us to improve the efficiency of a thermoelectric material
figure of merit

(

ZT = σ0S2

k T
)

, where S is the thermoelectric power coefficient or
Seebeck coefficient [75]. It is known that in order to achieve a high thermoelectric
material figure of merit, a low thermal conductivity is required. This can occur
for small values of α.

6. Conclusions

1. The main goal of this work is to introduce a unified generalized model
for the Fourier law with fractional derivative for heat conduction law so that
some essential theorems for the linear coupled (CTE) and generalized theories
of thermo-viscoelasticity (LS theory, GL theory and DOL theory) can be easily
obtained. The results of all the functions for the new unified model are distinctly
different from those obtained for coupled and generalized theory.

2. It is clear from the obtained results that the results for fractional general-
ized thermo-viscoelasticity are distinctly different from those of coupled and gen-
eralized thermoelasticity. The solution of any of the considered functions for the
fractional generalized theories vanishes identically outside the bounded region
of space. This demonstrates clearly the difference between the coupled and the
generalized theories of thermoelasticity. In the first and latter theory, the waves
propagate with infinite speeds, so the value of any function is not identically
zero (though it may be very small) for any large value of x. In the fractional
generalized theories, the response to thermal and mechanical effects does not
reach infinity instantaneously but remains in the bounded region of the surface.

3. The advantage of the considered unified model consists in:
(i) Disappearance of the discontinuities in the temperature distribution.
(ii) Disappearance of the negative values in the temperature distribution that

usually appeared in the previously generalized theories of thermoelasticity.
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4. The method used in this article is applicable, when the governing equa-
tions are coupled, to a wide range of problems in thermodynamics and fluid
dynamics [78].
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