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1. Introduction

The intensive investigation of the theories of viscoelasticity and thermo-
viscoelasticity of continua arise due to the wide use of viscoelastic materials in
engineering, technology and biomechanics. Viscoelastic materials, such as amor-
phous polymers, semicrystalline polymers, and biopolymers, can be modeled in
order to determine their stress or strain interactions as well as their temporal
dependencies (see Lakes [1], Christensen [2], Brinson and Brinson [3]).
Various theories of viscoelastic materials have been proposed and studied in the
series of works (for details, see Truesdell and Noll [4]; Amendola et al. [5],
Eringen [6], Fabrizio and Morro [7], Fabrizio et al. [8], De Cicco and
Nappa [9] and references therein).

In the beginning of the 21st century, there has been interest in formulation
of the theories of viscoelasticity and thermoviscoelasticity of differential type for
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materials with microstructures. In connection with this has been notic, a theory
of thermoviscoelasticity for a composite that is a mixture of porous elastic solid
and Kelvin–Voigt material is presented in [10]. A nonlinear theory of heat con-
ducting mixtures is introduced by Ieşan and Nappa [11], where the individual
components are modelled as Kelvin–Voigt viscoelastic materials. The theory of
thermoviscoelastic composites modelled as interacting Cosserat continua is de-
veloped in [12]. A theory of thermoviscoelastic mixtures is presented by Ieşan
and Scalia [13] with the help of an entropy production inequality proposed by
Green and Laws. The theory of porous thermoviscoelastic mixtures is developed
by Ieşan and Quintanilla [14]. A mixture theory for microstretch thermovis-
coelastic solids is introduced by Chiriţă and Galeş [15]. The basic equations
of the theory of thermoviscoelasticity for Kelvin–Voigt materials with voids are
established by Ieşan [16]. A theory of thermoviscoelasticity for Kelvin–Voigt
microstretch composite materials is presented by Passarella et al. [17] and
a theory of viscoelasticity for Kelvin–Voigt materials with double porosity is
introduced in [18]. Recently, a linear first-strain gradient theory of non-simple
thermoviscoelastic solids has been developed by Ieşan [19]. Much of the theo-
retical progress in the above mentioned theories of differential type for materials
with microstructures is discussed in the series of papers [20–34].

In the present paper, the linear theory of viscoelasticity for Kelvin–Voigt ma-
terials with double porosity is considered. This paper is articulated as follows. In
Section 2, the basic dynamical equations of this theory are introduced. In Sec-
tion 3, the dispersion equations of the plane harmonic waves are studied. On the
basis of these equations, it is established that three longitudinal and two trans-
verse plane harmonic waves propagate through a Kelvin–Voigt material with
double porosity and these waves are attenuated. In Section 4, the basic internal
and external BVPs of steady vibrations are formulated and the uniqueness the-
orems are given. In Section 5, the properties of the singular integral operators
and potentials (surface and volume) are established. Finally, in Section 6, the
existence theorems for regular (classical) solutions of the internal and external
BVPs of steady vibrations are proved by using the potential method and the
theory of singular integral equations.

2. Basic equations

Let x = (x1, x2, x3) be a point of the Euclidean three-dimensional space R
3,

let t denote the time variable, t ≥ 0 and a dot denotes differentiation with re-
spect to t. In what follows, we consider an isotropic and homogeneous viscoelas-
tic Kelvin–Voigt material with double porosity. Let u(x, t) be the displacement
vector, u = (u1, u2, u3), and p1(x, t) and p2(x, t) are the pore and fissure fluid
pressures, respectively.
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The system of homogeneous dynamical equations in the linear theory of vis-
coelasticity for Kelvin–Voigt materials with double porosity expressed in terms
of the displacement vector u and the pressures p 1 and p 2 has the following
form [18]:

(2.1)

µ∆u + (λ + µ)∇divu + µ∗∆u̇ + (λ∗ + µ∗)∇div u̇

− β1 ∇p1 − β2 ∇p2 = ρ ü,

(k1∆ − γ)p1 + (k3∆ + γ)p2 − α1ṗ1 − α3ṗ2 − β1 div u̇ = 0,

(k3∆ + γ)p1 + (k2∆ − γ)p2 − α3ṗ1 − α2ṗ2 − β2 div u̇ = 0,

where ∆ is the Laplacian operator, ρ is the reference mass density, ρ > 0; β1 and
β2 are the effective stress parameters, and γ is the internal transport coefficient
(leakage parameter) that corresponds to a fluid transfer rate with respect to the
intensity of flow between the pores and fissures, γ ≥ 0, α1 and α2 measure the
compressibilities of the pore and fissure systems, respectively, α3 is the cross-
coupling compressibility for fluid flow at the interface between the two pore
systems at a microscopic level, λ and µ are the Lamé constants, λ∗ and µ∗ are
the viscosity constants; k1 and k2 are the macroscopic intrinsic permeabilities
associated with matrix and fissure porosities, respectively, and k3 is the cross-
coupling permeability for fluid flow at the interface between the matrix and
fissure phases.

We suppose that β2
1 + β2

2 > 0. The case β1 = β2 = 0 is too simple to be
considered (see remark 2).

3. Plane waves

In this section we assume that

(3.1)
µ∗ > 0, k1 > 0, k1k2 − k2

3 > 0,
α1 > 0, α1α2 − α2

3 > 0

and

(3.2) λ∗ + 2µ∗ > 0.

Let us suppose that the plane harmonic waves corresponding to a wave num-
ber τ and to an angular frequency ω propagate in the x1-direction through the
Kelvin–Voigt material with double porosity. Then,

(3.3) ul(x, t) = Cl e
i(τx1−ωt), pj(x, t) = Cj+3 ei(τx1−ωt),

where C1, C2, . . . , C5 are constants, ω > 0, l = 1, 2, 3, and j = 1, 2.



444 M. M. SVANADZE

Keeping in mind (3.3) from (2.1) it follows that

(3.4)

{
[µ1 + (λ1 + µ1) δ1l] τ

2 − ρω2
}

Cl + iτ (β1C4 + β2C5) δ1l = 0,

ωτβ1C1 +
(
k1τ

2 − a1

)
C4 +

(
k3τ

2 − a3

)
C5 = 0,

ωτβ2C1 +
(
k3τ

2 − a3

)
C4 +

(
k2τ

2 − a2

)
C5 = 0,

where δjl is the Kronecker delta, l = 1, 2, 3 and

(3.5)
λ1 = λ − iωλ∗, µ1 = µ − iωµ∗, a1 = iωα1 − γ,

a2 = iωα2 − γ, a3 = iωα3 + γ.

From (3.4) for C1, C4 and C5 we have

(3.6)

(
µ0τ

2 − ρω2
)
C1 + iτ (β1C4 + β2C5) = 0,

ωτβ1C1 +
(
k1τ

2 − a1

)
C4 +

(
k3τ

2 − a3

)
C5 = 0,

ωτβ2C1 +
(
k3τ

2 − a3

)
C4 +

(
k2τ

2 − a2

)
C5 = 0,

where µ0 = λ1 + 2µ1. If τ is the solution of equation

(3.7) L(τ2) = 0,

where
L(τ2) = b1τ

6 + b2τ
4 + b3τ

2 + b4,

then the system (3.6) has a non-trivial solution. Here,

(3.8)

b1 = µ0k, b2 = −µ0r − ρω2k − iωr1, b3 = µ0a + ρω2r + iωr2,

b4 = −ρω2a, k = k1k2 − k2
3, r = k1a2 + k2a1 − 2k3a3,

a = a1a2 − a2
3, r1 = β2

1k2 + β2
2k1 − 2β1β2k3,

r2 = β2
1a2 + β2

2a1 − 2β1β2a3.

On the other hand, from (3.4) for C2 and C3 we have

(3.9) T (τ2)Cj = 0,

where T (τ2) = µ1τ
2 − ρω2 and j = 2, 3. If τ is the solution of equation

(3.10) T (τ2) = 0,

then (3.9) has a non-trivial solution.
The relations (3.7) and (3.10) will be called the dispersion equations of lon-

gitudinal and transverse plane harmonic waves in the linear theory of viscoelas-
ticity for Kelvin–Voigt materials with double porosity, respectively. It is obvious
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that if τ > 0, then the corresponding plane wave has the constant amplitude, and
if τ is complex with Im τ > 0, then the plane wave is attenuated as x1 → +∞.

We are now in a position to establish some properties of the roots of the
dispersion equations (3.7) and (3.10). In what follows we used the following:

Lemma 1. If the conditions (3.1) and (3.2) are satisfied, then

a)

(3.11)

µ2 > 0, k > 0, k0 > 0, α > 0,

α0 > 0, r1 > 0, r3 > 0, β3 > 0,

k2
1α

2
2 + k2

2α
2
1 ± 2k2

3α1α2 > 0;

b)

(3.12)
r2
3 − 2kα > 0, β3r3 − αr1 > 0,

r3α0 − k0α > 0, β3α0 − α(β1 + β2)
2 > 0,

where

(3.13)

µ2 = λ∗ + 2µ∗, k0 = k1 + k2 + 2k3, α = α1α2 − α2
3,

α0 = α1 + α2 + 2α3, r3 = k1α2 + k2α1 − 2k3α3,

β3 = β2
1α2 + β2

2α1 − 2β1β2α3.

P r o o f. It is easy to see that conditions (3.1) and (3.2) imply the inequal-
ities (3.11). On the basis of (3.8) and (3.13) we have

r2
3 − 2kα = 2α2

3(k1k2 + k2
3) − 4α3k3(k1α2 + k2α1) + (k2

1α
2
2 + k2

2α
2
1 + 2k2

3α1α2),

where the right side is a quadratic function (with respect to α3) and has the
following negative discriminant:

D = −8k[(k1α2 − k2α1)
2 + 2kα1α2] < 0.

Hence, the first inequality of (3.12) is valid.
On the other hand, (3.8) and (3.13) imply

β3r3 − αr1 = k1(β1α2 − β2α3)
2 + k2(β1α3 − β2α1)

2(3.14)

− 2k3(β1α2 − β2α3)(β1α3 − β2α1).

Keeping in mind (3.1) and (3.2) from (3.14) the second inequality of (3.12) is
obtained.

Similarly, we can prove the third and fourth inequalities of (3.12).
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Let ξ = τ2, then (3.7) and (3.10) can be written as

(3.15) b1ξ
3 + b2ξ

2 + b3ξ + b4 = 0

and

(3.16) µ1ξ − ρω2 = 0,

respectively.

Lemma 2. If conditions (3.1) and (3.2) are satisfied, then Eq. (3.15) with
respect to ξ does not have positive root.

P r o o f. Let ξ be a real root of Eq. (3.15). Separating real and imaginary
parts in (3.15), on the basis of relations (3.5) and

b1 = kλ2 − iωkµ2,

b2 = − ρω2k − ω2r3µ2 + λ2γk0 − iω(λ2r3 + µ2γk0 + r1),

b3 = − ω2(αλ2 + µ2γα0 + ργk0 + β3)

− iω
[
λ2γα0 − ω2αµ2 − ρω2r3 + γ(β1 + β2)

2
]
,

b4 = ρω4α + iρω3γα0

we obtain

(3.17)

kλ2ξ
3 − (ρω2k + ω2r3µ2 − λ2γk0)ξ

2

−ω2(αλ2 + µ2γα0 + ργk0 + β3)ξ + ω4ρα = 0,

kµ2ξ
3 + (λ2r3 + µ2γk0 + r1)ξ

2

+
[
λ2γα0 − ω2αµ2 − ρω2r3 + γ(β1 + β2)

2
]
ξ − ρω2γα0 = 0,

where λ2 = λ + 2µ. As one may easily verify, the system (3.17) may be written
in the form

(3.18)
X1X2 = ω2ξ (µ2X3 + β3) ,

X1X3 = −ξ
[
µ2X2 + r1ξ + γ(β1 + β2)

2
]
,

where

(3.19) X1 = λ2ξ − ρω2, X2 = kξ2 + γk0ξ − αω2, X3 = r3ξ + α0γ.

Obviously, the system (3.18) implies

(3.20) µ2X
2
2 +

[
r1ξ + γ(β1 + β2)

2
]
X2 + ω2X3 (µ2X3 + β3) = 0.
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By virtue of (3.19) from (3.20) it follows that

(3.21) c1ξ
4 + c2ξ

3 + c3ξ
2 + c4ξ + c5 = 0,

where

(3.22)

c1 = µ2k
2, c2 = k(2µ2k0γ + r1),

c3 = µ2γ
2k2

0 + γ
[
r1k0 + k(β1 + β2)

2
]
+ ω2µ2(r

2
3 − 2kα),

c4 = ω2(β3r3 − αr1) + 2ω2µ2γ(r3α0 − k0α) + γ2k0(β1 + β2)
2,

c5 = ω2µ2(α
2ω2 + α2

0γ
2) + ω2γ

[
β3α0 − α(β1 + β2)

2
]
.

On the basis of inequalities (3.11) and (3.12) from (3.22) we obtain cj > 0 for
j = 1, 2, . . . , 5. Consequently, Eq. (3.21) does not have a positive root and, hence,
Eq. (3.15) with respect to ξ does not have a positive root.

We denote the roots of the equation (3.15) (with respect to ξ) by ξ1, ξ2

and ξ3. Clearly, ξ4 = ρω2µ−1
1 is the complex root of (3.16).

Let τ2
j = ξj and Imτj > 0 for j = 1, 2, 3, 4. Obviously, λ1, λ2, λ3 and λ4 are

the wave numbers of longitudinal and transverse plane harmonic waves in the
linear theory of viscoelasticity for Kelvin–Voigt materials with double porosity,
respectively.

We have thereby proved the following:

Theorem 1. If conditions (3.1) and (3.2) are satisfied, then five plane har-
monic waves propagate through a Kelvin–Voigt material with double porosity:
three longitudinal plane waves with wave numbers τ1, τ2, τ3 and two transverse
(horizontal and vertical) plane waves with wave number τ4; these are attenuated
waves as x1 → +∞.

Remark 1. It is obvious that if plane harmonic waves propagate in an arbi-
trary direction through a Kelvin–Voigt material, then we obtain the same result
as the one given in Theorem 1.

Remark 2. If β1 = β2 = 0, then Eq. (3.15) with respect to ξ is reduced to
the following equation

(µ0ξ − ρω2)(kξ2 − rξ + a) = 0.

Obviously, this equation with respect to ξ does not have positive root, and con-
sequently, theorem 1 is valid in the case β1 = β2 = 0 too.

4. Boundary value problems and uniqueness theorems

If the displacement vector u and the pressures p1 and p2 are postulated to
have a harmonic time variation, that is,

{u, p1, p2} (x, t) = Re
[
{v, q1, q2}(x) e−iωt

]
,
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then from the system of dynamical equations (2.1) we obtain the following system
of equations of steady vibrations:

(4.1)

µ1 ∆v + (λ1 + µ1)∇div v − β1 ∇q1 − β2 ∇q2 + ρω2v = 0,

(k1∆ + a1)q1 + (k3∆ + a3)q2 + iωβ1 divv = 0,

(k3∆ + a3)q1 + (k2∆ + a2)q2 + iωβ2 divv = 0.

Next, we introduce the matrix differential operator

A(Dx) = (Alj(Dx))5×5 ,

where

Alj(Dx) = (µ1 ∆ + ρω2)δlj + (λ1 + µ1)
∂2

∂xl∂xj
,

Al4(Dx) = −β1
∂

∂xl
, Al5(Dx) = −β2

∂

∂xl
,

A4l(Dx) = iωβ1
∂

∂xl
, A5l(Dx) = iωβ2

∂

∂xl
,

A44(Dx) = k1 ∆ + a1, A45(Dx) = A54(Dx) = k3 ∆ + a3,

A55(Dx) = k2 ∆ + a2, Dx =

(
∂

∂x1
,

∂

∂x2
,

∂

∂x3

)
, l, j = 1, 2, 3.

Clearly, the system of equations of steady vibrations (4.1) can be rewritten as

(4.2) A(Dx)V(x) = 0,

where V = (v, q1, q2) and x ∈ R
3.

Let S be the smooth closed surface surrounding the finite domain Ω+ in R
3,

Ω+ = Ω+ ∪ S, Ω− = R
3 \ Ω+, Ω− = Ω− ∪ S. We denote by n(z) the external

(with respect to Ω+) unit normal vector to S at z.

Definition 1. A vector function V = (V1, V2, · · · , V5) is called regular in
Ω− (or Ω+) if

1)

Vj ∈ C2(Ω−) ∩ C1(Ω−) (or Vj ∈ C2(Ω+) ∩ C1(Ω+)),

2)

(4.3) Vj(x) = O(|x|−1),
∂

∂xl
Vj(x) = o(|x|−1) for |x| ≫ 1,

where j = 1, 2, . . . , 5, l = 1, 2, 3.
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In what follows, we assume that the constitutive coefficients satisfy the con-
ditions (3.1) and

(4.4) 3λ∗ + 2µ∗ > 0.

Obviously, the inequalities (4.4) and µ∗ > 0 imply (3.2).
In the sequel, we use the matrix differential operator

P(Dx,n) = (Plj(Dx,n))5×5,

where

Plj(Dx,n) = µ1δlj
∂

∂n
+ µ1nj

∂

∂xl
+ λ1nl

∂

∂xj
, Pl;m+3(Dx,n) = −βm nl,

Pm+3;l(Dx,n) = 0, P44(Dx,n) = k1
∂

∂n
,

P45(Dx,n) = P54(Dx,n) = k3
∂

∂n
, P55(Dx,n) = k2

∂

∂n
,

m = 1, 2, l, j = 1, 2, 3,

where ∂
∂n

is the derivative along the vector n.
The basic internal and external BVPs of steady vibrations in the linear theory

of viscoelasticity for Kelvin–Voigt materials with double porosity are formulated
as follows.

Find a regular (classical) solution V = (v, q1, q2) to system

(4.5) A(Dx)V(x) = F(x)

for x ∈ Ω+ satisfying the boundary condition

lim
Ω+∋x→ z∈S

V(x) ≡ {V(z)}+ = f(z)

in the internal Problem (I)+F,f ,

lim
Ω+∋x→ z∈S

P(Dx,n(z))V(x) ≡ {P(Dz,n(z))V(z)}+ = f(z)

in the internal Problem (II)+F,f , where F and f are known smooth vector five-
component functions.

Find a regular (classical) solution V = (v, q1, q2) to system (4.5) for x ∈ Ω−

satisfying the boundary condition

lim
Ω−∋x→ z∈S

V(x) ≡ {V(z)}− = f(z)
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in the external Problem (I)−F,f ,

lim
Ω−∋x→ z∈S

P(Dx,n(z))V(x) ≡ {P(Dz,n(z))V(z)}− = f(z)

in the external Problem (II)−F,f , where F and f are known smooth vector five-

component functions, and suppF is a finite domain in Ω−.
The following uniqueness theorems are valid.

Theorem 2. If conditions (3.1) and (4.4) are satisfied, then the internal
BVP (K)+F,f admits at most one regular solution, where K = I, II.

Theorem 3. If conditions (3.1) and (4.4) are satisfied, then the external
BVP (K)−F,f admits at most one regular solution, where K = I, II.

Theorems 2 and 3 can be proved in a similar manner as the uniqueness
theorems of the single porosity viscoelasticity (for details see [35]).

5. Basic properties of potentials and singular integral operators

We introduce the following notation:

Q(1)(x,g) =

∫

S

Γ(x − y)g(y)dyS

is the single-layer potential,

Q(2)(x,g) =

∫

S

[P̃(Dy,n(y))Γ⊤(x − y)]⊤g(y)dyS

is the double-layer potential, and

Q(3)(x,h, Ω±) =

∫

Ω±

Γ(x− y)h(y)dy,

is the volume potential, where g and h are vector five-component functions, Γ(x)
is the fundamental matrix of the operator A(Dx), the operator P̃(Dx,n) may
be obtained from the operator P(Dx,n) by replacing βj with iωβj (j = 1, 2)
and vice versa, the superscript ⊤ denotes transposition.

Remark 3. The matrix Γ(x) is constructed explicitly by means of elementary
functions and its basic properties are established in [18].

We have the following results.

Theorem 4. If S ∈ C2,p, g ∈ C1,p′(S), 0 < p′ < p ≤ 1, then:

a) Q(1)(·,g) ∈ C0,p′(R3) ∩ C2,p′(Ω±) ∩ C∞(Ω±),
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b) A(Dx)Q(1)(x,g) = 0,

c) P(Dz,n(z))Q(1)(z,g) is a singular integral,
d)

(5.1) {P(Dz,n(z))Q(1)(z,g)}± = ∓1
2 g(z) + P(Dz,n(z))Q(1)(z,g),

where x ∈ Ω± and z ∈ S.

Theorem 5. If S ∈ C2,p, g ∈ C1,p′(S), 0 < p′ < p ≤ 1, then:

a) Q(2)(·,g) ∈ C1,p′(Ω±) ∩ C∞(Ω±),

b) A(Dx)Q(2)(x,g) = 0,
c) Q(2)(z,g) is a singular integral,
d)

(5.2) {Q(2)(z,g)}± = ±1
2 g(z) + Q(2)(z,g),

e) {P(Dz,n(z))Q(2)(z,g)}+ = {P(Dz,n(z))Q(2)(z,g)}−, where x ∈ Ω±

and z ∈ S.
Theorem 6. If S ∈ C1,p, h ∈ C0,p′(Ω+), 0 < p′ < p ≤ 1, then:

a) Q(3)(·,h, Ω+) ∈ C1,p′(R3) ∩ C2(Ω+) ∩ C2,p′(Ω+
0 ),

b) A(Dx)Q(3)(x,h, Ω+) = h(x), where x ∈ Ω+, Ω+
0 is a domain in R

3 and
Ω+

0 ⊂ Ω+.

Theorem 7. If S ∈ C1,p, supph = Ω ⊂ Ω−, h ∈ C0,p′(Ω−), 0 < p′ < p ≤ 1,
then:

a) Q(3)(·,h, Ω−) ∈ C1,p′(R3) ∩ C2(Ω−) ∩ C2,p′(Ω−
0 ),

b) A(Dx)Q(3)(x,h, Ω−) = h(x), where x ∈ Ω−, Ω is a finite domain in R
3

and Ω−
0 ⊂ Ω−.

The following notation is introduced:

(5.3)

K(1)g(z) ≡ 1

2
g(z) + Q(2)(z,g),

K(2)g(z) ≡ −1

2
g(z) + P(Dz,n(z))Q(1)(z,g),

K(3)g(z) ≡ −1

2
g(z) + Q(2)(z,g),

K(4)g(z) ≡ 1

2
g(z) + P(Dz,n(z))Q(1)(z,g),

Kςg(z) ≡ −1

2
g(z) + ζ Q(2)(z,g), for z ∈ S,
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where ς is a complex parameter. On the basis of Theorems 4 and 5, K(j) (j =
1, 2, 3, 4) and Kς are singular integral operators.

In the sequel we need the following lemmas.

Lemma 3. If conditions (3.1) and (4.4) are satisfied, then the singular integral
operator K(j) is of the normal type, where j = 1, 2, 3, 4.

P r o o f. Let σ(j) = (σ
(j)
lm)5×5 be the symbol (symbolic matrix) of the singu-

lar integral operator K(j) (j = 1, 2, 3, 4) (the method for calculating the symbol
of singular integral operator is introduced in [36]). Taking into account (5.3) for
det σ(j) we find

(5.4) det σ(1) = −det σ(2) = −det σ(3) = det σ(4) =
1

32

[
1 − µ2

1

(λ1 + 2µ1)2

]
.

Keeping in mind the relations (3.1) and (4.4) obtained from (5.4) we get
det σ(j) 6= 0, which proves that the singular integral operator K(j) is of the
normal type, where j = 1, 2, 3, 4.

Theorem 8. If conditions (3.1) and (4.4) are satisfied, then the Fredholm’s
theorems are valid for the singular integral operator K(j) , where j = 1, 2, 3, 4.

P r o o f. Let σς and indKς be the symbol and the index of the operator Kς ,
respectively. It may be easily shown that

det σς =
1

32

[
1 − µ2

1ς
2

(λ1 + 2µ1)2

]

and det σς vanishes only at two points ς1 and ς2 of the complex plane. By virtue
of (5.4) and detσ1 = det σ(1) we get ςj 6= 1 for j = 1, 2, 3, 4, and consequently
(see Mikhlin [37]), we obtain

indK(1) = indK1 = 0.

The relation indK(2) = 0 is proved in a quite similar manner. Obviously, the
operators K(3) and K(4) are the adjoint operators for K(2) and K(1), respectively.
Evidently,

indK(3) = −indK(2) = 0, indK(4) = −indK(1) = 0.

Thus, the singular integral operator K(j) (j = 1, 2, 3, 4) is of the normal type
with an index equal to zero and the Fredholm theorems are valid for K(j).

Remark 4. The definitions of a normal type singular integral operator, the
symbol and the index of operator are given in [36, 37].
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6. Existence theorems

We are now in a position to prove the existence theorems for regular (classical)
solutions of the BVPs of steady vibrations in the linear theory of viscoelasticity
for Kelvin–Voigt materials with double porosity.

Obviously, according to Theorems 6 and 7 the volume potential Q(3)(x,F, Ω±)
is a partial regular solution of the nonhomogeneous equation (4.5), where F ∈
C0,p′(Ω±), 0 < p′ ≤ 1 and suppF is a finite domain in Ω−. Therefore, further
we will consider problem (K)±0,f for K = I, II.

Problem (I)+0,f . We seek a regular solution to Problem (I)+0,f in the form of
double-layer potential

(6.1) V(x) = Q(2)(x,g) for x ∈ Ω+,

where g is the required vector five-component function. According to Theorem 5
the vector function V is a solution of (4.2) for x ∈ Ω+. Keeping in mind the
boundary condition and using (5.2), for determining the unknown vector g, a sin-
gular integral equation is obtained from (6.1)

(6.2) K(1)g(z) = f(z) for z ∈ S.

By Theorem 8 the Fredholm theorems are valid for operator K(1). We prove that
(6.2) is always solvable for an arbitrary vector f . Let us consider the adjoint
homogeneous equation

(6.3) K(4)h0(z) = 0 for z ∈ S,

where h0 is the required vector five-component function.
Now we prove that (6.3) has only the trivial solution. Indeed, let h0 be a so-

lution of the homogeneous equation (6.3). On the basis of Theorem 4 and (6.3)
the vector function W(x) = Q(1)(x,h0) is a regular solution of Problem (II)−0,0.

Using Theorem 3, the Problem (II)−0,0 has only the trivial solution that is

(6.4) W(x) ≡ 0 for x ∈ Ω−.

On the other hand, by Theorem 4 and (6.4) we get

{W(z)}+ = {W(z)}− = 0 for z ∈ S,

i.e., the vector W(x) is a regular solution of Problem (I)+0,0. Using Theorem 2,

the Problem (I)+0,0 has only the trivial solution, that is

(6.5) W(x) ≡ 0 for x ∈ Ω+.
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By virtue of (6.4), (6.5) and identity (5.1) we obtain

h0(z) = {P(Dz,n)W(z)}− − {P(Dz,n)W(z)}+ ≡ 0 for z ∈ S.

Thus, the homogeneous equation (6.3) has only the trivial solution and therefore
(6.2) is always solvable for an arbitrary vector f .

We have thereby proved

Theorem 9. If S ∈ C2,p, f ∈ C1,p′(S), 0 < p′ < p ≤ 1, then a regular
solution of Problem (I)+0,f exists, it is unique and is represented by double-layer
potential (6.1), where g is a solution of the singular integral equation (6.2) which
is always solvable for an arbitrary vector f .

Problem (II)−0,f . We seek a regular solution to Problem (II)−0,f in the form
of single-layer potential

(6.6) V(x) = Q(1)(x,h) for x ∈ Ω−,

where h is the required vector five-component function. Obviously, by Theorem 4
the vector function V is a solution of (4.2) for x ∈ Ω−. Keeping in mind the
boundary condition and using (5.1), for determining the unknown vector h,
a singular integral equation is obtained from (6.6)

(6.7) K(4)h(z) = f(z) for z ∈ S.

It has been proved above that the corresponding homogeneous equation (6.3)
has only the trivial solution. Hence, it follows that (6.7) is always solvable.

We have thereby proved

Theorem 10. If S ∈ C2,p, f ∈ C0,p′(S), 0 < p′ < p ≤ 1, then a regular
solution of Problem (II)−0,f exists, it is unique and is represented by single-layer
potential (6.6), where h is a solution of the singular integral equation (6.7) which
is always solvable for an arbitrary vector f .

Quite similarly, we can prove the following results.

Theorem 11. If S ∈ C2,p, f ∈ C0,p′(S), 0 < p′ < p ≤ 1, then a regular
solution of Problem (II)+0,f exists, it is unique and is represented by single-layer
potential

V(x) = Q(1)(x,g) for x ∈ Ω+,

where g is a solution of the singular integral equation

K(2)g(z) = f(z) for z ∈ S

which is always solvable for an arbitrary vector f .



Plane waves and problems of steady vibrations 455

Theorem 12. If S ∈ C2,p, f ∈ C1,p′(S), 0 < p′ < p ≤ 1, then a regular
solution of Problem (I)−0,f exists, it is unique and is represented by double-layer
potential

V(x) = Q(2)(x,h) for x ∈ Ω−,

where h is a solution of the singular integral equation

K(3)h(z) = f(z) for z ∈ S,

which is always solvable for an arbitrary vector f .

7. Concluding remarks

1. In this paper, the linear theory of viscoelasticity for Kelvin–Voigt materials
with double porosity is considered and the following results are obtained:

i) three longitudinal and two transverse plane harmonic waves propagate
through a Kelvin–Voigt material with double porosity and these waves are at-
tenuated;

ii) the basic properties of the singular integral operators and potentials (sur-
face and volume) are established;

iii) the existence theorems for regular (classical) solutions of the basic internal
and external BVPs of steady vibrations are proved by using the potential method
and the theory of singular integral equations.

2. On the basis of this paper results it is possible:
i) to study the plane harmonic waves in the linear theory of thermoviscoelas-

ticity for Kelvin–Voigt materials with double porosity;
ii) to prove the uniqueness and existence theorems for classical solutions of

the BVPs of steady vibrations in the theory of thermoviscoelasticity for Kelvin–
Voigt materials with double porosity by using the potential method and the
theory of singular integral equations.

3. The BVPs of the classical theories of elasticity and theormoelasticity are
investigated by using the potential method in [36, 38, 39]. An extensive review
of works on this method can be found in [40]. The potential method is devel-
oped in the theories of viscoelasticity and thermoviscoelasticity for Kelvin–Voigt
materials with voids in [41–43].
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