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Acceleration feature points of unsteady shear flows
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A framework for extracting features in 2D transient flows, based on
the acceleration field to ensure Galilean invariance is proposed in this paper. The
minima of the acceleration magnitude (a superset of acceleration zeros) are extracted
and discriminated into vortices and saddle points, based on the spectral properties
of the velocity Jacobian. The extraction of topological features is performed with
purely combinatorial algorithms from discrete computational topology. The feature
points are prioritized with persistence, as a physically meaningful importance mea-
sure. These feature points are tracked in time with a robust algorithm for tracking
features. Thus, a space-time hierarchy of the minima is built and vortex merging
events are detected. We apply the acceleration feature extraction strategy to three
two-dimensional shear flows: (1) an incompressible periodic cylinder wake, (2) an
incompressible planar mixing layer and (3) a weakly compressible planar jet. The
vortex-like acceleration feature points are shown to be well aligned with acceleration
zeros, maxima of the vorticity magnitude, minima of the pressure field and minima
of λ2.
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1. Introduction

Computational fluid dynamics and particle image velocimetry can
provide highly resolved flow data in space and time. A first challenge is to quickly
extract the important kinematic features from these data. Topological meth-
ods applied to snapshots are one of the first choices. Flow topology may pro-
vide information about the size of separation bubbles and vortices, about the
length of a dead-water region, and about flow regions, which do not mix, just
to name a few applications. Velocity snapshot topology provides invaluable in-
sights into laminar or time-averaged flows [16, 32, 22, 26, 27] or, in general,
into velocity fields with a distinguished frame of reference and a low feature
density.

Such a topology is always based on the zeros of the velocity field and thus is
intrinsically Galilean-variant, i.e., it depends on a chosen frame of reference. In
an unsteady flow, a zero or a critical point at one instant is generally not a zero at
another instant. The question of what critical point, ’connector’ and other topo-
logical elements physically mean for an unsteady situation immediately arises
and the answer is far from being clear.

In some cases, e.g., the flow over an obstacle, a naturally preferred body-fixed
frame of reference is given. Here, Galilean invariance of the topology appears to
be a purely academic requirement. In many cases, however, the proper frame of
reference is far less obvious. In a wake or mixing layer, for instance, topology
may resolve the initial vortex formation in a body-fixed frame of reference, but
the convecting vortices do not give a rise to velocity zeros as they convect down-
stream. Now, the choice of the ‘right’ frame of reference is a subject of personal
preferences.

A second challenge is that critical points are associated with the smallest
structures present in the flow. In a fully turbulent flow, the average distance
between fixed points is of the order of the Taylor scale [33, 34]. Under these
conditions, critical points lose their meaning as ’markers’ of large-scale coherent
structures.

A third challenge is that every measured or simulated data naturally contains
a small amount of noise. This noise complicates the extraction of feature points
such as zeros. Therefore, important physical structures may be missed.

To address the first challenge, Goto and Vassilicos [9] used acceleration
to define a set of feature points. They proposed to use zeros of the acceleration
vector field (zero acceleration points) for the analysis of two-dimensional flows.
The motivation for the definition of these zeros was to find a frame moving
with vortices, such that the persistence of streamlines is maximized. However,
extraction of physically meaningful zeros of the acceleration is a complex task,
especially in the presence of noise.



Acceleration feature points of unsteady shear flows 57

In this paper, we propose acceleration feature points that comprise Goto’s
ideas and solve challenges two and three. Acceleration feature points are: time-
dependent counterparts of the fixed points of the velocity field topology. Their
definition is based on three requirements: (1) choosing a Lagrangian viewpoint,
(2) requiring Galilean invariance and (3) having standard velocity topology as
limiting case for steady flows. It is shown that the minima of the acceleration
magnitude, called acceleration feature points, fulfill these criteria. These points
are Galilean-invariant and their physical meaning is inferred from the velocity
Jacobian. They form a superset of the aforementioned by Goto and Vassilicos
zero acceleration points. In contrast to their interesting work, our concept can
be generalized to three-dimensional flows, and in particular to one-dimensional
features.

Use of minima enables us to employ the powerful concept of scalar field
topology and associated combinatorial extraction methods, which are robust
against large noise levels in the data. The application of these methods enables
the use of persistent homology [6]. It serves as (a) a filter for the robust extraction
in the first step and (b) a spatial importance measure for acceleration feature
points.

A subset of acceleration feature points can be interpreted as vortex cores.
Within our combinatorial framework, we track these points over time. By a com-
bination of persistence with the lifetime of the vortices, we are able to discrim-
inate short-lived unimportant features from long-lived and dominant vortices.
We therefore contribute to the vortex core distillation in three major points:
(1) a robust extraction of the feature points in the presence of noise; (2) an
efficient tracking of them over time; (3) a filtering strategy that is based on
a hierarchy of the vortex cores and trajectories. The extraction and tracking
process is based on a combinatorial framework [23, 24]. The resulting explicit
representation of the vortex core lines enables a detailed analysis of the interact-
ing structures in a flow field. In principle, an analogous feature extraction can
be effected for saddles.

This paper is composed as follows. In Section 2, key elements of the analysis
are defined for simple analytically defined flows. In Secction 3, Galilean-invariant
features are proposed. The algorithmic implementation of the feature extraction
strategy is described in Section 4. The results are discussed in Section 5. Finally,
Section 6 concludes the paper summarizing the findings and relating them to
other topological analyses.

2. Illustrating shear flow example

In this section, a 2D incompressible flow is considered: the Stuart solu-
tion of the inviscid mixing layer [30]. This analytical example shows that lo-
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cal minima of the total acceleration magnitude are good indicators of vortices
and saddles. These results help to define of acceleration feature points as key
elements of the feature extraction strategy that is discussed in the next sec-
tion.

An incompressible mixing layer is described in a Cartesian coordinate system
x = (x, y), where x and y represent the streamwise and transverse coordinate,
respectively. The origin 0 is placed in one saddle. The velocity is denoted by
u = (u, v), where u and v represent its x and y components, respectively. All
quantities are normalized with half of the relative velocity difference and half
of the vorticity thickness. Targeting a simple analytical example, we consider
a streamwise periodic mixing layer with constant width, as described by the
inviscid Stuart solution [30]:

u = uc +
sinh(y)

cosh(y) − 0.25 cos(x− uct)
,(2.1a)

v = −0.25 ·
sin(x− t)

cosh(y) − 0.25 cos(x− uct)
,(2.1b)

where uc represents the convection velocity.
The Stuart vortices are depicted in Fig. 1 as streamlines using planar line in-

tegral convolution (LIC) [3, 29]. The top picture represents Eq. (2.1) and shows
the famous cat eyes in a periodic sequence of centers (vortices) and saddles
for a vortex-fixed frame of reference (uc = 0). The middle picture depicts the
same structures but in a frame of reference moving to the left with the lower
stream with velocity (−0.7, 0), or, equivalently, the vortices moving to the right
at uc = 0.7. The centers and saddles are displaced towards the slower stream.
The bottom picture illustrates the same flow with a frame of reference moving
with velocity (−1.2, 0), i.e., uc = 1.2 in Eq. (2.1). Now, no zeros are observed.
These figures recall the well-known fact, emphasized in many textbooks on fluid
mechanics, that velocity field topology strongly depends on the frame of refer-
ence, i.e., is not Galilean-invariant. In case of the Stuart solution, one might
argue that the frame of reference convecting with the structures is the most nat-
ural one. However, the convection velocity of a jet and many other flows depend
on the streamwise position, i.e., generally no single natural frame of reference
exists for topological considerations.

The saddles and centers of the Stuart solution for the vortex-fixed frame of
reference (uc = 0) are not only zeros of the velocity field but also zeros of the
material acceleration field

(2.2) a = Dtu = ∂tu + u · ∇u.

Here, ∂t represents the partial derivative with respect to time, ∇ the nabla op-
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Fig. 1. Stuart vortices in various convecting frames. The mean velocity profile is shown at the
left. The Stuart vortices are depicted by visualizing the instantaneous velocity field using line
integral convolution. The coloring is determined by vorticity; more intense red corresponds
to higher vorticity. The critical points of standard velocity field topology are displayed as red
(centers) and green (saddles) spheres. The maxima of the vorticity are added as orange spheres.

erator and the dot · is the tensor contraction. The acceleration zeros are derived
from a Galilean-invariant field and do not depend on the chosen inertial frame
of reference. Figure 2 illustrates the magnitude of the acceleration field as height
field. The zeros of the acceleration field and the local minima of the accelera-
tion magnitude (yellow spheres) coincide in this example. In general, the latter
quantity is a superset of the first. However, the acceleration magnitude min-
ima, enable to identify vortices and saddles in case of a non-uniform convection
velocity.
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Fig. 2. The acceleration magnitude field of convecting Stuart vortices. The coloring at the
bottom is determined by the vorticity. The height field shows the acceleration magnitude and
the curves depict integral lines of the acceleration vector field. The yellow spheres highlight
the acceleration minima, orange spheres vorticity maxima. Note that center-like acceleration

minima and vorticity maxima coincide (orange spheres hide yellow spheres).

3. Acceleration feature points

In this section, the definition of the considered feature is introduced. A start-
ing point is a critical review of the velocity snapshot topology. Topological anal-
ysis of velocity fields has been successfully applied to study flow fields with
a distinguished frame of reference. However, its applicability is limited, as loca-
tion and number of critical points depend on the frame of reference. The goal of
the current study is to define of an alternative feature concept, which general-
izes the snapshot topology in a local sense and overcomes the above-mentioned
limitations. The feature point definition is motivated by the observations in the
previous example and the following three requirements:

(R1) Correspondence to velocity topology: A flow field is called steady, if there
exists a distinguished frame of reference for which the vector field is sta-
tionary, i.e., it does not change in time. Such flow fields consist of frozen

convective structures. In addition, they satisfy Taylor’s hypothesis [31].
With respect to this distinguished frame of reference, critical points of the
velocity field correspond to the position of vortex cores and saddles. This
concept is not applicable to unsteady flow fields, since there is no such
distinguished frame of reference. Aiming for a generalization of velocity
topology, the newly defined feature points should coincide for steady flow
fields with the zeros of the velocity field. This also means that the clas-
sification of the points as saddles or centers is preserved. Note that this
requirement is not fulfilled by Haller’s definition of a vortex [12]. Rotational
invariant features cannot distinguish saddles and centers.

(R2) Galilean invariance: A Galilean-invariant feature identifier reveals the same
structures when changing the frame of reference.
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(R3) Lagrangian viewpoint: To guarantee a physically sensible feature identi-
fier, we focus on particle motion. This Lagrangian viewpoint implies the
focus on Galilean-invariant properties of fluid particles, but it does not in-
clude tracking finite-time fluid particle motion. This restricted Lagrangian
viewpoint is consistent with the general notion of ’Lagrangian coherent
structures.’

The above requirements and the observations from Section 2 suggest to relate
feature points to the material acceleration field. The particle acceleration a is the
total derivative of the flow field u. In other words, the acceleration in a space-
time point (x, t) is given by Eq. (2.2).

Definition. A minimum of the magnitude of the material acceleration ‖a‖ is
called acceleration feature point. Such points can be classified on the basis of the
Jacobian of the velocity field ∇u. A feature point is called saddle-like if its eigen-
values are real, and center-like if its eigenvalues are complex. A feature trajectory
is defined by the temporal evolution of a minimum in the acceleration field.

In the following, this definition is shown to satisfy requirements R1 to R3.
Let x0 be a zero of the steady velocity field u(x0, t) ≡ 0. This implies that
the material acceleration a|x0 = (∂tu + u · ∇u) |x0 = 0 vanishes at x0. Thus,
the minima of the acceleration magnitude are a superset of acceleration zeros
and these zeros are a superset of the critical points of the velocity field. Hence,
acceleration feature points can be considered to be a generalization of the critical
points of the velocity fields. Acceleration is a Galilean-invariant quantity. It is
computed from the velocity using the material or Lagrangian derivative that links
the Eulerian to the Lagrangian viewpoint [21]. Moreover, acceleration feature
points satisfy all requirements R1 to R3.

The acceleration feature points can exhibit vortex-like as well as saddle-like
behavior, depending on the eigenvalues of the velocity Jacobian. Real eigenval-
ues correspond to saddles, while a complex-conjugate eigenvalue pair indicates
a vortex. Alternative synonymous discriminants have been proposed for 2D flows.
For example, Goto and Vassilicos [9] showed that saddles are associated with
sources of the material acceleration field while vortices correspond to sinks. One
advantage of their definition is that it relies purely on the acceleration without
a reference to the velocity Jacobian. Basdevant and Philipovitch [2] critically
assessed the use of the ‘Weiss criterion’ as discriminant criterion.

Another perspective onto the acceleration minima is given by their relation
to the pressure gradient via the incompressible Navier–Stokes equation:

(3.1)
a(x, t) = −

1

ρ
∇p(x, t) + ν∆u(x, t),

0 = ∇ · u(x, t),
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where p is the pressure of the flow field, ρ and ν are the kinematic viscosity and
density of the fluid, respectively, and ∆ is the spatial Laplacian operator. For
ideal flows, the equations reduce to the Euler equation:

(3.2)
a(x, t) = −

1

ρ
∇p(x, t),

0 = ∇ · u(x, t).

Then, local extrema of the pressure field, which are zero points of the pressure
gradient coincide with zeros of the acceleration field. In this case, the above de-
fined acceleration feature points form a superset of local extrema of the pressure
field, the minima of which are often associated with vortices.

4. Feature point extraction strategy

Besides the definition of physically meaningful feature points, the choice of
a mathematical model for its description and a robust and efficient extraction
algorithm is essential for practical applications. To be broadly applicable the
mathematical framework should fulfill the following criteria:

(C1) It should facilitate a robust and efficient extraction without subjective
parameters to enable an unsupervised extraction of the structures.

(C2) It should allow to generate a feature hierarchy based on an intrinsic filter-
ing mechanism. This eases the interpretation of the results and becomes
necessary as soon as one moves on from simple showcases or when the data
exhibit high feature densities.

(C3) It should allow for tracking of features over time, based on neighborhood
relations.

The above defined acceleration feature points can be considered as part of the
scalar field topology of the acceleration field just like extremal points of the
acceleration magnitude. This interpretation gives access to powerful algorithmic
tools developed for extracting and tracking topological structures in scalar fields.
Our feature extraction pipeline consists of three steps: (1) spatial feature extrac-
tion resulting in isolated feature points; (2) temporal tracking of these points;
and (3) spatio-temporal filtering of the resulting structures, cf. Fig. 3. In the
following, we will briefly describe the methods used for the three steps in the
extraction pipeline. We restrict the description to two-dimensional case since
this corresponds to our setting. All these concepts can be generalized to higher
dimensions. However, the cases to consider will become more complex.

(1) Combinatorial extraction of two-dimensional scalar field topology. The
algorithm chosen for this paper is based on discrete Morse theory [7]. A short
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Fig. 3. Pipeline of the proposed approach: After computing the acceleration magnitude field
from the velocity, its minima are extracted, which are referred to as acceleration feature points
(AFPs). These AFPs are tracked over time and prioritized by a spatio-temporal importance
measure. The importance measure combines a spatial strength and the lifetime of the feature.

introduction to this theory is given in Appendix A of this paper. It is purely com-
binatorial and guarantees topological consistency of the extracted structures [23].
The robustness of the algorithm and lack of any algorithmic parameter allow an
unsupervised extraction of structures. This guarantees the applicability of the
methods to large data sets without tedious adaptations.

(2) Temporal feature development. To get an understanding of the temporal
evolution of acceleration feature points, the minima are tracked over time. We
use here a topological tracking also referred to as combinatorial feature flow
fields (CFFF), as proposed in [24]. The basic idea of this tracking algorithm is
to construct a discrete gradient field in space-time, describing the development
of the acceleration minima, such that tracking of those minima results in an
integration of the discrete gradient field [15]. The result of this tracking is a set
of temporal feature lines with explicit mergers and splits, which allows us to
extract the mergers that occur for vortex core lines in a two-dimensional setting.

(3) Generating a feature hierarchy for the tracked acceleration feature points.
One way to approach the problem of a high feature density are statistical meth-
ods. Another way, pursued in this work, is to facilitate an importance measure
to build a feature hierarchy. A commonly used importance measure for critical
points in context of scalar field topology is persistent homology [6]. Persistence
measures the stability of critical points with respect to small changes in the data,
e.g. introduced by noise.

More specifically, it is based on the notion of the persistence of components
in the sublevel sets of a scalar function. Sublevel sets of a scalar function are
defined as the set of all points having a scalar value below a certain threshold.
By increasing this threshold new components are generated in minima or saddle
points of the function, while they disappear in saddles or maxima. In this way
critical points are paired in an hierarchical manner (minimum-saddle or saddle-
maximum) and are assigned a persistence value. These pairs can then be can-
celled to simplify the data in a well-defined and controlled way with strict error
measures. In our setting, this means that every acceleration minima is assigned
an importance value. Note that critical points that are paired by persistence
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Fig. 4. The employed spatial feature importance is given by the persistent homology of the
critical points. It measures how strong a minimum is, compared to its neighbors. This is
achieved by correctly pairing critical points and quantifying their height difference. The image
shows such a pairing, e.g., the critical points at x2 and x3. As an example, the persistence
associated with x1 is f(x2) − f(x1). This is, loosely speaking, the lowest height one needs to

climb to get to the next critical point.

are not necessarily adjacent. For a simple example illustrating the concept of
persistent homology, we refer the reader to Fig. 4.

From this importance measure for critical points we derive a spatio-temporal
measure for the features by integrating persistence along the feature line, e.g.,
by accumulating all persistence values along the line. This measure takes the
feature strength as well as its lifetime into account.

5. Results

Three canonical free shear flows are investigated: the flow around circular
cylinder, a planar mixing layer, and a planar jet. These well-studied configura-
tions represent different levels of spatio-temporal complexity from the periodic
wake to the broadband dynamics and vortex pairing of the mixing layer and
jet. The first two flows share a pronounced uniform far-wake convection velocity,
while the jet structures move slower with streamwise distance.

The 2D cylinder wake has been a subject of numerous topological analyses.
The steady flow is symmetric and has a single separation point up to a Reynolds
number of Re = 4 (based on diameter) [35]. At larger Reynolds numbers, a sym-
metric vortex pair emerges. It should be noted that this topological bifurcation
results from a continuous change of a stable steady solution and is not associated
with any dynamical bifurcation. This vortex pair becomes unstable in a super-
critical Hopf bifurcation at Re = 47 [28, 18]. The near-wake topology of the
resulting periodic wake was studied in detail by Brøns et al. [1]. Their study
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reveals rich set of topological configurations and their temporal transitions, all
in a body-fixed frame of reference. Additionally, the far wake contains no veloc-
ity zeros according to their study. Yet, the topology assumes a nearly periodic
pattern in streamwise direction if the frame of reference moves with the vortices.
Thus, the topology of the near and far-wake is best elucidated in frame of ref-
erence which moves with the vortices with vanishing speed in the near wake to
about 85% of the oncoming velocity further downstream. The need for different
frames of references indicates a challenge to Galilean variant features.

A pronounced topological feature of the Kelvin-Helmholtz instability of shear
flows is the so-called ‘cat’s eye’ where the saddle points connect via heteroclinic
orbits and thus strap the circulating particles inside the vortex [13, 30]. ‘Cat’s
eyes’ can only be observed in a suitable frame of reference, as demonstrated in
Section 2. Vortex pairing gives a rise to a far more complicated topology. For
planar jets, convection velocities ranging from zero in the far-field to about 65%
of the exit velocity are reported.

In contrast to the velocity field, the acceleration field is Galilean invariant
and the equilibrium points of the latter is a superset of the velocity zeros (in any
inertial frame of reference). Focus of this study is placed on the vortex skeleton as
identified by the Galilean-invariant acceleration feature points (AFPs). All flows
are described in a Cartesian coordinate system x = (x, y), of which the abscissa
x points in streamwise direction and y in transversal direction. The origin is
located in the source of the shear flow, i.e. center of the cylinder for the wake,
center of the inflow for the mixing layer and center of the orifice for the jet.

The velocity u = (u, v) is expressed in the same system, u and v being the
x- and y-components of the velocity. The time is denoted by t, the pressure by p
and the material acceleration by a. All quantities are non-dimensionalized with
a characteristic length-scale L, a characteristic velocity U and the density of the
fluid ρ. L denotes the cylinder diameter for the wake, the vorticity thickness for
the mixing layer and the width of the origin for the planar jet. U corresponds to
the oncoming flow for the wake, to the velocity of the upper (faster) stream for
the mixing layer, and to the maximum velocity at the orifice for the jet.

This section of the paper is organized as follows. Feature extraction results of
the cylinder wake, the mixing layer, and the planar jet are present in Sections 5.1,
5.2 and 5.3, respectively. Pars pro toto, we perform a statistical analysis for the
wake features, investigate the vortex merging of the mixing layer, and employ
the persistence-filter of AFPs for the jet.

5.1. Cylinder wake

A starting point is a benchmark problem for the data visualization commu-
nity: periodic vortex shedding behind a circular cylinder. The Reynolds number
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is set to 100, which is well above the critical value of 47 for vortex shedding
[36, 14] and well below the critical value of around 180 for transition-related
instabilities [37, 35]. The flow is simulated with a finite element method solver
with third-order accuracy in space and time, like in [18]. The rectangular com-
putational domain (x, y) ∈ [−10, 30] × [−15, 15] without the disk K1/2(0) for
the cylinder is discretized by 277576 triangular elements. The numerical time
step for implicit time integration is 0.1, which also corresponds to the sampling
frequency for the snapshots.

Figure 5 shows five vorticity related quantities of a cylinder wake snapshot.
The vorticity field depicts the separating shear-layers rolling up in a staggered
array of alternating vortices. The yellow balls mark the extrema, revealing the
known fact that the ratio between the transverse of vortex displacement and
the wavelength slightly increases downstream with vortex diffusion. The second
subfigure shows the Okubo-Weiss parameter Q = ‖S−‖2 − ‖S+‖2 marking the
maxima with balls. This parameter employs the velocity Jacobian ∇u and com-
pares the norm of the symmetric shear tensor S

+ = 1
2 [∇u + (∇u)t] with the

norm of the antisymmetric one S
− = 1

2 [∇u− (∇u)t]. In the center of a radially
symmetric vortex, Q = ‖ω‖2 > 0, since ‖S+‖ vanishes and ‖S−‖ becomes the
norm of the vorticity ‖ω‖. At a saddle point Q = −‖S+‖2 < 0. Hence, maxima
of Q can be associated with vortex centers and minima with saddles. The third
subfigure shows λ2. Its extrema are marked by balls and indicate vortex cen-
ters. Q and λ2 are generally considered to provide synonymous information. The
absolute value of the imaginary part of the eigenvalues of the Jacobian ∇u is
shown in the fourth subfigure. This quantity characterizes the angular frequency
of revolution of a neighboring particles. Hence, its maxima marked by yellow
balls indicate vortex centers. Finally, the magnitude of the material acceleration
field is depicted in the fifth (bottom) subfigure. The minima (zeros) mark both
vortex centers and saddles, i.e., twice as many points in the vortex street. These
two features are distinguished based on the velocity Jacobian: two positive eigen-
values of the velocity Jacobian are associated with a saddle, a complex conjugate
pair with a vortex.

In the vortex street, all five vortex criteria provide nearly identical locations.
In the boundary-layer and in the near-wake of the cylinder there are pronounced
differences. Mathematically, the vortex criteria rely on quite different formu-
lae. They cannot be expected to exactly coincide except for pronounced flow
features, e.g., axis-symmetric vortices. In addition, the cylinder boundary intro-
duces a singular line u = 0, thus amplifying the differences between the vortex
criteria.

Figure 6 shows the spatial-temporal vortex evolution, based on the tracked
acceleration feature points. In the far-wake, a uniformly convecting von Kármán
vortex street is observed. In the near-wake, the convection speed is significantly
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Fig. 5. Visualization of a cylinder wake snapshot. Five vorticity-related quantities are depicted
by color maps (red: positive values, blue: negative, gray: zero): (1) vorticity, (2) Okubo–Weiss
parameter, (3) λ2, (4) absolute value of the imaginary part of the eigenvalues of the velocity
Jacobian, which corresponds to the angular velocity and (5) material acceleration magnitude.
The yellow spheres depict the extremal points typically used as features for the respective

quantity.

slower. This aspect is highlighted in Fig. 7 (first subfigure). The streamwise ve-
locity of each vortex uv is a monotonically increasing function from 0.03 to about
0.85. The asymptote corresponds to the value provided in [35]. The transverse
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Fig. 6. Tracked vortices of the cylinder wake in an xt view. Red (blue) marks positive
(negative) rotation of the vortices.

Fig. 7. Plots of the streamwise velocity component uv (top) and the transverse displacement
yv (bottom) along tracked vortices. Note that each figure contains the history of many vortex
evolutions from roll-up to convection out of the domain. Hence, several lines can be seen in

each curve.
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spreading of the vortex street, observed Fig. 5, is quantified in the following
subfigure with the transverse location yv.

It should be noted that tracked acceleration feature points can be seen as
markers of coherent structures. The acceleration-based framework provides con-
venient means for determining convection velocities and evolution of spatial ex-
tensions. The following investigations of the mixing layer and the jet flow em-
phasize this aspect.

5.2. Mixing layer

The second investigated shear flow is a mixing-layer with a velocity ratio
between upper and lower stream of 3:1, following earlier investigations of the
authors [5, 20, 19]. The inflow is described by a tanh profile with a stochastic
perturbation. The Reynolds number based on maximum velocity and vorticity
thickness is 500. The flow is computed with a compact finite-difference scheme of
sixth order accuracy in space and third oder accuracy in time. The computational
domain (x, y) ∈ [0, 140]×[−28, 28] is discretized on a 960×384 grid. The sampling
time for the employed snapshots is ∆t = 0.05 corresponding to 1/10 of the
computational time step. Linear interpolation has been used for the visualization,
whenever it was require.

Fig. 8. Visualization of a mixing layer snapshot. Comparison of vorticity (top), pressure
(middle) and acceleration (bottom). The color scheme is blue (red) for negative (positive)

values. The yellow spheres represent pronounced vortex acceleration feature points.
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Fig. 9. Spatio-temporal evolution of
vortices in the mixing-layer. The top
part of the figure shows the accelera-
tion magnitude field and LEPs at the
final time considered. The bottom of
the figure marks the tracked accelera-
tion feature points over approximately
five downwash times. Numerous vortex
merging events can be identified. The
size and coloring of the vortex skeleton
is determined by vorticity, more intense
blue corresponds to lower vorticity. Note
that vorticity is negative everywhere.
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In contrast to the space- and time-periodic Stuart solution, the mixing layer
generally shows several vortex pairing events. In Fig. 8, the distance between vor-
tex acceleration feature points (marked by balls) are seen to increase in stream-
wise direction as a result of vortex merging. Furthermore, the locations of the
acceleration feature points nicely correlate with the local maxima of the vor-
ticity (top), the local minima of the pressure (middle) and the local minima of
the magnitude of the material acceleration (bottom). The correlation between
vorticity maxima and pressure minima in free shear flows is well documented
in the literature. The correlation between pressure and acceleration magnitude
minima may be inferred from the non-dimensionalized Euler equation a = −∇p,
governing the predominantly inviscid dynamics of the mixing layer. A pressure
minimum (or maximum) implies ∇p = 0 and thus a = 0.

The vortex merging events are shown in Fig. 9. Upstream, many Kelvin–
Helmholtz vortices are formed. In streamwise direction, numerous vortex merging
can be identified. The downstream vortices result from up to four successive
vortex mergers in the shown domain. Not all crossings of x, t-curves mark mergers
since vortex pairs may rotate around their center before eventually merging.
The figure strongly suggests a nearly constant streamwise convection velocity, as
expected from the literature results and contrary to the cylinder wake dynamics.

5.3. Planar jet

Finally, the spatio-temporal evolution of the planar jet is investigated. Like
the mixing layer, the jet shows a number of vortex mergers leading to a reduction
of the characteristic frequency. An additional complexity is the fact that the
convection velocity is not constant but decreases in streamwise direction.

All quantities are normalized with the jet width Dj and the maximum jet
velocity Uj . The flow is a weakly compressible isothermal 2D jet with a Mach
number of Maj = 0.1 and a Reynolds number of Rej = DjUj/ν∞ = 500. The
inflow velocity profile is given by a hyperbolic tangent profile like in [8]:

u(r) = U∞ +
(Uj − U∞)

2

[

1 − tanh

[

b

(

r

r0
−
r0
r

)]]

.

Here, a uniform 1% co-flow U∞ = 0.01Uj is added to avoid vortices with ar-
bitrarily long residence time in the computational domain. The slope of the
tanh profile is characterized by b = ro/4δθ and the momentum thickness of the
shear layer is δθ = 0.05ro. The initial mean temperature was calculated with the
Crocco–Busemann relation, and the mean initial pressure was constant.

The natural transition to unsteadiness is aided by adding disturbances into
a region during the early jet development near the inflow boundary xo = −0.5:

(5.1) v(x, y) = v(x, y) + αUce
−

(x−xo)2

λ2
x (f1(y) + f2(y)).
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Here,

(5.2) f1(y) = ǫ1e
−

(y−y1)2

λ2
y , f2(y) = ǫ2e

−
(y−y2)2

λ2
y ,

where Uc = 0.5, α = 0.008, y1 = 0.5, y2 = −0.5, λx = 0.1, λy = 0.1 and
−1 ≤ ǫ1, ǫ2 ≤ 1 are random numbers.

The flow is defined in a rectangular domain (x, y) ∈ [0, 20] × [−7, 7]. The
adjacent sponge zone extends to [−1.5, 25]× [−10, 10]. The whole domain is dis-
cretized on a non-uniform Cartesian grid with 2449 points in x-direction and
598 points in y-direction. The compressible Navier–Stokes equation is solved by
means of a (2, 4) conservative finite-difference scheme, based on MacCormack’s
predictor-corrector method [10] with block-decomposition and MPI paralleliza-
tion. The system may be closed by the thermodynamic relations for an ideal gas.
Details of the equations, boundary conditions and solver can be found in [4].

Fig. 10. Persistence-based visualization of a jet snapshot. Top left to bottom left : visualization
of the snapshot for persistence threshold levels of 0% (top left), 0.5% (top right) and 2%
(bottom left) of the maximum. The color field depicts the acceleration magnitude with a color
map that ranges from white (zero) to red (positive). The yellow balls represent acceleration
feature points filtered by their persistent homology with respect to the specified threshold
levels. Bottom right : persistence distribution. The number of critical points after persistence-

based filtering is plotted against the persistence threshold level.
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Fig. 11. Spatio-temporal evolution of the vortex skeleton
of the jet. The size and coloring of the vortex lines are
determined by our spatio-temporal importance measure.
The links between the individual vortices are shown as
white gray lines.
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A stochastic inflow perturbation gives a rise to small acoustic waves. These
small acoustic perturbations provide an excellent test-case demonstrating the
need and performance of persistence-based filtering. Figure 10 depicts a jet snap-
shot. Most of the acceleration feature points are associated with low-amplitude
sound waves from the random inlet perturbation (top figure). These acceleration
feature points may be filtered out, ignoring those with low persistence (mid-
dle and bottom figures). The bottom figure only shows features associated with
incompressible dynamics.

The spatio-temporal evolution of the vortex skeleton of the jet is visualized
in Fig. 11 in a similar manner as the wake (Fig. 6) and the mixing-layer (Fig. 9).
Clearly, vortex merging events and a streamwise decreasing convection velocity
can be identified. In particular, some strong vortices remain for a long time near
the exit. A three-dimensional close-up view is shown in Fig. 12.

Fig. 12. Close-up view of the vortex skeleton of the jet flow. The gray lines depict the ex-
tracted and filtered vortex cores. A few lines are visually highlighted by red coloring; they show
a pronounced vortex merging event and the origin of the merged vortices. The acceleration is
visualized by the blue volume rendering and the color coding in the front and back planes. For

comparison, iso-lines of the vorticity are added to the front plane.
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6. Conclusions

We have proposed a novel feature extraction strategy for unsteady 2D flows.
This strategy departs in important aspects from topology extraction of the in-
stantaneous velocity field, starting from the velocity zeros. Instead of the veloc-
ity, the material acceleration field is analyzed, following [9]. Secondly, instead
of acceleration zeros, the minima of the acceleration magnitude are identified.
Thirdly, the acceleration feature points are tracked in time. Finally, a mathe-
matically rigorous spatiotemporal hierarchy of the tracked minima is defined.

The acceleration feature points define topological elements of an unsteady
flow with a number of discriminating features:

1. For steady flows, the acceleration feature points are a natural generalization
of the critical points of vector field topology. Each critical point is an
acceleration feature point. This implication may not hold generally in the
other direction.

2. A critical point of a steady flow field remains an acceleration feature point
in any inertial frame of reference. In other words, the acceleration feature
points cannot vanish or be distorted by a uniform convection of a ’frozen’
flow field (Taylor hypothesis).

3. The acceleration feature points are independent of the inertial frame of
reference, i.e., they are Galilean-invariant. This property is a trivial conse-
quence of the material acceleration field as observable.

4. The concept of acceleration feature points is parameter-free. No integration
windows, nor threshold criteria, etc. are needed. Note that the persistence
level is not a free parameter, as it defines a feature hierarchy.

5. Acceleration is correlated with pressure by neglecting the viscous term.
Suppose the pressure field has a minimum (in a vortex) or maximum (near
a saddle point). Then, the pressure gradient vanishes and the Euler equa-
tion yields a vanishing material acceleration (implying trivially also a mag-
nitude minimum).

6. The persistence measure introduces a rigorous hierarchy of acceleration fea-
ture points based on spatial characteristics, without the need of temporal
filtering.

7. With the tracking of the acceleration feature points, the temporally inte-
grated persistence emphasizes long-lived structures.

In short, identification of acceleration feature points naturally generalizes identi-
fication of critical points and exhibits new desirable or even necessary properties
for a meaningful flow analysis.
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Our framework follows Vassilicos and Goto [9] in employing the Galilean-
invariant material acceleration field as opposed to the velocity field. However,
Vassilicos determined the zeros of this field, while our acceleration feature points
are based on the more general notion of magnitude minima. This enables a ro-
bust, computationally inexpensive, derivative-free feature extraction that is ca-
pable of coping with large noise levels in the data. Furthermore, using minima
instead of zeros allows for a natural extension to three-dimensional flows. The
concept of acceleration feature points follows Haller in the search of a Lagrangian
viewpoint of a Galilean invariant definition of saddles [11] and vortices [12], how-
ever it provides a simple aggregate definition for both features. The hierarchy of
the acceleration feature points can be determined from a single snapshot, i.e.,
no back and forward integration of fluid particles is required.

The framework has been applied to three free shear flows: periodic vortex
shedding of a cylinder wake, a mixing layer with a small range of dominant
frequencies, and a planar jet with broadband dynamics. In all cases, the acceler-
ation feature points are cleanly distilled from the numerical data and they enable
additional insights. For the wake flow, vortex-based statistics are possible, e.g.,
for determining the streamwise convection velocity. For the mixing layer, vortex
merging events are specified in time and space. And for the jet, persistence is
used to separate between aeroacoustic and hydrodynamic equilibrium points.

In the numerical analyses, only vortices have been considered. Here, vortices
are acceleration feature points with imaginary eigenvalues of the velocity Ja-
cobian. Analogously, saddles can be defined as acceleration feature points with
real eigenvalues of this Jacobian matrix. Thus, the concept of acceleration fea-
ture points represents a unifying framework for the main generic features of 2D
flows. Furthermore, it offers a computationally inexpensive alternative to the
concept of the finite-time Lyapunov exponent [11]. We actively pursue a 3D
generalization of the proposed feature extraction.
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Appendix. Introduction to Discrete Morse theory

This section gives a short introduction to Discrete Morse theory, which is
the basis of our feature extraction method. Due to the complexity of this topic
we will only give a strongly simplified informal summary of some basic ideas for
a two-dimensional case.

Morse functions. Morse theory [17] investigates the relationship of the critical
points of a smooth function f given on a domain Ω and the topology of the do-
main. Critical points of f are points where the gradient of f is zero. They can be
classified with respect to the sign of the eigenvalues of the Hessian of f . In two-
dimensional case these are minima, saddles, and of maxima. If the determinant
of the Hessian at a critical point is nonzero, then it is called a non-degenerate. If
all critical points of f are non-degenerate, then f is called a Morse function. The
Morse theorem gives now a relation between the critical points of the function f
and the topology of the domain Ω and allows to define critical points in a purely
topological fashion. Morse theory also defines the admissible set of critical points
of a function defined on Ω which is very useful for computational purposes.

Morse–Smale complex. The Morse-Smale complex is a decomposition of the do-
main into regions of similar gradient flow behavior. The gradient of the function
f is given by ∇f = (∂xf, ∂yf). A gradient line is a line whose tangent vectors
are parallel to the gradient of the function f . For each critical point c we can
now define a stable and unstable manifold. The stable manifold is the union of
all gradient lines converging to c and the unstable manifold is the union of all
integral lines originating from c. If the stable and unstable manifolds only inter-
sect transversally the function f is called Morse–Smale. The intersection defines
the Morse-Smale complex which segments the domain in the desired way. The
complex can be summarized by its skeleton consisting of the critical points and
connecting gradient lines also called separatrices.

Discrete Morse theory. Morse theory is a topic from differential topology and was
originally developed for smooth manifolds and functions. However, the results
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from numerical simulations are not a continuous field but discretely sampled
data points on a polygonal grid for each time slice. Thus, a direct application
of this definition requires the interpolation of the data and the computation of
derivatives. This involves many data-specific parameters and is especially chal-
lenging when dealing with noisy data. More recently, a discrete version of Morse
theory has been introduced by Forman [7]. His theory is purely combinatorial
and does not rely on a specific interpolation method and any derivatives. Based
on his theory a number of robust topology extraction algorithms for discrete
data have been developed.

Forman’s theory is based on the notion of discrete vector fields. For the def-
inition of discrete vector fields the discrete domain is considered as a simplical
graph. The nodes of the graph consist of the vertices, edges and cells of the
domain of mesh. Each node is labeled with the dimension p of the geometric
simplex it represents. The links of the graph encode the neighborhood relation
of the triangulation.
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Fig. 13. Basic definitions for a combinatorial vector field

A combinatorial vector field V can be defined as a matching of the simplicial
graph (see Fig. 13). A matching of a graph is a subset of links such that no two
links are adjacent. The nodes of the graph that are not covered by V are called
critical points (see Fig. 13, right). The type of a critical point of V is determined
by the dimension of the node p. It is called sink if (p = 0), saddle if (p = 1),
or source if (p = 2). A combinatorial p-streamline is a path in the graph whose
links alternate between V and the complement of V , and the dimension of the
nodes of the path alternates between p and p + 1. A p-streamline connecting
two critical points is called a separatrix. The most important theorems in Morse
theory can be transferred to the discrete setting. Due to the finite nature of
these definitions, the topological features (critical points, separatrices) can be
computed exactly in a combinatorial vector field free of parameters and give
very reliable results. For this generation of the discrete gradient field work we
use the framework proposed by Reinighaus et al. [23] together with the ideas
from Robins et al. [25].
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