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Analysis of micropolar porous thermoelastic circular plate

by eigenvalue approach
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The present paper examined a two-dimensional axi-symmetric problem of thick
circular plate in a micropolar porous thermoelastic medium due to thermomechan-
ical sources. An eigenvalue approach has been employed after applying the Laplace
and Hankel transforms to investigate the problem. The expressions of displacements,
stresses, microrotation, volume fraction field and temperature distribution are ob-
tained in the transformed domain. A numerical inversion technique has been used
to obtain the resulting quantities in the physical domain. The numerical simulated
resulting quantities are shown graphically to depict the effects of thermal forces and
porosity. Particular cases of interest are also studied and presented.
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1. Introduction

Classical theory of elasticity deals with a theoretical, ideal and sim-
plified model of a solid in the form of an elastic material that is regarded as
a continuum in the mathematical sense, and thus the molecular, atomic struc-
ture of the body is neglected. The continuous distribution of a matter in a given
region of the body is characterized by a single quantity – the density. This the-
ory describes well the behavior of construction materials such as steel, aluminum
and concrete, with stresses remaining within the material elastic limits. In vari-
ous situations, some basic differences are evident between the classical theory of
elasticity and experiments in the problems where stress gradient effects occur.
In many dynamical problems, such as elastic vibrations with high frequencies
and short wavelengths or the ultrasonic waves characterized by high frequencies
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and short wavelengths, the discrepancy between the classical theory of elasticity
and the experiments is clearly observed. Therefore, the classical elasticity fails to
obtain good results in the case of granular body vibrations. Granular materials
are construction materials, polymers and polycrystalline structures.

In order to eliminate the shortcomings of classical elasticity, several general-
ized continuum theories have been introduced, which have additional degrees of
freedom. One of these theories is the micropolar continuum theory introduced
and developed by Eringen [1]. Micropolar continuum mechanics is a scientific
discipline concerned with the mechanics of oriented bodies whose primitive ele-
ment consists of rigid particles. Here, the constituents of materials are allowed to
rotate independently without stretch. Materials consisting of fiber or elongated
grains, wood, certain rocks, etc. come under this category.

Eringen [2] and Nowacki [3] developed the linear theory of micropolar
thermoelasticity by extending the theory of micropolar continua to include ther-
mal effect. Using the Green–Lindsay (G-L) theory [4], the generalized theory
of micropolar thermoelasticity was developed by Dost and Tabarrok [5].
Chandrasekhariah [6] presented a micropolar thermoelasticity theory by in-
cluding heat-flux among the constitutive variables.

A porous material is a material whose solid portion is continuously connected
through the whole volume to form a solid matrix with voids through which the
liquid or gas may flow. Many materials such as rocks, sand, soil, limestone,
sandstones, etc., which occur on and below the surface of the earth, and are an
integral part of the human life, are known as porous materials. Nanaziato and
Cowin [7, 8] investigated the linear and nonlinear theories of elastic materials
with voids. Iesan [9] derived the basic equations of the linear theory of microp-
olar elastic medium with voids and studied the shock waves in this medium.

Iesan [10] developed the theory of thermoelastic materials with voids and
established the uniqueness, reciprocal and variational theorem for micropolar
thermoelasticity. Iesan [11] presented a theory of initially stressed thermoelas-
tic material with voids. Marin [12] established the uniqueness of the solution of
an initial value problem in thermoelastic bodies with voids. Iesan and Nappa
[13] investigated the axially symmetric problem for a porous elastic solid. Kumar
and Chaudhary [14] studied the axi symmetric problem in a micropolar elastic
medium with voids due to mechanical sources. Kumar and Partap [15] studied
the effect of porosity on the propagation of circular crested waves in micropo-
lar thermoelastic homogeneous isotropic plate subjected to stress-free thermally
insulated and isothermal conditions. Kumar and Gupta [16] investigated the
axisymmetric problem in a micropolar porous thermoelastic material. Kumar
and Kumar [17] studied the reflection and refraction of the elastic waves at the
interface of initially stressed thermoelastic half-space with voids and an elastic
half-space.
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Kumar, Sharma and Garg [18] studied the deformation in micropolar
elastic medium with voids under the application of concentrated force, uniformly
distributed force, linearly distributed force and moving couple. Sharma and Ku-
mar [19] studied the propagation of plane waves and fundamental solution in
thermoviscoelastic medium with voids. Sharma, Sharma and Bhargava [20]
studied the plane waves and fundamental solution in an electro-microstretch
elastic solid. Sharma and Marin [21, 22] studied the reflection of plane wave
in micropolar thermoelastic solid half-space with distinct conductive and ther-
modynamic temperatures and also studied the relection and refraction of waves
from imperfect boundary between two heat conducting micropolar thermoelas-
tic solids. Marin and Florea [23] analyzed the temporal behavior of solutions
in the micropolar porous thermoelastic bodies by including the set of indepen-
dent variables, the time derivative of the voidage to include the inelastic effects.
Tripathi, Kedar and Deshmukh [24] presented the problem of a thick circu-
lar plate with axisymmetric heat supply in generalized thermoelastic diffusion
by using the integral transform technique. Kumar, Kumar and Gourla [25]
worked on the axisymmetric problem with the response of thermomechanical
sources in a thermoelastic porous medium. Kumar and Abbas [26] investigated
the interactions due to various sources in a saturated porous medium having
incompressible fluid.

In spite of all these studies, not much work has been done on a micropolar
porous thermoelastic circular plate. In this paper, we study a two-dimensional
problem of a micropolar thermoelastic porous circular plate by using the eigen-
value approach and the Laplace and Hankel transforms. The components of dis-
placements, microrotation, volume fraction field, temperature distribution and
stresses are obtained numerically and depicted graphically for a specific model.

2. Basic equations

Following Kumar and Partap [15], the field equations and the constitutive
relations in a micropolar porous thermoelastic medium without body forces,
body couples, heat sources and extrinsic equilibrated body force are given by

(2.1) (λ + µ)∇(∇.~u) + (µ + K)∇2~u + K∇× ~ϕ + b∇ϕ∗ − ν

(
1 + τ1

∂

∂t

)
∇T

= ρ
∂2~u

∂t2
,

(2.2) (α + β + γ)∇ (∇.~ϕ) − γ∇× (∇× ~ϕ) + K∇× ~u − 2K~ϕ = ρj
∂2~ϕ

∂t2
,

(2.3) α1∇2ϕ∗ − b (∇.~u) − ξ1ϕ
∗ − ω0

∂ϕ∗

∂t
+ m

(
1 + τ1

∂

∂t

)
T = ρχ

∂2ϕ∗

∂t2
,
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(2.4) K∗
1∇2T−νT0

(
∂

∂t
+ η0τ0

∂2

∂t2

)
(∇.~u)−mT0

(
∂

∂t
+ η0τ0

∂2

∂t2

)
ϕ∗

= ρC∗

(
∂

∂t
+ τ0

∂2

∂t2

)
T,

(2.5) tij = λur,rδij+µ(ui,j+uj,i)+K(uj,i−εijkϕk)−ν

(
1+τ1

∂

∂t

)
Tδij+bδijϕ

∗,

(2.6) mij = αϕr,rδij + βϕi,j + γϕj,i,

where λ, µ, K, α, β, γ are the micropolar constants, α1, b, xi1, ω0, m and χ
are the elastic constants due to the presence of voids, ~u is the displacement
vector, ~ϕ is the microrotation vector, ρ is the density, j is the micro-inertia,
K∗

1 is the coefficient of thermal conductivity, ν = (3λ + 2µ + K)αt, αt is the
coefficient of linear thermal expansion, T is the change in the temperature of
the medium at any time, C∗ is the specific heat at constant strain, τ0 and τ1,
are the thermal relaxation times, tij ,mij are the stress tensor and couple stress

tensor respectively, and ∇2 = ∂2

∂r2
+ 1

r
∂
∂r + 1

r
∂2

∂θ2 + ∂2

∂z2
is the Laplacian operator.

For Lord–Shulman (L-S) theory, τ1 = 0, τ0 > 0, and η0 = 1.
For G-L theory, τ1 ≥ τ0 > 0 and η0 = 0.

3. Formulation of the problem

We consider an infinite, homogeneous isotropic micropolar thermoelastic
porous circular plate of a thickness 2d occupying the region defined by ≤ r ≤ ∞,
−d ≤ z ≤ d Let (r, θ, z) be the cylindrical polar coordinates, and the problem
two-dimensional with all the quantities depending only on (r, z, t). The plate
is axisymmetric with the z-axis as the axis of the symmetry. The origin of the
coordinate system (r, θ, z) is taken as the middle surface of the plate and z-axis
normal to it along the thickness. We take r − z plane as the plane of incidence.
The initial temperature in the thick plate is given by a constant temperature T0.

For two-dimensional problem, let

(3.1) ~u = (ur, 0, uz), ~ϕ = (0, ϕθ, 0).

To facilitate the solution, we take

(3.2)

r′ =
ω∗r

c1
, z′ =

ω∗z

c1
, u′

r =
ρc1ω

∗ur

νT0
, u′

z =
ρc1ω

∗uz

νT0
, ϕ

′

θ =
ρc2

1ϕθ

νT0
,

ϕ∗′ =
ρc2

1ϕ
∗

νT0
, T ′ =

T

T0
, t′ = ω∗t, τ ′

0 = ω∗τ0, τ ′
1 = ω∗τ1,

h′ =
c1h

ω∗
, t′ij =

tij
νT0

, m′
ij =

ω∗

c1νT0
mij ,
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where

c2
1 =

λ + 2µ + K

ρ
, ω∗ =

K

ρj
.

We define the Laplace and Hankel transforms as

f̄ (r, z, s) = L{f̄(r, z, t)} =

∞∫

0

f(r, z, t)e−stdt,(3.3)

f̃ (ξ, z, s) = H
{
f̄ (x, z, s)

}
=

∞∫

0

rf̄ (x, z, s) Jn (ξr) dr.(3.4)

Equations (2.1)–(2.4), with the aid of Eqs. (3.1)–(3.4), yield

ũ′′
r = a11ũr + a14ϕ̃∗ + a15T̃ + b12ũ′

z + b13ϕ̃′
θ,(3.5)

ũ′′
z = a22ũz + a23ϕ̃θ + b21ũ′

r + b24ϕ̃∗′ + b25T̃ ′,(3.6)

ϕ̃′′
θ = a32ũz + a33ϕ̃θ + b31ũ′

r,(3.7)

ϕ̃∗′′ = a41ũr + a44ϕ̃∗ + a45T̃ + b42ũ′
z,(3.8)

T̃ ′′ = a51ũr + a54ϕ̃∗ + a55T̃ + b52ũ′
z,(3.9)

where

a11 = (
ξ2 + s2

δ2
), a14 =

p0ξ

δ2
, a15 = − ξ

δ2
(1 + τ1s), a22 = (ξ2δ2 + s2),

a23 = −pξ, a32 = −ξδ∗
2

, a33 =

(
ξ2 +

s2

δ2
1

+ 2δ∗
2

)
, a41 = p0δ

∗
1ξ,

a44 = (ξ2 + δ∗3s
2 + p1δ

∗
1 + δ∗2s), a45 = −ν̄δ∗1(1 + τ1s),

a51 = ξǫ(s + η0τ0s
2), a54 = ν̄ǫ(s + η0τ0s

2),

a55 = (ξ2 + Q∗(s + τ0s
2)), b12 =

ξ(1 − δ2)

δ2
, b13 =

p

δ2
,

b21 = −ξ(1 − δ2), b24 = −p0, b25 = (1 + τ1s) , b31 = −δ∗
2

,

b42 = p0δ
∗
1, b52 = ǫ

(
s + η0τ0s

2
)
,

c2
2 =

µ + K

ρ
, δ2 =

c2
2

c2
1

, p =
K

ρc2
1

, p0 =
b

ρc2
1

, δ∗2 =
Kc2

1

γω∗2
, δ2

1 =
c2
3

c2
1

,

c2
3 =

γ

ρj
, δ∗1 =

ρc4
1

α1ω∗2
, ν̄ =

m

ν
, p1 =

ξ1

ρc2
1

,

δ∗2 =
ω0c

2
1

α1ω∗
, δ∗3 =

ρχc2
1

α1
, Q∗ =

ρC∗c2
1

K∗
1ω∗

, ǫ =
ν2T0

ρK∗
1ω∗

.
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The system of equations (3.5)-(3.9) can be written as

(3.10)
d

dz
W (ξ, z, s) = A(ξ, s)W (ξ, z, s),

where

W =

[
U
DU

]
, A =

[
O I
A2 A1

]
, U =




ũr

ũz

ϕ̃θ

ϕ̃∗

T̃




, D =
d

dz
,

O =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




, I =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




,

A2 =




a11 0 0 a14 a15

0 a22 a23 0 0
0 a32 a33 0 0

a41 0 0 a44 a45

a51 0 0 a54 a55




, A1 =




0 b12 b13 0 0
b21 0 0 b24 b25

b31 0 0 0 0
0 b42 0 0 0
0 b52 0 0 0




.

We take the solution of Eq. (3.10) as

(3.11) W (ξ, z, s) = X(ξ, s)eqz,

such that
A(ξ, s)W (ξ, z, s) = qW (ξ, z, s),

which leads to the eigenvalue problem. The characteristic equation corresponding
to the matrix A is given by

det(A − qI) = 0,

an expansion gives

(3.12) q10 − λ1q
8 + λ2q

6 − λ3q
4 + λ4q

2 − λ5 = 0,

where λ1, λ2, λ3, λ4 and λ5 are given in Appendix.
The roots of Eq. (3.12) are ±qi, i = 1, 2, 3, 4, 5.
The eigenvectors Xi(ξ, s) corresponding to the eigenvalues qi may be obtained

by solving
[A − qI]Xi(ξ, s) = 0.
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The set of eigen-vector Xi(ξ, s) can be written as

Xi(ξ, s) =

[
Xi1 (ξ, s)
Xi2 (ξ, s)

]
,

where

Xi1(ξ, s) =




aiqi

bi

−ξ
di

ei




, Xi2(ξ, s) =




aiq
2
i

biqi

−ξqi

diqi

eiqi




, q = qi, i = 1, 2, 3, 4, 5,

Xj1(ξ, s) =




−aiqi

bi

−ξ
di

ei




, Xj2(ξ, s) =




aiq
2
i

−biqi

ξqi

−diqi

−eiqi




,
j = i + 5, q = −qi,
i = 1, 2, 3, 4, 5,

where

ai =
ξ

∆i
[r2

1{r2(r3(1 − δ2) + pδ∗
2

) − p2
0δ

∗
1r3}

+ ǫsr1r5{r3(r2 + ν̄2δ∗1(1 − δ2) − 2ν̄p0δ
∗
1 − ν̄δ∗1) + pν̄2δ∗1δ

∗2}],

bi =
−1

∆i
[r2

1{r2(r3r4 + pδ∗
2

q2
i ) − p2

0δ
∗
1ξ

2r3},

+ ǫsr3r1r5(ξ
2r2 + ν̄2δ∗1r4 − 2ν̄p0δ

∗
1ξ

2) + ǫspν̄2δ∗1δ
∗2

q2
i r1r5],

di = δ∗1(p0r1 + ǫsν̄r5)(ξai + bi)qi/(−r2r1 − ǫsν̄2δ∗1r5),

ei = [ǫr5{(r2r1 + ǫsν̄2δ∗1r5)

− ν̄δ∗1(p0r1 + ǫν̄r5)}](ξai + bi)qi/{r1(−r2r1 − ǫsν̄2δ∗1r5)}],
∆i = δ∗

2

[r2
1{r2(ξ

2 + s2 − q2
i ) + p2

0δ
∗
1(q

2
i − ξ2)}

+ ǫsr2r1r5(ξ
2 − q2

i ) + ǫsδ∗1r1r5{ν̄2(ξ2 + s2 − q2
i ) − 2p0ν̄(ξ2 − q2

i )}],
r1 = (ξ2 + Q∗(s + τ0s

2) − q2
i ),

r2 = (ξ2 + δ∗3s
2 + p1δ

∗
1 + δ∗2s − q2

i ),

r3 =

(
ξ2 +

s2

δ2
1

+ 2δ∗
2 − q2

i

)
, r4 = (ξ2 + s2 − δ2q2

i ),

r5 = (1 + τ1s)(s + η0τ0s
2).

We take the solution of Eq. (3.11) as

(3.13) W (ξ, z, s) =
5∑

i=1

NiXi(ξ, s) cosh(qiz),

where N1, N2, N3, N4 and N5 are arbitrary constants.
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4. Boundary conditions

The boundary conditions at the surface z = ±d of the plate is given by

dT

dz
= ±g0F (r, z),(4.1)

tzz = δ(t)H(a − r),(4.2)

tzr = 0,(4.3)

mzθ = 0,(4.4)

dϕ∗

dz
= 0.(4.5)

where F (r, z) = z2e−ωr, ω > 0.
δ() is a Dirac delta function and H() is the Heavi side (the unit step) function

and tzz, tzr and mzθ are given by

tzz = (λ + 2µ + K)
∂uz

∂z
+ λ

(
∂ur

∂r
+

ur

r

)
− ν

(
1 + τ1

∂

∂r

)
T + bϕ∗,(4.6)

tzr = (µ + K)
∂ur

∂z
+ µ

∂uz

∂r
− Kϕθ,(4.7)

mzθ = γ
∂ϕθ

∂z
.(4.8)

The expressions of displacements, microrotation, volume fraction field, temper-
ature distribution and stresses in the transformed domain are obtained with the
aid of Eqs. (3.2)–(3.4) and (3.13)–(4.8) as

(ũr, ũz, ϕ̃θ, ϕ̃∗, T̃ ) =
1

∆

5∑

i=1

(aiqi, bi,−ξ, di, ei)∆i cosh(qiz),(4.9)

(t̃zz, t̃zr, m̃zθ) =
1

∆

5∑

i=1

(Li,Mi, Pi)∆i cosh(qiz),(4.10)

where

∆ =

∣∣∣∣∣∣∣∣∣∣

S1 S2 S3 S4 S5

T1 T2 T3 T4 T5

U1 U2 U3 U4 U5

V1 V2 V3 V4 V5

W1 W2 W3 W4 W5

∣∣∣∣∣∣∣∣∣∣

and ∆i (i = 1, 2, 3, 4, 5) are obtained from ∆ by replacing ith column of ∆ with
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|Q,R, 0, 0, 0|tr also

Si = eiqi sinh(qid), Ti = Li cosh(qid), Ui = Mi cosh(qid), i = 1, 2, 3, 4, 5,

Vi = Pi cosh(qid), Wi = diqi sinh(qid), i = 1, 2, 3, 4, 5,

Q = ±g0
z2ω

(z2 + ω2)3/2
, R =

aJ1(ξa)

ξ
,

Li =

[
λξaiqi

ρc2
1

+ p0di − (1 + τ1s)ei + biqi

]
, i = 1, 2, 3, 4, 5,

Mi =

[
−µξbi

ρc2
1

+ ξp +

(
µ

ρc2
1

− p

)
aiq

2
i

]
, i = 1, 2, 3, 4, 5,

Pi =
−γξω∗2

qi

ρc4
1

, i = 1, 2, 3, 4, 5.

Particular cases

(i) Take τ1 = 0 and η0 = 1, then Eq. (4.9)–(4.10), yield the corresponding
expressions for a micropolar porous thermoelastic with one relaxation time.

(ii) Take τ1 > 0 and η0 = 0, then Eqs. (4.9)–(4.10), yield the corresponding
expressions for a micropolar porous thermoelastic with two relaxation times.

(iii) In the absence of thermal effect, the boundary conditions (4.1)–(4.5) for
micropolar porous medium reduce to the following forms:

tzz = δ(t)H(a − r),

tzr = 0,

mzθ = 0,

dϕ∗

dz
= 0,

and by following the same procedure, we obtain the corresponding expressions for
displacements, microrotation, volume fraction field and stresses for micropolar
porous medium as

(ũr, ũz, ϕ̃θ, ϕ̃∗) =
1

∆∗

4∑

i=1

(aiqi, bi,−ξ, di)∆
∗
i cosh(qiz),

(t̃zz, t̃zr, m̃zθ) =
1

∆∗

4∑

i=1

(Li,Mi, Pi)∆
∗
i cosh(qiz),

where

∆∗ =

∣∣∣∣∣∣∣∣

T ∗
1 T ∗

2 T ∗
3 T ∗

4

U∗
1 U∗

2 U∗
3 U∗

4

V ∗
1 V ∗

2 V ∗
3 V ∗

4

W ∗
1 W ∗

2 W ∗
3 W ∗

4

∣∣∣∣∣∣∣∣
,
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and ∆∗
i (i = 1, 2, 3, 4) are obtained from ∆∗ by replacing ith column of ∆∗ with

|R, 0, 0, 0|tr , also

T ∗
i = L∗

i cosh (qid) , U∗
i = M∗

i cosh (qid) , i = 1, 2, 3, 4,

V ∗
i = P ∗

i cosh (qid) , W ∗
i = diqi sinh (qid) , i = 1, 2, 3, 4,

L∗
i =

[
λξaiqi

ρc2
1

+ p0di + biqi

]
, i = 1, 2, 3, 4,

M∗
i =

[
−µξbi

ρc2
1

+ ξp +

(
µ

ρc2
1

− p

)
aiq

2
i

]
, i = 1, 2, 3, 4,

P ∗
i =

−γξω∗2

qi

ρc4
1

, i = 1, 2, 3, 4.

(iv) By neglecting the porous effect, i.e., α1, b, ξ1, ω0, χ and ϕ∗ tend to zero,
the boundary conditions for micropolar thermoelastic medium are given by

dT

dz
= ±g0F (r, z),

tzz = δ(t)H(a − r),

tzr = 0,

mzθ = 0,

and the corresponding expressions are given by

(ũr, ũz, ϕ̃θ, T̃ ) =
1

∆∗∗

4∑

i=1

(aiqi, bi,−ξ, ei)∆
∗∗
i cosh(qiz),

(t̃zz, t̃zr, m̃zθ) =
1

∆∗∗

4∑

i=1

(Li,Mi, Pi)∆
∗∗
i cosh(qiz),

where

∆∗∗ =

∣∣∣∣∣∣∣∣

S∗∗
1 S∗∗

2 S∗∗
3 S∗∗

4

T ∗∗
1 T ∗∗

2 T ∗∗
3 T ∗∗

4

U∗∗
1 U∗∗

2 U∗∗
3 U∗∗

4

V ∗∗
1 V ∗∗

2 V ∗∗
3 V ∗∗

4

∣∣∣∣∣∣∣∣
,

and ∆∗∗
i (i = 1, 2, 3, 4) are obtained from ∆∗∗ by replacing ith column of ∆∗∗

with |Q,R, 0, 0|tr also

S∗∗
i = eiqi sinh(qid), T ∗∗

i = L∗∗
i cosh(qid), i = 1, 2, 3, 4,

U∗∗
i = M∗∗

i cosh(qid), V ∗∗
i = P ∗∗

i cosh(qid), i = 1, 2, 3, 4,

L∗∗
i =

[
λξaiqi

ρc2
1

+ p0di − (1 + τ1s)ei + biqi

]
, i = 1, 2, 3, 4,
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M∗∗
i =

[
−µξbi

ρc2
1

+ ξp +

(
µ

ρc2
1

− p

)
aiq

2
i

]
, i = 1, 2, 3, 4,

P ∗∗
i =

−γξω∗2

qi

ρc4
1

, i = 1, 2, 3, 4.

5. Inversion of transforms

The transformed displacements, microrotation, volume fraction field, tem-
perature distribution and stresses are of the form f̃(ξ, z, s) and to obtain the
function f(r, z, t), the inversion of the Hankel transform is of the form

(5.1) f̃(ξ, z, s) =

∞∫

0

ξf̄(ξ, z, s)Jn(ξr)dξ.

The inversion formula for the Laplace transform is taken as

(5.2) f(r, z, t) =
1

2ιπ

c+ι∞∫

c−ι∞

f̄(r, z, s)e−stds,

where c is an arbitrary constant greater than all real parts of the singularities
of f̄(r, z, t).

6. Numerical results and discussion

Following Eringen [27], the values of micropolar parameters for numerical
computation are given as

λ = 9.4 × 1010 N · m−2, µ = 4.0 × 1010 N · m−2,

K = 1.0 × 1010 N · m−2, ρ = 1.74 × 103 Kg · m−3,

j = 0.2 × 10−19 m2, γ = 0.779 × 10−9 N.

Following Dhaliwal and Singh [28], we take the values of thermal parameters
as

C∗ = 1.04 × 103 J · Kg−1 · K−1, K∗
1 = 1.7 × 106 J · m−1 · s−1 · K−1,

αt = 2.33 × 10−5 K−1, τ0 = 6.131 × 10−13 s,

τ1 = 8.765 × 10−13 s, m = 1.13849 × 1010 N/m2 · K,

T0 = 0.298 × 103 K.
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The values of void parameters are given as

α1 = 3.688 × 10−9 N, b = 1.138494 × 1010 N/m2,

ξ1 = 1.1475 × 1010 N/m2, χ = 1.1753 × 10−19 m2,

ω0 = 0.0787 × 10−1 N × s/m2.

The variations of normal stress, tangential couple stress, volume fraction field
and temperature distribution with distance r in the cases of micropolar thermoe-
lastic porous medium (MTPM), micropolar thermoelastic medium (MTM) and
micropolar porous medium (MPM) are shown in Figs. 1–4, respectively. In all
these figures, MTPM, MPM and MTM are corresponding to solid line (——),
small dash line (- - - - -) and dash line with centered symbol (−∗−∗−), respec-
tively.

Figure 1 shows the variations of normal stress tzz for MTPM, MTM and
MPM. Initially, the value of tzz increases for MTPM and MTM, and decreases
for MPM and then oscillates with distance r about the origin. The value of tzz

for MTPM is greater in comparison to MTM and MPM for the ranges 1 ≤ r ≤ 2,
2.8 ≤ r ≤ 3.6, 4.4 ≤ r ≤ 5.2, 6 ≤ r ≤ 6.7, 7.5 ≤ r ≤ 8, whereas for the ranges
2 ≤ r ≤ 2.8, 3.6 ≤ r ≤ 4.4, 5.2 ≤ r ≤ 6, 6.7 ≤ r ≤ 7.5, its value for MPM is
greater in comparison to MTPM and MTM.

Fig. 1. Variations of normal stress tzz.

Figure 2 depicts the variations of mzθ for MTPM, MTM and MPM. The value
for mzθ decreases sharply for MTPM, MTM and MPM for the range 1 ≤ r ≤ 2
and then oscillates with distance r about the origin. The value of mzθ for MPM
is greater in comparison to MTPM and MTM for 1 ≤ r ≤ 1.4, 2.3 ≤ r ≤ 3,
3.9 ≤ r ≤ 4.3, 7.2 ≤ r ≤ 7.8, whereas its value for MPM is smaller in comparison
to MTPM and MTM for the ranges 1.7 ≤ r ≤ 2.2, 3.2 ≤ r ≤ 3.8, 4.7 ≤ r ≤ 5.3,
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6.3 ≤ r ≤ 6.8. Although the behavior and variation of mzθ are similar for
MTPM, MTM and MPM for the whole range 1 ≤ r ≤ 8, the magnitude values
are distinct.

Fig. 2. Variations of tangential couple stress mzθ.

Figure 3 depicts the variations of the volume fraction field ϕ∗. Initially, the
value of ϕ∗ increases and then oscillates with distance r for MTPM. For MPM,
this value starts with sharp decrease and then oscillates with distance r about
the origin. For the ranges 1 ≤ r ≤ 3.8, 4.3 ≤ r ≤ 5.6, 7.2 ≤ r ≤ 8, the behavior
of ϕ∗ is opposite for MTPM and MPM, while for the ranges 5.6 ≤ r ≤ 6.4 and
6.4 ≤ r ≤ 7.2, the behavior of ϕ∗ is similar for MTPM and MPM.

Fig. 3. Variations of volume fraction field ϕ∗.

Figure 4 shows the variations of the temperature distribution T . Initially, the
value of T increases for MTPM and decreases for MTM and then oscillates with
distance r about the origin. The variation pattern of T is opposite for the ranges
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Fig. 4. Variations of temperature distribution T .

1 ≤ r ≤ 3.2 for MTPM and MTM and similar for 3.2 ≤ r ≤ 8. The behavior of
temperature distribution is oscillatory for the entire range.

7. Conclusions

due to the complicated nature of the governing equations for the thermoelas-
tic micropolar porous theory, the work done in this field by means of the eigen-
value approach, is unfortunately limited in number. In this paper, the eigenvalue
approach is used to analyze a two-dimensional problem for a micropolar thermoe-
lastic porous circular plate. This method provides quite a successful approach in
dealing with such problems, and gives exact solutions in the transformed domain
without any assumed restrictions on the actual physical quantities that appear in
the governing equations. Thus, from the above presented numerical results and
discussion, a significant effect of thermal forces and porosity on normal stress
and tangential couple stress is observed. It is also observed that the variations
of volume fraction field and temperature distribution are oscillatory in nature.
The problem studied in this paper is a significant problem of continuum me-
chanics and it provides a breakthrough for the researchers working in the field
of micropolar thermoelastic media.

Appendix

λ1 = −(a11+a22+a33+a44+a55+b12b21+b13b31+b25b52+b24b42),

λ2 = −a14a41+a33a55+a44a55+a11a55+a22a55+a33a44+a11a33+a22a33

+a11a44+a22a44+a11a22−a15a51−a45a54−a23a32

+(a33+a44+a55)b12b21−(a14b42+a15b52+a32b13)b21
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+(a11+a33+a55)b42b24+(a11+a33+a44)b25b52

−(a41b24+a23b31+a51b25)b12+(a22+a44+a55+b42b24+b25b52)b31b13

−a45b52b24−a54b42b25,

λ3 = (a11a22+a22a55)(a33+a44)−a23a32(a11+a44+a55)

+a11a55(a22+a33+a44)+a33a44(a11+a22+a55)−a45a54(a11+a22+a33)

−a14a41(a22+a33+a55)−a15a51(a22+a33+a44)+b42b25

(a14a51−a11a54−a33a54)+b52b25(−a14a41+a11a33+a14a44+a33a44)

+b52b24(a15a41−a11a45−a33a45)−b12b25(a33a51+a44a51−a41a54)

−b12b24(a33a41−a45a51+a41a55)

+b42b24(−a15a51+a11a33+a11a55+a33a55)

−a32b21b13(a44+a55)+b31b13(a22a44+a22a55+a44a55−a45a54)

+b21b42(a15a54−a14a33−a14a55)+b21b52(a14a45−a15a33−a15a44)

+b12b21(−a45a54+a33a44+a44a55+a33a55)−b12b31(a23a44+a23a55)

−b31b13(a54b42b25−a44b52b25+a45b52b24−a55b24b42)+a32b13

(a51b25+a41b24)+a15a41a54+a14a45a51+(a14b42+a15b52)a23b31,

λ4 = (a44a55−a45a54)(a33b12b21−a23b12b31)+(a15a54−a14a55)

(a33b21b42−a23b31b42)+(a14a45−a15a44)(a33b21b52−a23b31b52)

+(a45a54−a44a55)(a32b21b13−a22b31b13)+a33b12b24(a45a51−a41a55)

+a33b42b24(−a15a51+a11a55)+a32b13b24(a41a55−a45a51)

+(a41a54−a44a51)(a33b12b25−a32b13b25)+a33b42b25(a14a51−a11a54)

+a33b52b25(a11a44−a14a41)+a15a51(a23a32−a22a33−a22a44−a33a44)

+a14a45a51(a22+a33)+a15a41a54(a22+a33)

+a45a54(a23a32−a11a22−a11a33

−a22a33)+a14a41(a23a32−a22a33−a22a55−a33a55)−a11a23a32(a44+a55)

+a55(a11a22a33−a23a32a44)+a11a22a44(a33+a55)+a33a44a55(a11+a22)

+(a15a41−a11a45)a33b24b52,

λ5 = (a22a33−a23a32)(a11a44a55−a11a45a54+a14a45a51)

+(a15a54−a14a55)(a22a33a41−a23a32a41)+(a23a32−a22a33)a15a44a51
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