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1. Introduction

Tzou [1] has proposed the dual-phase-lag model of heat conduction
based on the following constitutive equation for the heat supply
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(1.1) qi(x, t + τq) = −kij(x)T,j(x, t + τT ),

where qi are the components of the heat flux vector, T is the temperature vari-
ation from the constant ambient temperature T0 > 0, kij are the components of
the conductivity tensor at the position x, t is the current time, τq is the phase
lag of the heat flux and τT is the phase lag of the gradient of temperature. The
phase lags τT and τq are treated as two additional intrinsic thermal properties
characterizing the energy-bearing capacity of the material. The thermodynamic
consistency, as well as the stability issues, of the related time differential models
(obtained considering the Taylor series expansions of both sides of the equation
(1.1) and retaining terms up to suitable orders in τq and τT ) have been widely
investigated in literature (see, for example, [2], [3] and [4]). Such models have
been used in literature in order to study the transient heat transfer in some real
applications, see e.g. [5], [6], [7].

On the other hand, Green and Naghdi [8]–[10] developed a model of ther-
moelasticity, which includes temperature gradient and thermal displacement gra-
dient among the constitutive variables and proposed a heat conduction law as

(1.2) qi(x, t) = −kij(x)T,j(x, t) − Kij(x)α,j(x, t),

where T = α̇, α is the thermal displacement and the heat conductivity tensor
kij satisfies the dissipation inequality

(1.3) kijα̇,iα̇,j ≥ 0.

We have to say here that the thermal displacement has been first introduced by
Helmholtz [11], [12]. A historical account of the fortunes of thermal displace-
ment can be found in the Appendix of the paper by Podio-Guidugli [13]. It is
outlined there the important role of the concept of thermal displacement for stat-
ing the basic balance laws of thermomechanics, but a physical interpretation is
still wanted, especially if consistent with the statistical-mechanics interpretation
for temperature.

Introducing three-phase-lags to the heat flux vector qi, the temperature gra-
dient T,j and the thermal displacement gradient α,i, Roy Choudhuri [14] pro-
posed the following generalized constitutive equation for heat flux for describing
the lagging behavior

(1.4) qi(x, t + τq) = −kij(x)T,j(x, t + τT ) − Kij(x)α,j(x, t + τα).

The third delay time τα may be interpreted, following Tzou [1], as the phase-
lag of the thermal displacement gradient. The thermal lagging is explained in
the Chapter 2 of the book by Tzou [15]. For such model one can consider
several kind of Taylor approximations to recover (in particular) the Green and
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Naghdi models. Great interest was developed to study these equations and the
different Taylor approximations (see, for example, Quintanilla [16], [17] and
Quintanilla and Racke [18]).

Retaining terms up to second order in τq in the Taylor’s expansion of the heat
flux vector into generalized conduction law (1.4) and by taking Taylor’s series
expansion of (1.4) up to the first-order terms in τT and τα leads to the following
generalized heat conduction law valid at a position x at time t,

qi(x, t) + τq q̇i(x, t) +
1

2
τ2
q q̈i(x, t) = −(kij(x) + ταKij(x))T,j(x, t)(1.5)

− τT kij(x)Ṫ,j(x, t) − Kij(x)α,j(x, t).

The restrictions that make the constitutive equation (1.5) thermodynamically
consistent have been established by Chiriţă et al. [19]. The model is refor-
mulated by means of the fading memory theory, in which the heat flux vec-
tor depends on the history of the thermal displacement gradient: the thermo-
dynamic principles are then applied to obtain suitable restrictions involving
the delay times, namely the following tensors κij = kij + (τα − τq)Kij and

κij = τT kij − τq

2
(kij + ταKij) are positive semi-definite. The three-phase-lag

model of heat conduction based on the constitutive equation (1.5) has been used
to study the thermal responses of multilayered systems, functionally graded solid
media and porous materials (see, for example, [20], [21], [22]).

As it is well-known in literature, a mathematical model of thermoelasticity
is understood to be well posed in the sense of Hadamard if the corresponding
boundary-initial value problem possesses a unique solution that depends contin-
uously on the prescribed data. Knowing whether or not a solution is unique is
important for numerical evaluation or for completeness of constructed by semi-
inverse or similar methods. While the continuous data dependence is of practical
and numerical importance. Physical measurements introduce unavoidable er-
rors and these small errors have to influence the real solution in little measure.
A problem is called improperly posed (or ill-posed) if it fails to have a global
solution, or if it fails to have a unique solution, or if the solution does not depend
continuously on the data.

In the present paper we search for the well-posed problem concerning the
time-differential three-phase-lag model of thermoelasticity. In fact, we derive
uniqueness results for the solutions of the initial boundary value problems as-
sociated with the model of the linear theory of coupled thermoelasticity with
time differential three-phase-lag based on the constitutive equation (1.5) for the
heat flux vector. The proof uses a modified initial boundary value problem to
construct a Lagrange identity associated with the solutions in concern. On this
basis we establish an identity that allows us to analyze the uniqueness of so-
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lutions under mild restrictions upon the constitutive coefficients and upon the
delay times. Uniqueness question is also discussed for a set of models of thermoe-
lasticity developed in literature. Further, for the continuous dependence problem
we establish an appropriate estimate of the solution in terms of the given data
that expresses the continuous dependence of solution with respect to the ini-
tial data and with respect to the given supply loads, provided some appropriate
constitutive assumptions are considered. Thus, we can conclude that the time-
differential three-phase-lag model of thermoelasticity is well-posed, provided ap-
propriate thermodynamic and constitutive assumptions are considered.

2. Basic equations

Throughout this paper, we refer the motion of a continuum to a fixed sys-
tem of rectangular Cartesian axes Oxk (k = 1, 2, 3). We shall employ the usual
summation and differentiation conventions: Latin subscripts are understood to
range over the integers (1, 2, 3), summation over repeated subscripts is implied,
subscripts preceded by a comma denote partial differentiation with respect to the
corresponding Cartesian coordinate and a superposed dot denotes time differen-
tiation. Throughout this section we suppose that a regular region B is filled by
an inhomogeneous and anisotropic thermoelastic material. Considering the linear
coupled theory of thermoelastic materials with time differential three-phase-lag
and assuming that the initial body is free from stresses and has zero entropy,
the system of field equations consists of

– the equations of motion

(2.1) tji,j + ̺fi = ̺üi, in B × (0,∞),

– the equation of energy

(2.2) ̺T0η̇ = −qi,i + ̺r, in B × (0,∞),

– the constitutive equations

tij = Cijklekl − Mijα̇,

̺η = Mijeij + aα̇,

qi + τq q̇i +
1

2
τ2
q q̈i = −(kij + ταKij)β̇j − τT kij β̈j − Kijβj , in B × [0,∞),

(2.3)

and
– the geometrical relations

eij =
1

2
(ui,j + uj,i) ,

βj = α,j , in B × [0,∞).
(2.4)
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Here we have used the following notations: ui are the components of the displace-
ment vector, α is the thermal displacement, T = α̇ is the change in temperature
from the constant ambient temperature T0 > 0, eij are the components of the
strain tensor, βi are the components of the thermal displacement gradient vector,
tij are the components of the stress tensor, qi are the components of the heat
flux vector, η is the entropy per unit mass, ̺ is the mass density of the medium,
fi represent the components of the external body force vector per unit mass and
r is the external rate of supply of heat per unit mass. Furthermore, Cijkl, Mij, a,
kij and Kij are the constitutive coefficients depending on the spatial variables xi,
continuously differentiable on B and satisfying the following symmetries

Cijkl = Cklij = Cjikl, Mij = Mji, kij = kji, Kij = Kji.(2.5)

The components of the surface traction and the heat flux at regular points
of ∂B can be expressed in the form

(2.6) ti = tjinj , q = qini,

where ni are the components of the unit outward normal vector to ∂B.
To the field equations we adjoin initial and boundary conditions. The initial

conditions are

ui(x, 0) = u0
i (x), u̇i(x, 0) = u̇0

i (x), α(x, 0) = 0, α̇(x, 0) = T 0(x),

qi(x, 0) = q0
i (x), q̇i(x, 0) = q̇0

i (x), x ∈ B,
(2.7)

where u0
i (x), u̇0

i (x), T 0(x), q0
i (x) and q̇0

i (x) are prescribed functions on B. In
the above relation we have set α(x, 0) = 0 because we have taken

(2.8) α(x, t) =

t
∫

0

T (x, s)ds.

The boundary conditions are

ui(x, t) = ũi(x, t) on Σ1×[0,∞), tji(x, t)nj = t̃i(x, t) on Σ2×[0,∞),

α(x, t) = α̃(x, t) on Σ3×[0,∞), qi(x, t)ni = q̃(x, t) on Σ4×[0,∞),
(2.9)

where ũi(x, t), t̃i(x, t), α̃(x, t) and q̃(x, t) are prescribed continuous functions
and Σ1 ∪ Σ2 = Σ3 ∪ Σ4 = ∂B and Σ1 ∩ Σ2 = Σ3 ∩ Σ4 = ∅.

Throughout this paper we consider the initial boundary value problem P
defined by the basic equations (2.1)–(2.4) and the initial conditions (2.7) and the
boundary conditions (2.9). Furthermore, we denote by P0 the initial boundary
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value problem P corresponding to the given data D = {fi, r;u
0
i , u̇

0
i , T

0, q0
i , q̇

0
i ;

ũi, t̃i, α̃, q̃} = 0.
By a solution of the initial boundary value problem P corresponding to the

given data D = {fi, r;u
0
i , u̇

0
i , T

0, q0
i , q̇

0
i ; ũi, t̃i, α̃, q̃} we mean the ordered array

S = {ui, α, eij , βj , tij , η, qi} defined on B × [0,∞) with the properties that

ui(x, t) ∈ C2,2 (B × (0,∞)) , α(x, t) ∈ C2,2 (B × (0,∞)) ,

eij(x, t) = eji(x, t) ∈ C0,0 (B × (0,∞)) , βj(x, t) ∈ C0,0 (B × (0,∞)) ,

tij(x, t) = tji(x, t) ∈ C1,0(B × (0,∞)), η(x, t) ∈ C0,1 (B × (0,∞)) ,

qi(x, t) ∈ C1,2 (B × (0,∞))

and which satisfy the field equations (2.1) to (2.4), the initial conditions (2.7) and
the boundary conditions (2.9). Concerning the initial boundary value problem
P we will treat the corresponding uniqueness question. In view of the linearity
of the problem, the uniqueness question is equivalent to prove that the initial
boundary value problem P0 admits only the zero solution. So in the next four
sections we will study the initial boundary value problem P0 and we will establish
uniqueness results under mild restrictions upon the constitutive coefficients and
upon the delay times. Finally, in Section 7, we establish an estimate describing
the continuous dependence of solution of the initial boundary value problem P
with respect to the initial data and with respect to the given loads.

3. Two auxiliary operators and some their properties

For further convenience we introduce some auxiliary operators. Thus, for any
continuous function of time variable f(t), we denote by f ′(t) the integral over
[0, t] of that function, that is

(3.1) f ′(t) =

t
∫

0

f(z)dz, f ′′(t) =

t
∫

0

s
∫

0

f(z)dzds, and so on;

moreover, for any continuous function g(t) we will denote by g∗(t) the following
function

(3.2) g∗(t) = g′′(t) + τqg
′(t) +

1

2
τ2
q g(t).

Furthermore, we note that

(3.3) g∗(0) =
1

2
τ2
q g(0),

dg∗

dt
(0) = τqg(0) +

1

2
τ2
q ġ(0).

Concerning these concepts we can establish the following properties.
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Lemma 1. Suppose that g is twice continuously differentiable. Then, we have

(

dg

dt

)′

(t) =
dg′

dt
(t) − g(0),

(

dg

dt

)∗

(t) =
dg∗

dt
(t) − [τqg(0) + tg(0)] ,

(

d2g

dt2

)∗

(t) =
d2g∗

dt2
(t) − [g(0) + τqġ(0) + tġ(0)] .

(3.4)

Lemma 2. Suppose that g is twice continuously differentiable with g(0) = 0
and ġ(0) = 0. Then, we have

(

dg

dt

)′

(t) =
dg′

dt
(t) ,

(

dg

dt

)∗

(t) =
dg∗

dt
(t),

(

d2g

dt2

)∗

(t) =
d2g∗

dt2
(t).

(3.5)

Lemma 3. Suppose that g is twice continuously differentiable and satisfies

(3.6) g∗(t) = 0, for all t > 0,

and

(3.7) g∗(0) = 0, ġ∗(0) = 0.

Then, we have

(3.8) g(t) = 0, for all t ≥ 0.

Proof. By a twice derivative with respect to time variable in (3.2), from (3.6)
we deduce that

(3.9)
1

2
τ2
q g̈(t) + τq ġ(t) + g(t) = 0, for all t > 0,

while from (3.3) and (3.7) we have

(3.10) g(0) = 0, ġ(0) = 0.

Now it is easy to see that the Cauchy problem defined by the differential equation
(3.9) and the initial conditions (3.10) has only the zero solution and hence we
get the conclusion expressed by relation (3.8) and the proof is complete.
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4. An auxiliary initial boundary value problem

Let us now consider that S = {ui, α, eij , βj , tij , η, qi} is a solution of the
initial boundary value problem P . Then it follows that S∗ = {u∗

i , α
∗, e∗ij , β

∗
j ,

t∗ij , η
∗, q∗i } is a solution of the initial boundary value problem P∗ defined by the

following basic equations

t∗ji,j(t) + Fi(t) = ̺
∂2u∗

i

∂t2
(t),(4.1)

̺
∂η∗

∂t
(t) = − 1

T0
q∗i,i(t) + R(t),(4.2)

in B × (0,∞),

t∗ij(t) = Cijkle
∗
kl(t) − Mij

∂α∗

∂t
(t),(4.3)

̺η∗(t) = Mije
∗
ij(t) + a

∂α∗

∂t
(t),(4.4)

q∗i (t) = − Kijβ
′′
j (t) − (kij + ταKij) β′

j(t) − τT kijβj(t)(4.5)

+
1

2
τ2
q q0

i + t

(

τqq
0
i + τT kijT

0
,j +

1

2
τ2
q q̇0

i

)

,

and

e∗ij(t) =
1

2

(

u∗
i,j(t) + u∗

j,i(t)
)

,

β∗
j (t) =α∗

,j(t),

(4.6)

in B × [0,∞) and the initial conditions

u∗
i (x, 0) =

1

2
τ2
q u0

i (x),
∂u∗

i

∂t
(x, 0) = τqu

0
i (x) +

1

2
τ2
q u̇0

i (x),

α∗(x, 0) = 0,
∂α∗

∂t
(x, 0) =

1

2
τ2
q T 0(x),

q∗i (x, 0) =
1

2
τ2
q q0

i (x),
∂q∗i
∂t

(x, 0) = τqq
0
i (x) +

1

2
τ2
q q̇0

i (x), on B,

(4.7)

and the boundary conditions

u∗
i (x, t) = ũ∗

i (x, t) on Σ1 × [0,∞),

t∗ji(x, t)nj = t̃∗i (x, t) on Σ2 × [0,∞),

α∗(x, t) = α̃∗(x, t) on Σ3 × [0,∞),

q∗i (x, t)ni = q̃∗(x, t) on Σ4 × [0,∞).

(4.8)
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In the above relations we have used the following notation

(4.9) ̺η0(x) =
1

2
Mij

(

u0
i,j(x) + u0

j,i(x)
)

+ aT 0(x),

and

Fi(x, t) = ̺f∗
i (x, t) + ̺

[

(t + τq) u̇0
i (x) + u0

i (x)
]

,

R(x, t) =
1

T0
̺r∗(x, t) + ̺ (t + τq) η0(x).

(4.10)

Remark 1. Let us now consider that S = {ui, α, eij , βj , tij , η, qi} is a so-
lution of the initial boundary value problem P0. Then it follows that S∗ =
{u∗

i , α
∗, e∗ij , β

∗
j , t∗ij , η

∗, q∗i } is a solution of the initial boundary value problem P∗
0

defined by the following basic equations

t∗ji,j(t) = ̺
∂2u∗

i

∂t2
(t),(4.11)

̺
∂η∗

∂t
(t) = − 1

T0
q∗i,i(t),(4.12)

in B × (0,∞),

t∗ij(t) = Cijkle
∗
kl(t) − Mij

∂α∗

∂t
(t),(4.13)

̺η∗(t) = Mije
∗
ij(t) + a

∂α∗

∂t
(t),(4.14)

q∗i (t) = −Kijβ
′′
j (t) − (kij + ταKij) β′

j(t) − τT kijβj(t),(4.15)

and

e∗ij(t) =
1

2

(

u∗
i,j(t) + u∗

j,i(t)
)

,

β∗
j (t) =α∗

,j(t),

(4.16)

in B × [0,∞) and the initial conditions

u∗
i (x, 0) = 0,

∂u∗
i

∂t
(x, 0) = 0, α∗(x, 0) = 0,

∂α∗

∂t
(x, 0) = 0,

q∗i (x, 0) = 0,
∂q∗i
∂t

(x, 0) = 0, on B,

(4.17)
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and the boundary conditions

u∗
i (x, t) = 0 on Σ1 × [0,∞),

t∗ji(x, t)nj = 0 on Σ2 × [0,∞),

α∗(x, t) = 0 on Σ3 × [0,∞),

q∗i (x, t)ni = 0 on Σ4 × [0,∞).

(4.18)

Remark 2. In view of the Lemma 3, we can conclude that when S∗ =
{u∗

i , α
∗, e∗ij , β

∗
j , t∗ij , η

∗, q∗i } = 0 then we have S = {ui, α, eij , βj , tij , η, qi} = 0.
So in order to prove the uniqueness of solutions to the initial boundary value
problem P it is sufficient to prove that the unique solution of the initial boundary
value problem P∗

0 is the banal solution S∗ = {u∗
i , α

∗, e∗ij , β
∗
j , t∗ij , η

∗, q∗i } = 0.

5. A Lagrange identity for the initial boundary value problem P∗
0

In this section we will establish an identity of Lagrange type for the solutions
of the initial boundary value problem P∗

0 . Such identity is useful to establish
uniqueness of solutions to the initial boundary value problem P under mild
assumptions upon the thermoelastic characteristic coefficients. Thus, we have

Theorem 1. For any solution S∗ = {u∗
i , α

∗, e∗ij , β
∗
j , t∗ij , η

∗, q∗i } of the initial

boundary value problem P∗
0 , we have the following Lagrange identity

(5.1) 2

∫

B

̺u∗
i (t)u̇

∗
i (t)dv

=

t
∫

0

∫

B

1

T0

[

Kijβ
′′′
j (t − s)β̇∗

i (t + s) − Kijβ
′′′
j (t + s)β̇∗

i (t − s)
]

dvds

+

t
∫

0

∫

B

1

T0

[

(kij + ταKij)β
′′
j (t − s)β̇∗

i (t + s)

− (kij + ταKij)β
′′
j (t + s)β̇∗

i (t − s)
]

dvds

+

t
∫

0

∫

B

τT

T0

[

kijβ
′
j(t − s)β̇∗

i (t + s) − kijβ
′
j(t + s)β̇∗

i (t − s)
]

dvds,

for all t ≥ 0.
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Proof. Let S∗ = {u∗
i , α

∗, e∗ij , β
∗
j , t∗ij , η

∗, q∗i } be a solution of the initial bound-
ary value problem P∗

0 . We start with the identity

(5.2)
∂

∂s
[̺u∗

i (t + s)u̇∗
i (t − s) + ̺u∗

i (t − s)u̇∗
i (t + s)]

= ̺ [ü∗
i (t + s)u∗

i (t − s) − ü∗
i (t − s)u∗

i (t + s)] ,

which, integrated with respect to (s,x) ∈ (0, t) × B and by using the initial
conditions (4.17), gives

(5.3) 2

∫

B

̺u∗
i (t)u̇

∗
i (t)dv

=

t
∫

0

∫

B

̺ [ü∗
i (t − s)u∗

i (t + s) − ü∗
i (t + s)u∗

i (t − s)] dvds, t ≥ 0.

Further, we use the basic equations (4.11), (4.13), (4.14), (4.17) and the boundary
conditions (4.18) into (5.3) to obtain

(5.4) 2

∫

B

̺u∗
i (t)u̇

∗
i (t)dv

=

t
∫

0

∫

B

[α̇∗(t − s)̺η∗(t + s) − α̇∗(t + s)̺η∗(t − s)] dvds, t ≥ 0.

Now we integrate with respect to time variable the equation (4.12) to obtain

(5.5) ̺η∗(t) = − 1

T0

t
∫

0

q∗i,i(s)ds,

which, when replaced into (5.4) and by using the divergence theorem and the
boundary conditions (4.18), implies

(5.6) 2

∫

B

̺u∗
i (t)u̇

∗
i (t)dv

=

t
∫

0

∫

B

1

T0

[

β̇∗
i (t − s)

t+s
∫

0

q∗i (z)dz − β̇∗
i (t + s)

t−s
∫

0

q∗i (z)dz

]

dvds, t ≥ 0.

Finally, by replacing the equation (4.15) into relation (5.6), we are led to the
identity (5.1) and the proof is complete.
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6. Uniqueness result

In this section we use the identity (5.1) in order to prove that the unique solu-
tion of the initial boundary value problem P∗

0 is S∗ = {u∗
i , α

∗, e∗ij , β
∗
j , t∗ij , η

∗, q∗i }
= 0. That means we can establish the following uniqueness result.

Theorem 2. Suppose that ̺ > 0, τT > 0, 0 < τq ≤ τα, Kij is a positive

semi-definite tensor and kij is a positive definite tensor. Moreover, we assume

that measΣ3 6= 0 or a > 0. Then the initial boundary value problem P has at

most one solution.

Proof. We use the notation (3.2) to write

(6.1) Kijβ
′′′
j (t − s)β̇∗

i (t + s) − Kijβ
′′′
j (t + s)β̇∗

i (t − s)

= Kijβ
′′′
j (t − s)β′

i(t + s) − Kijβ
′′′
j (t + s)β′

i(t − s)

+ τq

[

Kijβ
′′′
j (t − s)βi(t + s) − Kijβ

′′′
j (t + s)βi(t − s)

]

+
1

2
τ2
q

[

Kijβ
′′′
j (t − s)β̇i(t + s) − Kijβ

′′′
j (t + s)β̇i(t − s)

]

,

and note that a straightforward calculation proves that

(6.2) Kijβ
′′′
j (t − s)β̇∗

i (t + s) − Kijβ
′′′
j (t + s)β̇∗

i (t − s)

=
∂

∂s
{[Kijβ

′′′
j (t − s)β′′

i (t + s) + Kijβ
′′′
j (t + s)β′′

i (t − s)]

+ τq[Kijβ
′′′
j (t − s)β′

i(t + s) + Kijβ
′′′
j (t + s)β′

i(t − s) + Kijβ
′′
j (t − s)β′′

i (t + s)]

+
1

2
τ2
q [Kijβ

′′′
j (t − s)βi(t + s) + Kijβ

′′′
j (t + s)βi(t − s)

+ Kijβ
′′
j (t − s)β′

i(t + s) + Kijβ
′′
j (t + s)β′

i(t − s)]}.
In a similar way, we get

(6.3) (kij + ταKij) β′′
j (t − s)β̇∗

i (t + s) − (kij + ταKij) β′′
j (t + s)β̇∗

i (t − s)

=
∂

∂s
{(kij + ταKij)β

′′
j (t − s)β′′

i (t + s) + τq[(kij + ταKij)β
′′
j (t − s)β′

i(t + s)

+ (kij + ταKij)β
′′
j (t + s)β′

i(t − s)] +
1

2
τ2
q [(kij + ταKij)β

′′
j (t − s)βi(t + s)

+ (kij + ταKij)β
′′
j (t + s)βi(t − s) + (kij + ταKij)β

′
j(t − s)β′

i(t + s)]},
and

(6.4) kijβ
′
j(t − s)β̇∗

i (t + s) − kijβ
′
j(t + s)β̇∗

i (t − s)

=
∂

∂s
{τqkijβ

′
j(t − s)β′

i(t + s)

+
1

2
τ2
q [kijβ

′
j(t − s)βi(t + s) + kijβ

′
j(t + s)βi(t − s)]}.
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We now substitute the relations (6.2) to (6.4) into the Lagrange identity (5.1)
and take into account the zero initial conditions (4.17). Thus, we obtain

(6.5) 2

∫

B

̺u∗
i (t)u̇

∗
i (t)dv +

1

T0

∫

B

[2Kijβ
′′′
j (t)β′′

i (t) + (kij + ταKij)β
′′
j (t)β′′

i (t)]dv

+
τq

T0

∫

B

[2Kijβ
′′′
j (t)β′

i(t) + Kijβ
′′
j (t)β′′

i (t) + 2(kij + ταKij)β
′′
j (t)β′

i(t)]dv

+
τ2
q

2T0

∫

B

[2Kijβ
′′′
j (t)βi(t) + 2Kijβ

′′
j (t)β′

i(t) + 2(kij + ταKij)β
′′
j (t)βi(t)

+ (kij + ταKij)β
′
j(t)β

′
i(t)]dv +

τT τq

T0

∫

B

[kijβ
′
j(t)β

′
i(t) + τqkijβ

′
j(t)βi(t)]dv = 0,

for all t ≥ 0. Furthermore, we can write it under the following form

(6.6)
d

dt

{
∫

B

̺u∗
i (t)u

∗
i (t)dv +

1

T0

∫

B

Kijβ
′′′
j (t)β′′′

i (t)dv +
τq

T0

∫

B

[2Kijβ
′′′
j (t)β′′

i (t)

+ (kij + ταKij)β
′′
j (t)β′′

i (t)]dv +
τ2
q

T0

∫

B

[Kijβ
′′′
j (t)β′

i(t)

+ (kij + ταKij)β
′′
j (t)β′

i(t)]dv +
τT τ2

q

2T0

∫

B

kijβ
′
j(t)β

′
i(t)dv

}

+
1

T0

∫

B

[(kij + ταKij) − τqKij ]β
′′
j (t)β′′

i (t)dv

+
τq

2T0

∫

B

[2τT kij − τq(kij + ταKij)]β
′
j(t)β

′
i(t)dv = 0,

so that, by means of an integration with respect to time variable and by using
the initial conditions (4.17), we deduce

(6.7)
∫

B

̺u∗
i (t)u

∗
i (t)dv +

1

T0

∫

B

Kijβ
′′′
j (t)β′′′

i (t)dv +
τq

T0

∫

B

[2Kijβ
′′′
j (t)β′′

i (t)

+ (kij + ταKij)β
′′
j (t)β′′

i (t)]dv +
τ2
q

T0

∫

B

[Kijβ
′′′
j (t)β′

i(t)

+ (kij + ταKij)β
′′
j (t)β′

i(t)]dv +
τT τ2

q

2T0

∫

B

kijβ
′
j(t)β

′
i(t)dv
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+
1

T0

t
∫

0

∫

B

[(kij + ταKij) − τqKij ]β
′′
j (s)β′′

i (s)dvds

+
τq

2T0

t
∫

0

∫

B

[2τT kij − τq(kij + ταKij)]β
′
j(s)β

′
i(s)dvds = 0.

On the other side, we note that

(6.8)
τq

T0

∫

B

2Kijβ
′′′
j (t)β′′

i (t)dv+
τ2
q

T0

∫

B

[Kijβ
′′′
j (t)β′

i(t)+(kij+ταKij)β
′′
j (t)β′

i(t)]dv

=
d

dt

{

τq

T0

∫

B

Kijβ
′′′
j (t)β′′′

i (t)dv +
τ2
q

2T0

∫

B

(kij + ταKij)β
′′
j (t)β′′

i (t)dv

}

+
d2

dt2

[

τ2
q

2T0

∫

B

Kijβ
′′′
j (t)β′′′

i (t)dv

]

−
τ2
q

T0

∫

B

Kijβ
′′
j (t)β′′

i (t)dv,

so that the relation (6.7), after twice integrated with respect to time variable,
implies

(6.9)

t
∫

0

s
∫

0

∫

B

̺u∗
i (z)u∗

i (z)dvdzds +
1

T0

t
∫

0

s
∫

0

∫

B

Kijβ
′′′
j (z)β′′′

i (z)dvdzds

+
τq

T0

t
∫

0

∫

B

Kijβ
′′′
j (s)β′′′

i (s)dvds +
τ2
q

2T0

∫

B

Kijβ
′′′
j (t)β′′′

i (t)dv

+
1

T0

t
∫

0

s
∫

0

z
∫

0

∫

B

[kij + (τα − τq)Kij ]β
′′
j (r)β′′

i (r)dvdrdzds

+
τq

T0

t
∫

0

s
∫

0

∫

B

[kij + (τα − τq)Kij ]β
′′
j (z)β′′

i (z)dvdzds

+
τ2
q

2T0

t
∫

0

∫

B

(kij + ταKij)β
′′
j (s)β′′

i (s)dvds +
τT τ2

q

2T0

t
∫

0

s
∫

0

∫

B

kijβ
′
j(z)β′

i(z)dvdzds

+
τq

T0

t
∫

0

s
∫

0

z
∫

0

∫

B

[τT kij −
τq

2
(kij + ταKij)]β

′
j(r)β

′
i(r)dvdrdzds = 0,

for all t ≥ 0.
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At this time, we can observe that our constitutive hypotheses make all the
integral terms in (6.9) to be positive, excepting the last integral whose sign
remains indefinite. On this basis we can conclude that

(6.10)
τT τ2

q

2T0

t
∫

0

s
∫

0

∫

B

kijβ
′
j(z)β′

i(z)dvdzds

+
τq

T0

t
∫

0

s
∫

0

z
∫

0

∫

B

[

τT kij −
τq

2
(kij + ταKij)

]

β′
j(r)β

′
i(r)dvdrdzds ≤ 0, t ≥ 0,

and hence we are lead to the following Gronwall inequality

(6.11) Φ(t) ≤ M

t
∫

0

Φ(s)ds, t ≥ 0,

where

Φ(t) =

t
∫

0

s
∫

0

∫

B

kijβ
′
j(z)β′

i(z)dvdzds,(6.12)

M =
2

τT τq
sup
B

{

([τT kij− τq

2 (kij+ταKij)][τT kij− τq

2 (kij+ταKij)])
1/2

k0(x)

}

,(6.13)

and k0 is related to the lowest eigenvalue of the positive definite tensor kij . By
means of the Gronwall lemma, it follows from (6.11) that

(6.14) Φ(t) =

t
∫

0

s
∫

0

∫

B

kijβ
′
j(z)β′

i(z)dvdzds = 0 for all t ≥ 0,

which implies that

(6.15) β′
i(x, t) = 0 for all (x, t) ∈ B × [0,∞),

and hence we have

(6.16) βi(x, t) = 0 for all (x, t) ∈ B × [0,∞).

Then, the relation (6.9) becomes

(6.17)

t
∫

0

s
∫

0

∫

B

̺u∗
i (z)u∗

i (z)dvdzds = 0 for all t ≥ 0,
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that implies

(6.18) u∗
i (x, t) = 0 for all (x, t) ∈ B × [0,∞).

In view of the Lemma 3 we can conclude that

(6.19) ui(x, t) = 0 for all (x, t) ∈ B × [0,∞).

Let us first consider that measΣ3 6= 0. Then the relations (6.16), (4.16)2 and
(4.18)3 imply that

(6.20) α∗(x, t) = 0 for all (x, t) ∈ B × [0,∞),

and on the basis of the Lemma 3 we conclude that

(6.21) α(x, t) = 0 for all (x, t) ∈ B × [0,∞).

Let us now consider that a > 0. It follows from the relations (6.16) and (4.15)
that

(6.22) q∗i (x, t) = 0 for all (x, t) ∈ B × [0,∞),

and then the equation (4.12) gives

(6.23) η∗(x, t) = 0 for all (x, t) ∈ B × [0,∞).

Finally, the relations (4.14), (6.19) and (6.23) imply again that (6.21) holds true.
Concluding, we have obtained that

(6.24) S∗ = {u∗
i , α

∗, e∗ij , β
∗
j , t∗ij , η

∗, q∗i } = 0 for all (x, t) ∈ B × [0,∞),

and then

(6.25) S = {ui, α, eij , βj , tij , η, qi} = 0 for all (x, t) ∈ B × [0,∞).

This proves the uniqueness of solution of the initial boundary value problem P
and the proof is complete.

7. Continuous dependence of solutions of the problem P with respect
to the given data

In this section we study the continuous dependence of solutions of the initial
boundary value problem P with respect to the initial data and with respect
to the supply terms. To this aim, throughout this section, we consider that
S = {ui, α, eij , βj , tij , η, qi} is a solution of the initial boundary value problem
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P corresponding to the given data D = {fi, r;u
0
i , u̇

0
i , T

0, q0
i , q̇

0
i ; 0, 0, 0, 0}. With

S = {ui, α, eij , βj , tij , η, qi} we associate the following functional

(7.1) E(t) =

=
1

2

t
∫

0

s
∫

0

∫

B

[

̺
∂u∗

i

∂z
(z)

∂u∗
i

∂z
(z) + Cijkle

∗
ij(z)e∗kl(z) + a

(

∂α∗

∂z
(z)

)2]

dvdzds

+

∫

B

τ2
q

4T0
Kijβ

′′
j (t)β′′

i (t)dv +

t
∫

0

∫

B

τ2
q

4T0
(kij + ταKij) β′

j(s)β
′
i(s)dvds

+

t
∫

0

∫

B

τq

2T0
Kijβ

′′
j (s)β′′

i (s)dvds +

t
∫

0

s
∫

0

∫

B

1

2T0
Kijβ

′′
j (z)β′′

i (z)dvdzds

+

t
∫

0

s
∫

0

∫

B

1

2T0

[

(τT + τq) kij + τq

(

τα − 3

2
τq

)

Kij

]

β′
j(z)β′

i(z)dvdzds

+

t
∫

0

s
∫

0

∫

B

τT τ2
q

4T0
kijβj(z)βi(z)dvdzds

+

t
∫

0

s
∫

0

z
∫

0

∫

B

1

T0
[kij + (τα − τq) Kij ]β

′
j(r)β

′
i(r)dvdrdzds

+

t
∫

0

s
∫

0

z
∫

0

∫

B

τq

T0

[

τT kij −
τq

2
(kij + ταKij)

]

βj(r)βi(r)dvdrdzds, t ≥ 0.

Concerning this functional we can establish the following conservation law.

Lemma 4. Suppose that S = {ui, α, eij , βj , tij , η, qi} is a solution of the initial

boundary value problem P corresponding to the given data D = {fi, r;u
0
i , u̇

0
i , T

0,
q0
i , q̇

0
i ; 0, 0, 0, 0}. Then the following identity holds true

(7.2) E(t) =
t2

2
E(0) +

t
∫

0

s
∫

0

z
∫

0

∫

B

[

Fi(r)
∂u∗

i

∂r
(r) + R̃(r)

∂α∗

∂r
(r)

]

dvdrdzds, t ≥ 0,

where

(7.3) R̃(x, t) =

R(x, t) − 1

T0

[

1

2
τ2
q q0

i,i(x) + t

(

τqq
0
i,i(x) + τT (kij(x)T 0

,j(x)),i +
1

2
τ2
q q̇0

i,i(x)

)]

,

and Fi and R are defined by means of relation (4.10).
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Throughout in the remaining of this section we assume the following consti-
tutive assumptions:
(H1) ̺ > 0; a > 0; Cijkl is a positive semi-definite tensor;
(H2) kij is a positive definite tensor; Kij is a positive semi-definite tensor;

(H3) the tensors κij = kij + (τα − τq) Kij and κij = τT kij −
τq

2
(kij + ταKij)

are positive semi-definite.
It can be easily seen the following result.

Lemma 5. Suppose that the hypotheses (H1)–(H3) hold true. Then E(t) is a

measure associated with the solution S = {ui, α, eij , βj , tij , η, qi}.
Theorem 3. Suppose that the hypotheses (H1)–(H3) hold true. Let S =

{ui, α, eij , βj , tij , η, qi} be a solution of the initial boundary value problem P cor-

responding to the given data D = {fi, r;u
0
i , u̇

0
i , T

0, q0
i , q̇

0
i ; 0, 0, 0, 0}. Then, for

any fixed time S ∈ (0,∞), the following inequality holds true

(7.4)
√

E(t) ≤ S
√

E(0) +
1√
2

t
∫

0

G(s)ds, t ∈ [0, S],

where

(7.5) G(t) =

√

√

√

√

√

t
∫

0

s
∫

0

∫

B

[

1

̺
Fi(z)Fi(z) +

1

a
R̃(z)R̃(z)

]

dvdzds.

Proof. By means of the Cauchy-Schwarz inequality, from the identity (7.2),
we obtain

(7.6) E(t) ≤

S2E(0) +

t
∫

0

G(s)

√

√

√

√

√

s
∫

0

z
∫

0

∫

B

[

̺
∂u∗

i

∂r
(r)

∂u∗
i

∂r
(r) + a

(

∂α∗

∂r
(r)

)2 ]

dvdrdzds,

for all t ∈ [0, S]. By using the constitutive hypotheses (H1)–(H3) and the relation
(7.1), from (7.6) we deduce the following Gronwall type inequality

(7.7) E(t) ≤ S2E(0) +

t
∫

0

G(s)
√

2E(s)ds, t ∈ [0, S],

which, integrated as in Dafermos [28], furnishes the estimate (7.4) and the
proof is complete.
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8. Concluding remarks

We investigated the well posedness of the time differential three-phase-lag
model of thermoelasticity as proposed by Choudhuri [14]. The results con-
cluded from the above analysis can be summarized as follows:
(1) Our uniqueness result is established under the following assumptions upon

the delay times: τT > 0, 0 < τq ≤ τα;
(2) When τq = 0 then the identity (6.9) becomes

(8.1)

t
∫

0

s
∫

0

∫

B

̺u∗
i (z)u∗

i (z)dvdzds +
1

T0

t
∫

0

s
∫

0

∫

B

Kijβ
′′′
j (z)β′′′

i (z)dvdzds

+
1

T0

t
∫

0

s
∫

0

z
∫

0

∫

B

(kij + ταKij) β′′
j (r)β′′

i (r)dvdrdzds = 0,

for all t ≥ 0. This last identity implies the uniqueness result without any
restrictions upon the other two delay times τT and τα. This includes the
uniqueness result when we have τT = 0 and τα = 0, that is for the model
considered by Green and Naghdi [23], [24].

(3) Moreover, when τq = 0 we can replace the assumptions upon kij and Kij

with the hypotheses that Kij to be a positive definite tensor and kij to be
a positive semi-definite tensor.

(4) It can be seen from the identity (6.9) that the uniqueness result remains
valid when we replace the assumption 0 < τq ≤ τα by the hypothesis that
kij + (τα − τq)Kij to be a positive semi-definite tensor.

(5) For the well known law of the Jeffrey’s-type heat flux equation [25], [26],
the terms containing Kij and τ2

q are neglected and then the above identity
(6.9) reduces to

(8.2)

t
∫

0

s
∫

0

∫

B

̺u∗
i (z)u∗

i (z)dvdzds +
1

T0

t
∫

0

s
∫

0

z
∫

0

∫

B

kijβ
′′
j (r)β′′

i (r)dvdrdzds

+
τq

T0

t
∫

0

s
∫

0

∫

B

kijβ
′′
j (z)β′′

i (z)dvdzds

+
τqτT

T0

t
∫

0

s
∫

0

z
∫

0

∫

B

kijβ
′
j(r)β

′
i(r)dvdrdzds = 0,

for all t ≥ 0, and it implies obvious the uniqueness result without any
restrictions upon the delay times τq ≥ 0 and τT ≥ 0. In particular, for the



390 C. D’Apice, S. Chiriţă, V. Zampoli

Lord-Shulman theory of heat conduction [27], when τT = 0 and τq ≥ 0,
the uniqueness result ready follows from the identity (8.2).

(6) When the term τ2
q is neglected into the constitutive law (1.5), that is we

retain only the terms of first order in the Taylor’s expansion of (1.4), we
have the constitutive law

(8.3) qi(x, t) + τq q̇i(x, t)

= −(kij(x) + ταKij(x))T,j(x, t) − τT kij(x)Ṫ,j(x, t) − Kij(x)α,j(x, t).

In that case the identity (6.9) has to be replaced by the following one

(8.4)

t
∫

0

∫

B

̺u∗
i (s)u

∗
i (s)dvds +

1

T0

t
∫

0

∫

B

Kijβ
′′
j (s)β′′

i (s)dvds

+
τq

T0

∫

B

Kijβ
′′
j (t)β′′

i (t)dv

+
τqτT

T0

t
∫

0

s
∫

0

∫

B

kijβj(z)βi(z)dvdzds

+
τq

T0

t
∫

0

∫

B

[kij + ταKij ]β
′
j(s)β

′
i(s)dvds

+
1

T0

t
∫

0

s
∫

0

∫

B

[kij + (τα − τq) Kij ]β
′
j(z)β′

i(z)dvdzds = 0,

where now

(8.5) u∗
i (t) = u′

i(t) + τqui(t).

Then it can be seen that the uniqueness result follows, provided we assume
the following hypotheses: ̺ > 0, τT ≥ 0, τq ≥ 0, τα ≥ 0, kij (or Kij) is
a positive definite tensor and Kij (or kij) is a positive semi-definite tensor.

(7) When we consider the Taylor series expansion of second order for the both
members of the constitutive equation (1.4), that is the constitutive equa-
tion (1.5) is replaced by the following one

(8.6) qi(x, t) + τq q̇i(x, t) +
1

2
τ2
q q̈i(x, t)

= −Kij(x)βj(x, t) − (kij(x) + ταKij(x)) β̇j(x, t)

−
(

τT kij(x) +
1

2
τ2
αKij(x)

)

β̈j(x, t) − 1

2
τ2
T kij(x)

...
β j(x, t),
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then the identity (6.9) becomes

(8.7)

t
∫

0

s
∫

0

∫

B

̺u∗
i (z)u∗

i (z)dvdzds +
1

T0

t
∫

0

s
∫

0

∫

B

Kijβ
′′′
j (z)β′′′

i (z)dvdzds

+
τq

T0

t
∫

0

∫

B

Kijβ
′′′
j (s)β′′′

i (s)dvds +
τ2
q

2T0

∫

B

Kijβ
′′′
j (t)β′′′

i (t)dv

+
1

T0

t
∫

0

s
∫

0

z
∫

0

∫

B

[kij + (τα − τq) Kij ] β
′′
j (r)β′′

i (r)dvdrdzds

+
τq

T0

t
∫

0

s
∫

0

∫

B

[kij + (τα − τq) Kij ]β
′′
j (z)β′′

i (z)dvdzds

+
τ2
q

2T0

t
∫

0

∫

B

(kij + ταKij) β′′
j (s)β′′

i (s)dvds

+
τ2
q

2T0

t
∫

0

s
∫

0

∫

B

(

τT kij +
1

2
τ2
αKij

)

β′
j(z)β′

i(z)dvdzds

+
1

T0

t
∫

0

s
∫

0

z
∫

0

∫

B

[(

τqτT − 1

2
τ2
T − 1

2
τ2
q

)

kij

+
1

2
τατq (τα − τq) Kij

]

β′
j(r)β

′
i(r)dvdrdzds

+
1

4T0
τ2
q τ2

T

t
∫

0

s
∫

0

z
∫

0

∫

B

kijβj(r)βi(r)dvdrdzds = 0.

It can be easily seen that the uniqueness result follows, provided we assume
the following hypotheses: ̺ > 0, τT ≥ 0, τq ≥ 0, τα ≥ 0, kij (or Kij) is
a positive definite tensor and Kij (or kij) is a positive semi-definite tensor,
and kij + (τα − τq)Kij is a positive semi-definite tensor.

(8) We established the estimate (7.4) describing the continuous dependence of
solution of the initial boundary value problem P with respect to the given
data, provided the thermodynamic restrictions κijξiξj ≥ 0 and κijξiξj ≥ 0,
for all ξi, are fulfilled. Analog estimates can be established for the models
considered within the above two points.

(9) The above considerations allow us to conclude that the time differential
three-phase-lag models of thermoelasticity as proposed by Choudhuri
[14] are well posed.
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