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1. Introduction

The investigation of the redistribution of stresses due to the pres-
ence of different kinds of inhomogeneities in elastic bodies is important in various
engineering applications. Cracks and rigid lamellar inclusions (known as ant-
icracks) are two extreme cases that result in the concentration of their border
stresses and further affect the behavior of material structures. As shown in [1–5],
rigid inhomogeneities have wide applications in the fields of materials science,
the mechanics of composites and geomechanics. Although the problem of cracks
has been studied extensively over the past 50 years, research on the correspond-
ing anticrack problems has been rather limited and mainly concentrated on 2D
problems connected with rigid line inclusions (see for example, monographs by
Ting [6] and Berezhnitskii et al. [7]).

The increasing development of high-strength engineering structures contain-
ing cracks or anticracks has driven researchers to focus on the effects of thermal
loads. The main achievements of space crack problems in this field are docu-
mented in monographs by Kassir and Sih [8] and Kit and Khay [9]. However,
because of their mathematical complexity, truly three-dimensional problems in-
volving anticracks subjected to thermal activity have not yet been studied suf-
ficiently well.
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An anticrack is basically a through slit crack filled with a rigid lamella, which,
unlike a crack, transmits tractions, but prevents displacement discontinuity. In
the thermoelastic case, both cracks and anticracks are thermally insulated, ther-
mally conductive or thermally active. To deal with the thermoelastic problems
involving planes of discontinuities of some kind, two types of stress systems can
be distinguished. One system is symmetric with reference to these planes and
the other is characterized by antisymmetry. It is the purpose of this work to
present a method of solution for the symmetric system, in which the prescribed
temperatures on the upper surface of the anticrack are identical to those on
the lower surface. The features of antisymmetry have already been presented by
considering the thermal-stress problem of vertically uniform heat flow disturbed
by an arbitrarily shaped heat-insulated anticrack in an elastic isotropic space
in Kaczyński and Kozłowski [10] and in a transversely isotropic space in
Kaczyński [11]. It should be noted that the corresponding problems involving
penny-shaped cracks have been analyzed in the symmetric case in [12–15] and
in the antisymmetric case in [16–19]; see also the results of a generalization for
flat elliptical cracks given in [20–23].

This paper is arranged as follows. Section 2 outlines the fundamental equa-
tions of linear thermoelasticity in an uncoupled static setting. The thermal prob-
lem dealing with anticracks under symmetric temperatures is first analysed in
Section 3. Once the temperature potential for solving this problem has been
found, the induced problem of thermal stresses is investigated in Section 4. It is
reduced to a symmetric mechanical analog developed in Kaczyński [24]. Con-
sequently, the governing boundary integral equations for a planar anticrack of
arbitrary shape are obtained in terms of shear stress discontinuities. A typical
application of a circular anticrack under uniform-temperature load is presented
and discussed in Section 5. It is noteworthy that the analytical solution obtained
can serve as a benchmark for various approximate analyses and numerical codes.
Finally, Section 6 concludes the article.

2. Fundamental equations of thermoelastostatics

The best developed theory that is widely used in practice is the theory of
static uncoupled homogeneous isotropic thermoelasticity when the temperature
field does not depend on the field of elastic displacements and when the in-
ertial terms can be ignored. The governing equations for this theory include
the equation of equilibrium, the heat conduction equation and the constitu-
tive relations for stresses and fluxes. In the absence of body forces and heat
sources, the system of these equations in Cartesian coordinates (x1, x2, x3) is
(Nowacki [25])
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µui,jj + (λ+ µ)uj,ji − βT,i = 0,(2.1)

T,ii = 0,(2.2)

σij = λuk,kδij + µ(ui,j + uj,i) − βTδij,(2.3)

qi = −kT,i,(2.4)

where ui, T , σij , qi are the displacement, temperature increment, stress and heat
flux fields, respectively, λ, µ are the Lamé constants, β = α(3λ+ 2µ) with α be-
ing the linear coefficient of thermal expansion, k is the thermal conductivity and
δij is Kronecker’s delta. Latin lower case indices range over 1, 2, 3 and a comma
denotes partial differentiation with respect to coordinate variables. The usual
summation convention for repeated indices holds.

A traditional two-staged method of solution will be used. Using the symme-
try conditions, first we need to solve a mixed boundary-value problem of heat
conduction in a half space governed by Eq. (2.2) with a temperature applied over
the anticrack surface. Secondly, we search for the solution to the thermoelastic
equation (2.1) at the already known temperature field and with some mechanical
anticrack boundary conditions.

3. Symmetrical thermal anticrack problem

Consider a thermoelastic isotropic space with an arbitrarily shaped rigid
sheet-like inclusion (anticrack) occupying a region S in the plane x3 = 0. A given
temperature −T0(x1, x2) (negative with respect to the stress-free state) is applied
symmetrically to the anticrack faces. Similarly to the symmetrical thermal crack
problem posed in [20, 21], we may consider the problem to be that of finding
a harmonic function T (x1, x2, x3) in x3 ≥ 0, vanishing at infinity and satisfying
the following mixed conditions on x3 = 0:

(3.1)
T (x1, x2, 0) = −T0(x1, x2), (x1, x2) ∈ S,

T,3|x3=0+ = 0, (x1, x2) ∈ R2 − S.

Let us introduce a temperature potential ω(x1, x2, x3) such that (Kaczyń-

ski [26])

(3.2) T = −ω,33, ω,ii = 0.

The conditions (3.1) suggest taking the sought harmonic function T as the
Newtonian potential of a single layer of intensity ϕ(x1, x2) distributed over the
inclusion region S (Kellogg [27]). Therefore, the solution to this thermal prob-
lem can be written as
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(3.3)

ω(x1, x2, x3) =

∫∫

S

[x3 ln(Rξ + x3) −Rξ]ϕ(ξ1, ξ2) dξ1 dξ2,

T (x1, x2, x3) = −
∫∫

S

ϕ(ξ1, ξ2) dξ1 dξ2
Rξ

,

where Rξ = |x − ξ| =
√

(x1 − ξ1)2 + (x2 − ξ2)2 + x2
3 is the distance between the

field point x = (x1, x2, x3) and the integration point ξ = (ξ1, ξ2, 0) ∈ S, and the
unknown density ϕ(x1, x2) must satisfy, in view of (3.1)1, the following singular
integral equation (similar to the one for elastic contact mechanics [28, 29]):

(3.4)
∫∫

S

ϕ(ξ1, ξ2) dξ1 dξ2
√

(x1 − ξ1)2 + (x2 − ξ2)2
= T0(x1, x2), (x1, x2) ∈ S.

It should be mentioned here that a closed-form solution to this equation
was obtained by Rahman [30] for the case where S is an ellipse and T0 is
a polynomial.

Moreover, from the simple layer potential properties it follows that when
density function ϕ is continuous and the region S belongs to the Lyapunov
class, then the sought temperature T is a continuous function in R3 and has
a normal derivative jump [[T,3]]S for (x1, x2) ∈ S:

(3.5) [[T,3]]S ≡ T,3(x1, x2, 0
+) − T,3(x1, x2, 0

−) = 4πϕ(x1, x2).

4. Symmetrical thermal stress anticrack problem

Now we pass to the associated thermoelastic rigid inclusion problem due
to the foregoing symmetric thermal loadings. This problem may be reduced
to a half-space x3 ≥ 0 with the following mechanical conditions resulting from
displacement-free anticrack surfaces, the symmetry of the temperature and defor-
mation state and the possible rigid motion of the inclusion (see Kaczyński [24]):

uα(x1, x2, 0) = εα + (−1)αω3x3−α, (x1, x2) ∈ S, α = 1, 2,(4.1)

u3(x1, x2, 0) = 0, (x1, x2) ∈ R2,(4.2)

σ3α(x1, x2, 0
+) = 0, (x1, x2) ∈ R2 − S, α = 1, 2,(4.3)

ui = O

(

1

|x|

)

as |x| =
√

x2
1 + x2

2 + x2
3 → ∞.(4.4)

Here, the unknown small constants εα (ω3) stand for the corresponding displace-
ments (angle of rotation) of the inclusion as a rigid whole. These parameters will
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be determined in the course of solving the problem in hand from the equilib-
rium conditions of zero resultant forces (moments), expressed by the jumps of
shear stresses on S denoted by [[σ3α(x1, x2)]] = σ3α(x1, x2, 0

+)− σ3α(x1, x2, 0
−),

α = 1, 2 as follows:

(4.5)

∫∫

S

[[σ3α(x1, x2)]] dx1 dx2 = 0, α = 1, 2,

∫∫

S

[

x2[[σ31α(x1, x2)]] − x1[[σ32(x1, x2)]]
]

dx1 dx2 = 0.

The general solution of the governing displacement equation (2.1) for three-
dimensional stationary problems with geometric discontinuities on the plane
x3 = 0 may be expressed by three harmonic functions φi(x1, x2, x3) and the
temperature potential ω(x1, x2, x3) as follows (Kaczyński [26]):

(4.6)
uα = (φ1 + x3F + c ω),α + (−1)αφ3,3−α, α = 1, 2,

u3 = φ1,3 + x3F,3 −
λ+ 3µ

λ+ µ
φ2,

in which

(4.7) F = φ2 − c ω,3, c =
β

2(λ+ 2µ)
.

To reduce the anticrack stress problem to one in the potential theory, we
construct potential functions well suited to the boundary conditions (4.1)–(4.3).
Let us introduce two harmonic functions G(x1, x2, x3), H(x1, x2, x3) and denote
g = G,3, h = H,3. The potentials appearing in the displacement representation
(4.6) are selected according to

(4.8)

φ1 = −G,1 −H,2,

φ2 = − λ+ µ

λ+ 3µ
(G,13 +H,23),

φ3 = G,2 −H,1.

Upon substitution of Eqs. (4.8) into (4.6), the displacement components become

(4.9)

u1 = g,3 + c ω,1 + F,1x3,

u2 = h,3 + c ω,2 + F,2x3,

u3 = F,3x3

with

(4.10) F = − λ+ µ

λ+ 3µ
(g,1 + h,2) − c ω,3.
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The corresponding stress components are found from Eq. (2.3) as

σ31

µ
= C[g,33 + κ(g,2 − h,1),2] + 2F,13x3,(4.11)

σ32

µ
= C[h,33 − κ(g,2 − h,1),1] + 2F,23x3,(4.12)

σ33

µ
= −D(g,31 + h,32) + 2c ω,33 + 2F,33x3,(4.13)

σ11 = D[(2λ+ 3µ)g,13 + λh,23] + 2cµ(2ω,33 + ω,11) + 2µF,11x3,(4.14)

σ22 = D[λg,13 + (2λ+ 3µ)h,23] + 2cµ(2ω,33 + ω,22) + 2µF,22x3,(4.15)

σ12 = µ[g,32 + h,31 + 2c ω,12 + 2F,12x3],(4.16)

where

(4.17) C =
2(λ+ 2µ)

λ+ 3µ
, D =

2µ

λ+ 3µ
, κ =

λ+ µ

2(λ+ 2µ)
.

Note that on the plane x3 = 0 the displacement u3 = 0. In addition, the quan-
tities of interest u1, u2 and σ31, σ32 can be expressed in terms of the partial
derivatives of potentials h, g and ω evaluated at x3 = 0, i.e.,

(4.18)
u1 = g,3 + c ω,1, u2 = h,3 + c ω,2,

σ31 = Cµ[g,33 + κ(g,2 − h,1),2], σ32 = Cµ[h,33 − κ(g,2 − h,1),1].

Application of the conditions (4.1)–(4.4) leads now to the boundary-value
problem for the determination of two harmonic functions g and h in the half
space x3 ≥ 0 such that their partial derivatives up to the third order vanish at
infinity and satisfy the following mixed conditions on the plane boundary:

[g,3(x1, x2, x3)]x3=0+ = −c[ω,1]x3=0+ + ε1 − ω3x2

[h,3(x1, x2, x3)]x3=0+ = −c[ω,2]x3=0+ + ε2 + ω3x1

}

(x1, x2) ∈ S,(4.19)

g,33 + κ(g,2 − h,1),2 = 0

h,33 − κ(g,2 − h,1),1 = 0

}

(x1, x2, 0
+) ∈ R2 − S,(4.20)

in which the values of functions −c ω,α(x1, x2, 0
+), α = 1, 2 can be found from

the solution of the temperature problem.
It is noteworthy here that the same boundary-value problem is observed if

we consider the symmetrical part of the problem involving an anticrack under
mechanical loadings. Thus, the results of Kaczyński [24] are used to formulate
the symmetrical thermoelastic anticrack problems in terms of the governing pair
of singular 2D integral equations for the unknown interface shear stresses σ+

3α|S ≡
σ3α(x1, x2, 0

+), (x1, x2) ∈ S, α = 1, 2 as follows:
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(4.21)

1

2πµ

∫∫

S

{

σ+
31(ξ1, ξ2)

√

(x1 − ξ1)2 + (x2 − ξ2)2

[

1 − κ
(x2 − ξ2)

2

(x1 − ξ1)2 + (x2 − ξ2)2

]

+ κ
σ+

32(ξ1, ξ2)(x1 − ξ1)(x2 − ξ2)
√

(x1 − ξ1)2 + (x2 − ξ2)2

}

dξ1 dξ2 = c[ω,1]x3=0+ − ε1 + ω3x2,

1

2πµ

∫∫

S

{

σ+
32(ξ1, ξ2)

√

(x1 − ξ1)2 + (x2 − ξ2)2

[

1 − κ
(x1 − ξ1)

2

(x1 − ξ1)2 + (x2 − ξ2)2

]

+ κ
σ+

31(ξ1, ξ2)(x1 − ξ1)(x2 − ξ2)
√

(x1 − ξ1)2 + (x2 − ξ2)2

}

dξ1 dξ2 = c[ω,2]x3=0+ − ε2 − ω3x1,

Note that analytical solutions of the above equations are available, when their
right sides are polynomials and region (of anticrack) S is elliptical (Rahman [31]).

Knowning the stresses σ+
31, σ

+
32 from the solution to governing equations (4.21),

the derivatives of the main potentials giving the full-space stress-displacement
field are expressed as

(4.22)

g,3(x) = − 1

2πµ

∫∫

S

{

σ+
31(ξ)

|x − ξ|

[

1 − κ
(x2 − ξ2)

2

|x − ξ|2
]

+ κ
σ+

32(ξ)(x1 − ξ1)(x2 − ξ2)

|x − ξ|3
}

dSξ,

h,3(x) = − 1

2πµ

∫∫

S

{

σ+
32(ξ)

|x − ξ|

[

1 − κ
(x1 − ξ2)

2

|x − ξ|2
]

+ κ
σ+

31(ξ)(x1 − ξ1)(x2 − ξ2)

|x − ξ|3
}

dSξ,

5. Uniform-temperature load applied on the surface
of a circular anticrack

To illustrate the use of the general method presented above, consider the
posed problem for the particular case of a circular (penny-shaped) anticrack of
radius a subjected to a constant cooling temperature T0 as shown in Fig. 1, i.e.,

(5.1) S ≡ Sa =
{

(x1, x2, 0) : r ≡
√

x2
1 + x2

2 ≤ a
}

, T (x1, x2) ≡ T0.

A well-known solution to Eq. (3.4) for a circular domain Sa is

(5.2) ϕ(x1, x2) = ϕ̂(r) =
T0

π2
√
a2 − r2

.
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Fig. 1. A circular anticrack in an elastic isotropic space under a uniform-temperature load.

Substituting Eq. (5.2) into Eqs. (3.3) yields the following formulas for thermal
potential ω and temperature T in terms of elementary functions by virtue of
Fabrikant’s results [28]:

(5.3)

ω(x1, x2, x3) =
T0

π

[(

x2
3 − a2 − r2

2

)

sin−1 a

l2

− 3(2a2 − l21)

2a

√

l22 − a2 + 2ax3 ln
(

l2 +
√

l22 − r2
)

]

,

T (x1, x2, x3) = T̂ (r, x3) = −2T0

π
sin−1 a

l2

= −2T0

π
sin−1 2a

√

(r + a)2 + x2
3 +

√

(r − a)2 + x2
3

,

where

(5.4)
l1 ≡ l1(a, r, x3) =

1

2

[

√

(r + a)2 + x2
3 −

√

(r − a)2 + x2
3

]

,

l2 ≡ l2(a, r, x3) =
1

2

[

√

(r + a)2 + x2
3 +

√

(r − a)2 + x2
3

]

.

Furthermore, the fluxes qi are found from Eq. (2.4) as

(5.5)

qα(x1, x2, x3) = −2T0k

π

xαl1
√

l22 − a2

rl22(l
2
2 − l21)

, α = 1, 2,

q3(x1, x2, x3) = −2T0k

π

√

a2 − l21
l22 − l21

.
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In particular, in the inclusion plane x3 = 0 (where l1 = min(a, r), l2 = max(a, r))
we find that

T̂ (r, 0±) =

{−T0 0 ≤ r ≤ a,

−2T0

π
sin−1 a

r
r > a,

(5.6)

qr(r, 0
±) = −k[T̂,r]x3=0± =







0 0 ≤ r ≤ a,

− 2T0ak

πr
√
r2 − a2

r > a,

q3(r, 0
±) = −k[T̂,3]x3=0± =







∓ 2T0k

π
√
a2 − r2

0 ≤ r ≤ a,

0 r > a.

(5.7)

Proceeding now to the solution of governing equations (4.21), we find from
Eq. (5.3)1 that

(5.8) c[ω,α]x3=0+ = −1

2
cT0xα, α = 1, 2.

At this stage, it is noteworthy that Eqs. (4.21) are identical to the governing
equations for the symmetrical perturbed anticrack problem of triaxial tension
considered by Kaczyński in [24] by letting there D1 = D2 ≡ 1

2cT0. Taking
advantage of this fact (see the details of the solution process therein), the sought
shear stresses are obtained as follows:
(5.9)

σ+
31(x1, x2) = − βrT0x1

π
√
a2 − r2

, σ+
32(x1, x2) = − βrT0x2

π
√
a2 − r2

, (x1, x2) ∈ intS,

where

(5.10) βr =
2µβ

λ+ 3µ
=

2(1 − 2ν)β

3 − 4ν

with ν = λ/2(λ+ µ) being Poisson’s ratio.
As can be easily seen, the problem in hand is axially symmetric with respect

to the x3-axis, and the singular thermal shear stress inside the region of the
anticrack is

(5.11) σ3r(r, 0
±) =

∓βrr

π
√
a2 − r2

, 0 ≤ r < a.

Moreover, the use of the equilibrium conditions (4.5) leads to ε1 =ε2 =ω3 =0
as might be expected.
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The full elastic field is determined if we find the main potentials g and h (see
Eqs. (4.9)–(4.17)). When Eqs. (5.9) are inserted into (4.22), it is found that

(5.12)
g,3 =

βr

2π2µ
(ψ1 + κx2ψ1,2 − κx1ψ2,2),

h,3 =
βr

2π2µ
(ψ2 + κx1ψ2,2 − κx2ψ1,1).

Here ψ1 and ψ2 are the potentials of simple layers defined as

(5.13)

ψ1(x) =

∫∫

Sa

ξ1 dξ1 dξ2
√

(x1 − ξ1)2 + (x2 − ξ2)2 + x2
3

√

a2 − ξ21 − ξ22
,

ψ2(x) =

∫∫

Sa

ξ2 dξ1 dξ2
√

(x1 − ξ1)2 + (x2 − ξ2)2 + x2
3

√

a2 − ξ21 − ξ22
,

for which the method by Fabrikant [28] yields the explicit results in elementary
functions as follows:

(5.14) ψα(x) = πxα

(

sin−1 a

l2
− a

√

l22 − a2

l22

)

, α = 1, 2.

Having the explicit expressions for the harmonic potentials g, h and ω, the
thermoelastic field can be obtained simply by differentiation or integration with
the use of Appendix 5 in the book by Fabrikant [29]. It is obvious that the
results will be in terms of elementary functions. Since the derivation is straight-
forward, it is omitted here to save space. In order to examine the singular be-
havior of the thermal border stresses, however, normal stress σ33(r, 0

±) is found
from Eq. (4.13) with the help of Eqs. (5.12) and (5.14) as

(5.15) σ33(r, 0
±) =















µβT0

λ+ 3µ
0 ≤ r < a,

β3T0

π

a√
r2 − a2

+
2µβT0

π(λ+ 3µ)
sin−1 a

r
r > a,

where

(5.16) β3 =
2µ2β

(λ+ 3µ)(λ+ 2µ)
=

β(1 − 2ν)2

(3 − 4ν)(1 − ν)
.

The obtained results reveal that the thermal stresses near the anticrack front
r = a have the classical singularity r−1/2 as in the fracture mechanics of con-
ventional elastic materials. Strictly speaking, singularities in σ3r occur at the
points on the edge of the disc where r = a−, and in σ33 – at the points exterior
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to the disc where r = a+. This indicates that there are two major mechanisms
controlling the material cracking around the inclusion front:

– exfoliation of the material from the surface of the inclusion described by
the stress singularity coefficients

(5.17) S±
II = lim

r→a−

√

2π(a− r)σ3r(r, 0
±) = ∓βrT0

√

a/π,

– a mode I fracture in the immediate vicinity of the edge of the disc charac-
terized by the stress intensity factor

(5.18) KI = lim
r→a+

√

2π(r − a)σ33(r, 0) = β3T0

√

a/π.

These parameters may be used in conjunction with a suitable failure criterion
for initiating fractures at the rim of the inclusion.

In order to compare the amplitudes of the local stress components in the
foregoing mechanisms, let us calculate the ratio

(5.19)
KI

|S±
II |

=
β3

βr
=

µ

λ+ 2µ
=

1 − 2ν

2 − 2ν
.

It decreases from 0.5 to 0 for ν ∈ (0, 1/2). Hence, one would expect that the
most critical state of fracture is the mode II of separation of material from the
anticrack edge.

Finally, it is also interesting to compare the SIF of mode I given by Eq. (5.18)
with the corresponding SIF for a penny-shaped crack, which is denoted by Kcrack

I

and can be obtained using the results from [8, 20] as follows:

(5.20) Kcrack
I =

2µ

λ+ 2µ
βT0

√

a/π =
1 − 2ν

1 − ν
βT0

√

a/π.

The ratio of stress intensity factors for the two problems is the function of Pois-
son’s ratio ν ∈ (0, 1/2) given as

(5.21)
KI

Kcrack
I

=
1 − 2ν

3 − 4ν
,

which decreases from 1/3 to 0. This means that the crack is more dangerous
than the anticrack in the symmetric thermal stress problem under study.

6. Conclusions

A space thermal stress problem in which a prescribed cooling temperature
field is symmetrically distributed over the faces of a rigid sheet-like inclusion
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(anticrack) has been investigated. A general potential method of solving the re-
sulting boundary value problems was developed. By constructing the appropriate
harmonic functions, the thermoelastic problem was reduced to the mixed prob-
lem of potential theory that appears in the corresponding anticrack symmetrical
problem under mechanical loads (Kaczyński [24]). The governing 2D singular
integral equations were established for a planar anticrack of arbitrary shape in
terms of the shear stress discontinuities across the inclusion. The problem of
a prescribed constant temperature applied over the faces of a rigid circularly
shaped inclusion was considered as an illustrative example. In this case a com-
plete solution was obtained and analyzed from the point of view of initiating
fractures near the edge of the inclusion. A comparison with the corresponding
penny-shaped crack problem was also made. The results obtained are completely
new to the literature.
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