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The reflection of elastic waves at the surface of a couple-stress elastic half-
space with a viscoelastic support is studied in this paper. Different from the classi-
cal elastic solid, there are: a non-dispersive dilatational propagating wave, a disper-
sive transverse propagating wave and a dispersive evanescent wave in a couple-stress
elastic solid. The boundary conditions at the visco-elastically supported surface of
a couple-stress elastic half-space include the couple-stress vector and the rotation
vector, which disappear in the classical elastic solid. They are used to obtain a set
of linear algebraic equation, from which the amplitude ratios of reflection waves with
respect to the incident wave can be determined. Then, the reflection coefficients in
terms of energy flux ratios are calculated numerically, and the normal energy flux
conservation is used to validate the numerical results. At last, the influence of the
boundary parameters that reflect the mechanical behavior of a viscoelastic support
on the amplitude ratio, the phase shift and the energy partition of reflection waves
are discussed based on the numerical results. Both the incident longitudinal displace-
ment wave (the P-wave) and incident transverse displacement wave (the SV-wave)
are considered. It is found that the instantaneous elasticity and the delayed viscosity
of a viscoelastic support have different influences on the reflection waves.
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1. Introduction

In the classical elastic theory, the stress at a material point is assumed
to be dependent on the strain at the same material point, and no characteristic
length is included in the constitutive relationships. Therefore, the classical elastic
theory cannot describe the mechanical behavior of material at the micro- or nano-
scale and capture/show the size effects observed experimentally [1]. In order
to take into consideration the microstructure effects, the generalized continuum
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theories, for example, the couple-stress theory [2, 3], the micromorphic theory [4],
the micropolar theory [5], the microstretch theory [6] and the nonlocal theory [7]
were proposed successively. In the problem of wave propagation, the classical
elastic theory is also believed to be inadequate for a material with microstructure,
and in particular, when the wavelength of an incident wave is comparable to the
length of the material microstructure.

The couple-stress theory being one of the generalized continuum theories
has received much attention. A couple-stress elastic solid differs from a classical
elastic solid in that not only the force-stress but also the couple-stress can be
maintained. A couple-stress elastic solid is also different from a micropolar elas-
tic solid in that each mass point has not only the translational motion but also
the dependent micro-rotational motion, while a micropolar elastic solid has an
extra independent micro-rotational motion apart from the translational motion.
Toupin [2], Mindlin and Tiersten [3], Koiter [8] and others contributed to
the establishment and development of the elastic theory of couple-stress solid.
In the linear theory of couple-stress solid, there is an additional elastic mod-
ulus (called a bending-twisting modulus). The square root of the ratio of the
bending-twisting modulus to the usual shear modulus has a dimension of length.
The length l is an important material parameter that determines the differences
between the couple-stress solid and the classical elastic solid. Usually, the length l
is small in comparison with the dimension of a body and the wavelength normally
encountered. However, its influences might become important as the dimension
of a body or the wavelength diminish to the same order as the length l.

Graff and Pao [9] first studied the effects of couple-stress on the prop-
agation of elastic wave in a couple-stress solid, and the reflection problem of
elastic waves at free-surface of a couple-stress half-space and the propagation
properties of a surface wave were also considered. It was found that the couple-
stress solid could support three types of waves instead of two types as it is in
a classical elastic solid and the two of them are dispersive. In the presence of
couple-stress, the surface wave was found to propagate dispersively with the ve-
locity that might be larger than the usual Rayleigh velocity. Aggarwal and
Alverson [10] further studied the diffraction of elastic waves by a cylindrical
cavity or a rigid cylinder embedded in an infinite medium with couple-stress.
Ottosen, Ristinmaa and Ljung [11] studied Rayleigh waves in a linear elas-
tic couple-stress medium. Their investigations showed that the Rayleigh wave
turned out to be dispersive and the Rayleigh wave speed was always larger
than the conventional Rayleigh wave speed. An explicit expression of the disper-
sion relation was also derived. Georgiadis and Velgaki [12] also studied the
dispersive properties of Rayleigh waves in a couple-stress solid. Their analysis
showed that the Rayleigh wave propagating along the surface of a half-space
was dispersive at high frequencies where the wavelength was of a micron order.
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Provided that certain relationships held between various microstructure param-
eters in the theory employed, the dispersion curves of these waves had the same
form as that given by the atomic lattice theory. The steady-state propagation
of mode II and mode III crack in a couple-stress elastic material was also stud-
ied by Gourgiotis, Mishuris, Piccolroaz and Radi [13, 14]. Their analysis
confirmed and extended earlier results on the static case by including the ef-
fects of crack velocity and rotational inertia. Kumar, Kumar and Nautiyal

[15] studied the propagation of shear waves in a couple-stress elastic half-space
beneath an elastic layer. After developing the formal solution, a secular equa-
tion for surface wave propagation was derived. It was found that the frequency
equations for different modes of propagation were dispersive in nature and the
presence of rotation had significant effects on the dispersion curves. Consider-
able effect of elastic layer was also noticed on the dispersion curves. The dis-
persive properties of the torsional and surface SH-waves, and the reflection of
body waves in an isotropic and homogenous elastic half-space characterized by
dipolar gradient elasticity were studied by Gourgiotis, Georgiadis and Neo-

cleous [16, 17].
In the above-mentioned studies, the interface between two different couple

-stress solids or the other microstructured solids was usually assumed to be per-
fect, and the boundary surface was usually assumed to be free surface, namely,
traction-free. However, the interface may be imperfect due to the interface ac-
cumulative damage, and the boundary surface may not be free but with various
constraints in the actual engineering problems. The reflection of micropolar elas-
tic waves at the non-free surface of a micropolar elastic half-space was studied
by Zhang, Wei and Tang [18]. The influences of the interface parameters on
the reflection waves were discussed in detail. Furthermore, they also studied the
reflection waves at the viscoelastically supported boundary of a micropolar half-
space [19], and the reflective behavior of the pure elastic boundary, pure viscous
boundary and the visco-elastic boundary were compared.

In this paper, the reflection problem of elastic waves at the visco-elastically
supported boundary of a couple-stress half-space is studied. The visco-elastically
supported boundary is modeled as a boundary with a distributed spring and
dashpot. Each mass point at the boundary surface is subjected to the normal
and tangent translational constraints and the rotational constraint. Three elastic
boundary parameters and three viscous boundary parameters are introduced to
represent the respective constraint degrees. The reflection waves are determined
by the boundary condition with consideration of the force-stress, the couple-
stress, the instantaneous elasticity, and the delayed viscosity. The influences of
elastic and viscous boundary parameters on the amplitude ratio, the phase shift
and the energy flux partition of reflection waves are discussed based on the
numerical results.
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2. Statements of problem

2.1. The elastic waves in the couple-stress solid

Different from the classical elastic solid, the couple-stress elastic solid can
support not only the force-stress σij but also the couple-stress µij . Application
of the conservation of the momentum and the moment of momentum to the
representative volume element with the surface tractions pi = σijnj and the
surface couples mi = µijnj but without the body force and the body couples
leads to

σji,j = ρüi,(2.1a)

µji,j + eijkσjk = 0,(2.1b)

where eijk is the permutation symbol. Equations (2.1a) and (2.1b) can be com-
bined to give

(2.2) σs
ji,j − 1

2ejikµ
d
lk,lj = ρüi,

where σs
ij (= σij − σa

ij) is the symmetrical part of σij , µd
ij(= µij − 1

3µkkδij) is
the deviatoric part of µij in which δij is the Kronecker delta. The constitutive
relationships of the couple-stress solid are

σs
ij = λεkkδij + 2µεij ,(2.3a)

µd
ij = 4ηχij + 4η′χji,(2.3b)

where λ and µ are the Lamé constants, and η and η′ are the newly introduced ma-
terial constants of the couple-stress solid. The strain tensor εij and the curvature-
twist tensor χij are defined as

εij = 1
2(ui,j + uj,i),(2.4a)

χij = ωj,i = 1
2ejklul,ki,(2.4b)

where ωi is the axial vector of strain tensor and ui is the displacement vector.
Inserting Eqs. (2.3) and (2.4) into Eq. (2.2) leads to the equation of motion of
mass point in term of displacement components

(2.5) (λ + µ)uj,ji + µui,jj + η(eijkekmnun,mj),ll = ρüi.

It is noted that the material constant η′ does not appear in the equation of
motion. Furthermore, we represent ui by introducing a scalar potential ϕ and
a vector potential H:

(2.6) u = ∇ϕ + ∇× H (∇ · H = 0).
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Inserting Eq. (2.6) into Eq. (2.5) leads to

(λ + 2µ)(∇2ϕ) − ρϕ̈ = 0,(2.7a)

µ(1 − η/µ∇2)∇2H − ρḦ = 0.(2.7b)

Equations (2.7a) and (2.7b) are the equations that the dilatational wave and
shear wave in a couple-stress solid should satisfy.

We now consider only the plane strain problem, namely, the displacement
field uz = 0, while ux and uy are only the functions of (x, y). Then, the vector
potential is limited to H = Hzez, and Eq. (2.7) becomes

c2
1∇2ϕ = ϕ̈,(2.8a)

c2
2(1 − l2∇2)∇2Hz = Ḧz,(2.8b)

where c2
1 = (λ + 2µ)/ρ and c2

2 = µ/ρ are the phase speeds of dilatational wave
and shear wave in the classical elastic solid, and l =

√

η/µ is a dimension of
length and represents the effects of couple-stress embedded in the wave motion
equation in a couple-stress solid. When l = 0, the couple-stress effects disap-
pear and the wave motion equations, Eqs. (2.8a)–(2.8b), reduce to the ones for
a classical elastic solid.

Let

ϕ = f(y) exp[i(ξx − ωt)],(2.9a)

Hz = h(y) exp[i(ζx − ωt)].(2.9b)

Inserting Eq. (2.9) into Eq. (2.8) leads to

f ′′(y) + α2f(y) = 0,(2.10a)

h′′

1(y) + β2h1(y) = 0,(2.10b)

h′′

2(y) − γ2h2(y) = 0,(2.10c)

where

α2 = α2
1 − ξ2, β2 = β2

1 − ζ2, γ2 = β2
2 + ζ2, α2

1 = ω2
/

c2
1,

β2
1 = [−1 + (1 + 4l2ω2/c2

2)
1/2]/2l2, β2

2 = [1 + (1 + 4l2ω2/c2
2)

1/2]/2l2.

Thus, we obtain the solution of Eq. (2.8)

ϕ = A1 exp[i(ξx − αy − ωt)] + A2 exp[i(ξx + αy − ωt)],(2.11a)

Hz1 = B1 exp[i(ζx − βy − ωt)] + B2 exp[i(ζx + βy − ωt)],(2.11b)

Hz2 = C2 exp[−γy + i(ζx − ωt)],(2.11c)
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where Eq. (2.11a) shows that the dilatational wave in a couple-stress solid
is a propagating wave and is non-dispersive. Its phase speed is the same as
that of the dilatational wave in the classical elastic solid, namely, cp = c1 =
√

(λ + 2µ)/ρ. In other words, the couple-stress effects do not influence the di-
latational wave. Equation (2.11b) represents that one shear wave is a disper-
sively propagating wave with the phase speed of cs = c2

√

1 + l2β2
1(ω, l). Equa-

tion (2.11c) shows that the other shear wave is the surface wave of shear type
and this wave exists only near the boundary or the interface. The surface wave
is also a dispersive wave with the phase speed of css = ω/ζ. It is noted that
cs → c2 as ω → 0 and cs → ∞ as ω → ∞. So the shear wave can propagate
faster or slower than the dilatational wave. There is a critical angular frequency
ωc = c1

√

c2
1 − c2

2/(lc2), at which the shear wave has the same speed as the di-
latational wave.

2.2. The boundary conditions and the amplitude ratios

Considering a half-space of couple-stress solid with visco-elastically supported
boundary, the coordinate plane oxz is set as a boundary of the half-space and the
positive y direction is set downward vertically, as shown in Fig. 1. The incident
P-wave and SV-wave travel in the half-space with the incidence angles of θ1 and
θ2 respectively, and impinge the surface of y = 0. We consider only the plane
strain case, namely, u = (u1, u2, 0), H = (0, 0, Hz).

a) b)

Fig. 1. Reflection waves at the boundary of a half-space of couple-stress solid with elastic
and viscous support: a) ω < ωc, b) ω > ωc.

In the plane strain situation, the incident longitudinal wave (ϕI), the incident
shear wave (HI

z1), the reflection longitudinal wave (ϕR), the reflection shear wave
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(HR
z1) and the reflection surface wave of shear type (HR

z2) can be expressed as

ϕI = A1 exp[i(ξx − αy − ωt)],(2.12a)

HI
z1 = B1 exp[i(ζx − βy − ωt)],(2.12b)

ϕR = A2 exp[i(ξx + αy − ωt)],(2.12c)

HR
z1 = B2 exp[i(ζx + βy − ωt)],(2.12d)

HR
z2 = C2 exp[−γy + i(ζx − ωt)],(2.12e)

where A1, B1, A2, B2 and C2 are the amplitudes of various waves, respectively.
In order to establish the boundary condition, let us consider first the energy

conservation in a representative volume element in absence of body force and
body couple

(2.13)
∫

V

[

1
2ρu̇ · u̇ + W

]t

t0
dV =

t
∫

t0

dt

∫

S

(n · σ · u̇ + n · µ · ω̇) dS.

Let us consider that

n · µ · ω̇ = n · µ · nn · ω̇ + n · µ · (I − nn) · ω̇(2.14)

= 1
2µnnn · ∇ × u̇ + n · µ · (I − nn) · ω̇,

1
2µnnn · ∇ × u̇ = 1

2n · ∇ × (µnnu̇) − 1
2n ×∇µnn · u̇,(2.15)

and, if the surface S is smooth,

(2.16)

n
∫

S

·∇ × (µnnu̇) dS = 0.

Equation (2.13) becomes

(2.17)
∫

V

[

1
2ρu̇ · u̇ + W

]t

t0
dV

=

t
∫

t0

dt

∫

S

[(

n · σ − 1
2n ×∇µnn

)

· u̇ + n · µ · (I − nn) · ω̇)
]

dS

=

t
∫

t0

dt

∫

S

[p · u̇ + m · ω̇)] dS,
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where

pn =
(

n · σ − 1
2n ×∇µnn

)

= n · σs + 1
2n × (∇ · µd −∇µd

nn),(2.18)

mn = n · µ · (I − nn).(2.19)

Because the normal component of couple-tress vector on surface S enters in the
combination with the force-stress vector as the coefficient of u̇. Only five bound-
ary conditions rather than six are included in the couple-stress solid. The bound-
ary values of three components of modified force-stress pn and the two tangent
components of couple-stress mn are specified, or, alternatively, the boundary val-
ues of three components of displacement vector and two tangent components of
rotational vector are specified. In the present situation, i.e., n = ey, the modified
force-stress can be expressed as

pyx = σs
yx +

1

2

(

∂µd
xz

∂x
+

∂µd
yz

∂y

)

,(2.20a)

pyz = σs
yz −

1

2

(

∂µd
xx

∂x
+

∂µd
yx

∂y

)

+
1

2

∂µd
yy

∂x
,(2.20b)

pyy = σs
yy,(2.20c)

µyz = 4ηωz,y + 4η′ωy,z = ηωz,y.(2.20d)

In the case of n = ex, the modified force-stress can be expressed as

pxy = σs
xy −

1

2

(

∂µd
xz

∂x
+

∂µd
yz

∂y

)

,(2.20e)

pxz = σs
xz +

1

2

(

∂µd
xy

∂x
+

∂µd
yy

∂y

)

− 1

2

∂µd
xx

∂y
,(2.20f)

pxx = σs
xx,(2.20g)

µxz = 4ηωz,x + 4η′ωx,z = 4ηωz,x.(2.20h)

It is noted that the constitutive parameter η′ does not work in the plane strain
situation, but will play an important role in the anti-plane strain situation.

The visco-elastically supported boundary is modeled by the distributed
spring and dashpot that are connected in parallel manner (Kelvin model).
(Kn, Kτ , Kg) are the elastic constants of springs, while (ηn, ητ , ηg) are the viscous
constants of dashpots. The pure elastic support and the pure viscous support
can be obtained easily. The boundary conditions for the pure elastic support can
be expressed as

pyy|y=0 = Knuy|y=0,(2.21a)

pyx|y=0 = Kτux|y=0,(2.21b)

µyz|y=0 = Kgωz|y=0,(2.21c)
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The boundary condition for pure viscous support can be expressed as

pyy|y=0 = ηnu̇y|y=0,(2.22a)

pyx|y=0 = ητ u̇x|y=0,(2.22b)

µyz|y=0 = ηgω̇z|y=0,(2.22c)

The boundary conditions for viscoelastic support can be expressed as

pyy|y=0 = cKnuy|y=0 + (1 − c)ηnu̇y|y=0,(2.23a)

pyx|y=0 = cKτux|y=0 + (1 − c)ητ u̇x|y=0,(2.23b)

µyz|y=0 = cKgωz|y=0 + (1 − c)ηgω̇z|y=0,(2.23c)

where the index c ∈ (0, 1) is the weigh factor. The elastically supported boundary
and the viscously supported boundary can be recovered when c → 1 or c → 0,
respectively.

The boundary conditions are applied to any point of coordinate x at any
time t. This requires

(2.24) ξ = ζ,

namely, the apparent wavenumbers of dilatational wave and shear wave must be
equal. This gives the relationship between the incidence angle and the reflection
angle of the dilatational wave and the shear wave as follows:

(2.25)
ω sin θI

1

cp
=

ω sin θI
2

cs(ω, l)
=

ω sin θR
1

cp
=

ω sin θR
2

cs(ω, l)
= ξ.

By using Eqs. (2.3), (2.4), (2.6) and (2.12), Eq. (2.23) leads to

(2.26a) µ(2ξ2 − ω2/c2
2)(A1 + A2) − 2µζβ(B1 − B2) + 2iµγζC2

= [cKn + (1 − c)ηn(−iω)][iα(A2 − A1) − iζ(B1 + B2 + C2)],

(2.26b) 2µξα(A1 − A2) + µ(2ζ2 − ω2/c2
2)(B1 + B2 + C2)

= [cKτ + (1 − c)ητ (−iω)][iξ(A1 + A2) − iβ(B1 − B2) − γC2],

(2.26c) 2iηββ2
1(B2 − B1) + 2ηγβ2

2C2

= [cKg + (1 − c)ηg(−iω)]
[

1
2β2

1(B1 + B2) − 1
2β2

2C2

]

.

Equation (2.26) can be rewritten in the form of matrix

(2.27) (Dij)(A2, B2, C2)
T = A1{ei} + B1{fi}.

The explicit expressions of Dij , ei and fi corresponding to the visco-elastically
supported boundary are given in the Appendix. The amplitude ratios of various
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reflection waves can be obtained from Eq. (2.27). It should be pointed out that
the amplitude ratios of reflection waves are dependent on the angular frequency
of incident wave because both the reflection shear wave and surface wave are dis-
persive. This phenomenon is different from the classical elastic solid in which the
amplitude ratios of reflection waves are not dependent on the angular frequency
of incident wave.

2.3. Energy flux and energy flux conservation

Because the couple-stress solid can support not only the surface force but
also the surface moment, the energy flux along the positive x and y axes can be
calculated by

Ix = −[Re(pxx) · Re(u̇x) + Re(pxy) · Re(u̇y) + Re(µxz) · Re(ω̇z)],(2.28a)

Iy = −[Re(pyx) · Re(u̇x) + Re(pyy) · Re(u̇y) + Re(µyz) · Re(ω̇z)].(2.28b)

Thus, the energy flux along the propagation direction n is

(2.29) In = Ixex + Iyey.

The average value of energy flux within a period is expressed as

(2.30) 〈Ii〉 =
1

T

T
∫

0

Ii(t) dt = −1

2
Re(pij u̇

∗

j ) (i = x, y).

The energy fluxes carried by the dilatational wave and the shear wave are re-
spectively

(2.31a) 〈Ix〉(ϕ) = −1

2
Re

[

2µ
∂2ϕ

∂x∂y
· ∂ϕ̇∗

∂y
+ µ

(

k2∇2ϕ − 2
∂2ϕ

∂y2

)

· ∂ϕ̇∗

∂x

]

,

(2.31b) 〈Iy〉(ϕ) = −1

2
Re

[

2µ
∂2ϕ

∂x∂y
· ∂ϕ̇∗

∂x
+ µ

(

k2∇2ϕ − 2
∂2ϕ

∂x2

)

· ∂ϕ̇∗

∂y

]

,

(2.31c) 〈Ix〉(Hz) = −1

2
Re

[

−µ

(

∂2Hz

∂y2
− ∂2Hz

∂x2
+ l2∇4Hz

)

· ∂Ḣ∗

z

∂x

+ 2µ
∂2Hz

∂x∂y
· ∂Ḣ∗

z

∂y
+ η

∂(∇2Hz)

∂x
· ∇2Ḣ∗

z

]

,

(2.31d) 〈Iy〉(Hz) = −1

2
Re

[

µ

(

∂2Hz

∂y2
− ∂2Hz

∂x2
− l2∇4Hz

)

· ∂Ḣ∗

z

∂y

+ 2µ
∂2Hz

∂x∂y
· ∂Ḣ∗

z

∂x
+ η

∂(∇2Hz)

∂y
· ∇2Ḣ∗

z

]

.
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Inserting Eq. (2.12) into Eq. (2.31) leads to

〈II
x〉 =

ξµω3

2c2
2

|A1|2 + 1
2ζ(µω3/c2

2 + ηβ4
1ω)|B1|2,

〈II
y 〉 = −αµω3

2c2
2

|A1|2 − 1
2β(µω3/c2

2 + ηβ4
1ω)|B1|2,

〈II
n〉 =

α1µω3

2c2
2

|A1|2 + 1
2β1(µω3/c2

2 + ηβ4
1ω)|B1|2,

〈IR
x 〉(ϕR) =

ξµω3

2c2
2

|A2|2, 〈IR
y 〉(ϕR) =

αµω3

2c2
2

|A2|2,

〈IR
n 〉(ϕR) =

α1µω3

2c2
2

|A2|2,

〈IR
x 〉(HR

z1) = 1
2ζ(µω3/c2

2 + ηβ4
1ω)|B2|2,

〈IR
y 〉(HR

z1) = 1
2β(µω3/c2

2 + ηβ4
1ω)|B2|2,

〈IR
n 〉(HR

z1) = 1
2β1(µω3/c2

2 + ηβ4
1ω)|B2|2,

for the incident P-wave, the incident SV-wave, the reflection P-wave, and the
reflection SV-wave, respectively.

The surface wave always propagates along the surface, and the displacement
distribution is not uniform at the wavefront. Therefore, the energy flux distri-
bution is not uniform either. In fact, the energy flux density decreases gradually
with an increase of y. Here, the unit area is taken to be lz × ly = γ × 1/γ near
the surface; then,

(2.32) 〈IR
x 〉(HR

z2) = 〈IR
n 〉(HR

z2) =
1 − e−2

4
ζω

(

4γ2µ + ηβ4
2 + µ

ω2

c2
2

)

|C2|2.

Let us define the energy flux ratios as

(2.33) Em =
〈IR

n 〉m
〈II

n〉
, (m = 1, 2, 3),

where 〈II
n〉 is the energy flux of incident wave and 〈IR

n 〉m (m = 1, 2, 3) is the
energy flux of the reflection P-wave, the reflection SV-wave or the reflection SS-
wave along the propagation direction. The energy conservation within a thin
layer of boundary requires that the input energy flux is equal to the output
energy flux, namely

(2.34) E = (〈IR
y 〉1 + 〈IR

y 〉2 + 〈IR
y 〉3 + 〈It〉 + 〈Iη〉)/〈II

y 〉 = 1,

where

(2.35) 〈It〉 = 1
2 Re(uyKnu̇∗

y + uxKτ u̇
∗

x + ωzKgω̇
∗

z)
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is the energy flux that enters the elastically supported boundary and Et =
〈It〉/〈II

y 〉 stands for the energy flux ratios stored in the spring constraints. In
fact, the average value of energy flux within a period in the spring constraint is
null, namely, 〈It〉 = 0. This implies that the spring constraints store and release
energy periodically, but they do not absorb energy. Different from the spring
constraint, the dashpot will definitely dissipate certain energy in a period. The
energy dissipated in the viscous constraint boundary can be estimated by

(2.36) 〈Iη〉 =
1

2
Re(u̇yηnu̇∗

y + u̇xητ u̇
∗

x + ω̇zηgω̇
∗

z).

Equation (2.34) can be used to validate the numerical results in the next section.

3. Numerical results and discussions

In the numerical examples, the material constants of couple-stress elastic
half-space are ρ = 2.6× 103 kg /m3, λ = 2.2× 1010 N/m2, µ = 1.1× 1010 N/m2,
and η = 0.011 N. For the specified couple-stress solid, the critical circular fre-
quency is ωc = 7.1253 × 109 rad/s, at which the reflection P-wave has the same
propagation speed as that of the reflection SV-wave. Because the reflection SV-
wave and the reflection surface wave (the SS-wave) are both dispersive, their
reflection coefficients are not only dependent on the incident angle but also on
the circular frequencies of incident wave. In order to investigate the difference
between the elastic constraint boundary and the viscous constraint boundary,
the amplitude ratios and the phase shifts of the reflection waves with respect
to the incident waves are estimated for the elastic constraint boundary and
the viscous constraint boundary, respectively. In the numerical calculation, the
elastic and viscous benchmark parameters of the spring and the dashpot are
assumed to be Kn = 1 × 1016 N/m3, Kτ = 1 × 1016 N/m3, Kg = 1 × 104 N/m,
ηn = 1×106 N ·s/m3, ητ = 1×106 N ·s/m3 and ηg = 1×10−6 N ·s/m. The actual
parameters used in the numerical simulation are (cKn, cKτ ,cKg) and (cηn, cητ ,
cηg), where c is the scale coefficient indicating that the elastic parameters and
the viscous parameters increase/decrease at the same proportion. In order to
investigate the influences of elastic and viscous boundaries, the amplitude ratio,
the phase shift and the energy partition of reflection waves are calculated in the
present work for different incident angle and circular frequency in both cases of
incident P-wave and incident SV-wave. The obtained numerical results are also
validated by checking the energy conservation.

3.1. The case of incident P-wave

Figure 2 shows the amplitude ratios of reflection waves with respect to the in-
cident wave in the case of elastically supported boundary. It is observed that the
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a) b) c)

Fig. 2. Influences of elastic coefficients (cKn, cKτ , cKg, ηn = ητ = ηg = 0) on the amplitude
ratios of reflection waves in the incident P-wave situation: a) c = 0.5, b) c = 1, c) c = 2.5.

a) b) c)

Fig. 3. Influences of elastic coefficients (cKn, cKτ , cKg, ηn = ητ = ηg = 0) on the phase
shifts of reflection waves in the incident P-wave situation: a) c = 0.5, b)c = 2.5, c)c = 8.

amplitude of reflection P-wave decreases, while the amplitude of the reflection
SV-wave and surface wave increase when the elastic constants of the constraint
boundary increase gradually. This implies that the elastically supported bound-
ary helps in the mode conversion. Figure 3 shows the phase shift of the reflection
waves with respect to the incident wave. It is observed that the phase shift of re-
flection P-wave decreases, while the phase shift of reflection SV-wave and surface
wave increase gradually as the elastic constants of constraint boundary increase
gradually. In general, the elastically supported boundary affects not only the am-
plitude ratios but also the phase shifts. However, the influences on the reflection
P-wave are opposite to the influences on the reflection SV-wave and the surface
wave.

Figure 4 shows the energy flux ratios of reflection waves and the check on
the energy conservation. Due to the dispersive nature, three kinds of incident
angular frequencies are considered, namely, the critical frequency, the smaller
frequency than the critical frequency and the greater frequency than the criti-
cal frequency. It is observed that the input energy flux converts gradually into
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a) b) c)

Fig. 4. Influences of incident frequency on the energy partition at elastic boundary (Kn, Kτ ,
Kg, ηn = ητ = ηg = 0) in the incident P-wave situation: a) ω = 4 × 109 rad/s,

b) ω = ωc = 7.1253 × 109 rad/s, c) ω = 2 × 1010 rad/s.

the reflection P-wave as the incident frequency increases. When the incident fre-
quency is greater than the critical frequency, the reflection SV-wave reaches its
critical angle (about 38.6◦) and the input energy flux converts into the reflection
P-wave after the critical angle. Meanwhile, two surface waves propagate along
the boundary surface with the energy flux along this surface too. The fact that
the energy conservation index remains at nearly unity in total range of incident
angle indicates that the energy flux conservation along the normal of boundary
is satisfied as expected. The energy fluxes carried by various reflection waves
exhibit the energy partition of the incident energy flux carried by the incident
wave. The energy conservation validates the numerical results in the present
work.

The free boundary and the fixed boundary were often discussed in the litera-
ture. In fact, these two kinds of boundaries are the two extreme cases of elastically
supported boundary studied in this paper and can be both obtained from the
present elastically supported boundary by assuming very small and very large
constraint stiffness, respectively. Figure 5 shows the energy ratios of reflection
waves obtained by the exact free boundary and the elastically supported bound-
ary presented in this paper. It is observed that the numerical results obtained
by the the elastically supported boundary are similar to the results obtained in
the exact free boundary when very small values of the constraint stiffness are
assumed. Figure 6 shows the energy ratios of reflection waves obtained by the
exact fixed boundary and the studied elastically supported boundary. It is also
observed that the numerical results obtained in the presented elastically sup-
ported boundary are similar to those obtained in the exact fixed boundary in
which very large values of constraint stiffness are taken. All the above observa-
tions validate the numerical results in the present work.

Let us turn to the viscous constraint boundary. Figure 7 shows the influ-
ences of the viscous constants on the amplitude ratios of reflection waves. It is
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a) b)

Fig. 5. Energy ratios for the free surface and the constrained surface with very small
constraint stiffness in the incident P-wave situation (ω = 6 × 109 rad/s): a) free surface,

b) constrained surface (Kn = Kτ = Kg = 104, ηn = ητ = ηg = 0).

a) b)

Fig. 6. Energy ratios for the fixed surface and the constrained surface with very large
constraint stiffness in the incident P-wave situation (ω = 6 × 109 rad/s): a) fixed surface,

b) constrained surface (Kn = Kτ = Kg = 0.4 × 1018, ηn = ητ = ηg = 0).

observed that the amplitude of reflection P-wave decreases gradually, while the
amplitudes of reflection SV-wave and the surface wave decrease first and then
increase gradually when the viscous constants increase gradually. However, the
amplitude ratio of reflection P-wave is at unity for the elastic boundary while it
is evidently less than unity for the viscous boundary in the normal incident case.
This phenomenon results from the delayed effects (between the response and the
excitation) of the dashpot. The delayed effects make the dashpot different from
the spring that has the instantaneous elasticity.

Figure 8 shows the influences of the viscous constants on the phase shifts of
reflection waves in the viscous constraint boundary. It is noted that the phase
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a) b) c)

d) e) f)

Fig. 7. Influences of the viscous coefficients (Kn = Kτ = Kg = 0, cηn, cητ , cηg) on the
amplitude ratio of reflection waves in the incident P-wave situation (ω = 6 × 109 rad/s):

a) c = 5, b) c = 5.5, c) c = 7, d) c = 8, e) c = 10.7, f) c = 11.

a) b) c)

d) e) f)

Fig. 8. Influences of viscous coefficients (Kn = Kτ = Kg = 0, cηn, cητ , cηg) on the phase
shift in the incident P-wave situation (ω = 6 × 109 rad/s): a) c = 5, b) c = 5.5, c) c = 7,

d) c = 8, e) c = 10.7, f) c = 11.
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shift may undergo a sudden change when the viscous constants increase gradu-
ally. And the absolute value of a sudden change is always 180◦ (a sudden change
of 360◦ is due to the principal value range of the anti-tangent function and does
not mean the sudden change of the phase shift). Why is this? In order to ex-
plain this confusion, we tracked the change of the amplitude ratio. It was found
that a sudden change of phase shift is always accompanied by the fact that the
amplitude ratio becomes zero, see Figs. 7b and 7c. In other words, the complex
amplitude ratio changes from one quadrant to the opposite quadrant (not an
adjacent quadrant) across the initial point of complex plane and thus results in
a sudden change of 180◦ of the phase shift. It was also noted that the sudden
changes of the reflection SV-wave and surface wave take place at same time but
earlier than the reflection P-wave. Compared with the elastic boundary, it is
found that the phase shift changes suddenly for the viscous boundary (except
the reflection P-wave), while it changes gradually in the elastic boundary. For the
reflection P-wave, the phase shift changes both gradually and suddenly, namely,
at certain incident angle, the phase shift takes a sudden change while it takes
a gradual change at other incident angle.

a) b) c)

Fig. 9. Influences of incident frequency on the energy partition at viscous boundary
(Kn = Kτ = Kg = 0, ηn, ητ , ηg) in the incident P-wave situation: a) ω = 4 × 109 rad/s,

b) ω = ωc = 7.1253 × 109 rad/s, c) ω = 2 × 1010 rad/s.

Due to the dispersive nature, the reflection waves are dependent on the in-
cident angular frequency. Figure 9 shows the energy fluxes carried by various
reflection waves at different incident angular frequencies. Compared with the
elastic boundary, the energy fluxes carried by various reflection waves decrease
evidently in the case of viscous boundary. This can be explained by the fact that
the viscous boundary dissipates certain energy while the elastic boundary does
not dissipate any energy in one period. When the incident angular frequency in-
creases, the energy flux carried by the reflection P-wave increases slightly, while
the energy flux carried by the reflection SV-wave and surface wave produces
unnoticeable change. The energy ratio dissipated by the viscous boundary with
respect to the incident energy flux also produces unnoticeable change with the in-
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creasing incident angular frequency. When the incident angular frequency is over
the critical angle, the reflection SV-wave propagates faster than the reflection
P-wave and reaches its critical angle early. Different from the elastic boundary
case, the input energy flux does not concentrate completely on the reflection
P-wave because a part of input energy is dissipated by the viscous boundary.

a) b)

Fig. 10. Energy ratios for the free surface and the constrained surface with very small
constraint stiffness in the incident P-wave situation (ω = 6 × 109 rad/s): a) free surface,

b) constrained surface (ηn = ηn = 100, ηg = 10−10, Kn = Kτ = Kg = 0).

The free boundary and the fixed boundary can also be obtained from the
viscous boundary under the study by assuming very small and very large viscous
constants, respectively. Figure 10 shows the energy ratios of reflection waves
obtained from the exact free boundary and the present viscous boundary with
very small viscous constant. Figure 11 shows the energy ratios of reflection waves

a) b)

Fig. 11. Energy ratios for the fixed surface and the constrained surface with very large
constraint stiffness in the incident P-wave situation (ω = 6 × 109 rad/s): a) fixed surface,

b) constrained surface (ηn = ητ = ηg = 1010, Kn = Kτ = Kg = 0).
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obtained from the exact fixed boundary and the present viscous boundary with
very large viscous constant. The good consistency between the present viscous
boundary and the free or fixed boundary validates the present numerical results.

3.2. The case of incident SV-wave

Figure 12 shows the influences of the elastic constraint stiffness on the am-
plitude of reflection waves for the elastic constraint boundary. Different from the
incident P-wave case, the amplitude of the reflection P-wave increases first and
then decreases gradually, while the amplitudes of the reflection SV-wave and the
reflection surface wave decrease monotonously with the increasing elastic con-
straint stiffness. In the case of incident SV-wave with the incident angular fre-
quency ω < ωcr, the reflection P-wave reaches early its critical angle (about 68◦).
At the range of incident angle over critical angle, the amplitude ratio of reflection
SV-wave always remains at unity.

Figure 13 shows the influences of the elastic constraint stiffness on the phase
shift of reflection waves for the elastic constraint boundary. It is observed that
the absolute value of the phase shift increases first and then decreases gradu-
ally with the increasing elastic constraint stiffness. However, the phase shift of
the surface wave decreases monotonously with the increasing elastic constraint
stiffness. Similar to the incident P-wave case, the phase shifts of reflection waves
(except reflection surface wave) exhibit the characteristic of gradual change. Only
after the critical angle, the reflection surface wave may have a sudden change.

Figure 14 shows the energy flux carried by various reflection waves at different
incident angular frequencies. It is observed that the energy flux carried by the
reflection P-wave decreases gradually, while the energy flux carried by reflection
SV-wave increases gradually when the incident frequency increases. In other
words, the input energy concentrates gradually on the reflection SV-wave in the
incident SV- wave situation with the increasing incident angular frequency. The
energy flux carried by the surface wave produces unnoticed change with the
increasing incident angular frequency.

Figure 15 shows the influences of the viscous constraint coefficient on the am-
plitude of reflection waves for the viscous constraint boundary. Different from the
incident P-wave case, the amplitude of the reflection SV-wave decreases, while
the amplitude of reflection P-wave increases monotonously with the increasing
viscous constraint coefficient. Figure 16 shows the influences of the viscous con-
straint coefficient on the phase shift of reflection waves for the viscous constraint
boundary. It is observed that the phase shifts of reflection P-wave and reflection
SS-wave change suddenly, the phase shifts of reflection SV-wave change both
gradually and suddenly when the viscous coefficient increases. Compared with
the incident P-wave situation, we may conclude that the phase shift of the reflec-
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a) b) c)

d) e) f)

Fig. 12. Influences of elastic coefficient (cKn, cKτ , cKg, ηn = ητ = ηg = 0) on the amplitude
ratios of reflection waves in the incident SV-wave situation (ω = 6 × 109 rad/s): a) c = 0.5,

b) c = 1, c) c = 1.5, d) c = 2, e) c = 3, f) c = 5.

a) b) c)

d) e) f)

Fig. 13. Influences of elastic coefficients (cKn, cKτ , cKg, ηn = ητ = ηg = 0) on the phase
shifts of reflection waves in the incident SV-wave situation (ω = 6 × 109 rad/s): a) c = 0.5,

b) c = 1, c) c = 1.5, d) c = 2, e) c = 3, f) c = 5.
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a) b) c)

Fig. 14. Influences of incident frequency on the energy ratio at elastic boundary (Kn, Kτ ,
Kg, ηn = ητ = ηg = 0) in the incident SV-wave situation: a) ω = 6 × 109 rad/s,

b) ω = ωc = 7.1253 × 109 rad/s, c) ω = 9 × 109 rad/s.

a) b) c)

d) e) f)

Fig. 15. Influences of viscous coefficients (Kn = Kτ = Kg = 0, cηn, cητ , cηg) on the
amplitude ratios of reflection waves in the incident SV-wave situation (ω = 6 × 109 rad/s):

a) c = 5, b) c = 7, c) c = 8, d) c = 10, e) c = 10.7, f) c = 12.

tion wave with the same type of the incident wave may change both gradually
and suddenly, while it changes suddenly in the other two reflection waves.

Figure 17 shows the energy fluxes carried by various reflection waves at differ-
ent incident angular frequencies. When the incident angular frequency increases,
the energy flux carried by the reflection P-wave decreases gradually, while the en-
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a) b) c)

d) e) f)

Fig. 16. Influences of viscous coefficients (Kn = Kτ = Kg = 0, cηn, cητ , cηg) on the phase
shifts of reflection waves in the incident SV-wave situation (ω = 6 × 109 rad/s): a) c = 5,

b) c = 7, c) c = 8, d) c = 10, e) c = 10.7, f) c = 12.

a) b) c)

Fig. 17. Influences of incident frequency on the energy ratios at viscous boundary
(Kn = Kτ = Kg = 0, ηn, ητ , ηg) in the incident SV-wave situation: a) ω = 6 × 109 rad/s,

b) ω = ωc = 7.1253 × 109 rad/s, c) ω = 9 × 109 rad/s.

ergy flux carried by the reflection SV-wave increases gradually. The energy flux
carried by surface wave produces unnoticed change. The energy dissipated by
the viscous boundary increases definitely when the incident angular frequency
increases. But the energy flux ratio dissipated by the viscous boundary with
respect to the incident energy flux also produces unnoticed change with the
increasing incident angular frequency.
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4. Conclusions

An elastic solid with couple-stress can support not only the force-stress but
also the couple-stress. The boundary conditions include not only the displace-
ment vector and the traction vector but also the rotation vector and the moment
vector. The energy partition of various reflection waves is thus more complicated
at the boundary of couple-stress solid than at the boundary of classical elastic
solid. Usually, the free surface (without tractions and moments) and the fixed sur-
face (without displacements and rotations) were taken into consideration in stud-
ies previously presented in the literature. In the present work, a visco-elastically
constrained boundary is considered instead. The pure elastic boundary, the pure
viscous boundary, the free boundary and the fixed boundary can be obtained
from the present constrained boundary model. The amplitude ratios and the
phase shifts of reflection waves are calculated for the pure elastic and pure vis-
cous constrained boundary. Based on the numerical results, some conclusions
can be drawn.

1) Compared with the free boundary, the elastic and viscous constraint
boundaries help in the mode conversion. With an increase of the elastic or vis-
cous constant, the reflection waves with the same type of the incident wave
become weaker, while the reflection waves (except bulk wave or surface wave)
with different types of the incident wave become stronger. In other words, the
increasing elastic or viscous constants have same influences on the amplitude
ratio of reflection waves.

2) The increase of elastic or viscous constant has different influences on the
phase shifts of reflection waves. The phase shifts of reflection waves change in the
way of gradual change when the elastic constants increase gradually. However,
the phase shifts of reflection waves (except the reflection wave with same type of
the incident wave) change in the way of sudden change of 180◦ when the viscous
constants increase gradually. The reflection waves with the same type of the
incident wave change in both ways of gradual change and sudden change when
the viscous constants increase gradually.

3) The increase of elastic stiffness has evident different influences on the
phase shift for incident P-wave and for incident SV-wave. In the case of incident
P-wave, the phase shifts of reflection SV- and SS-waves increase gradually, while
they decrease gradually for reflection P-wave. In the case of incident SV-wave,
the absolute value of the phase shifts of reflection P- and SV-waves increases
first and then decreases gradually with the increasing elastic stiffness. However,
the phase shift of the surface wave decreases monotonously.

4) In the case of incident P-wave, the incident energy mainly concentrates
on the reflection P-wave and the reflection SV-wave. The energy carried by the
surface wave is smaller by one order of amplitude, at least. However, the energy
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carried by the surface wave can be of the same order of amplitude as the reflection
P-wave and SV-wave in the case of incident SV-wave.

5) Due to the dispersive nature of elastic waves in the couple-stress solids, the
energy partition among various reflection waves may change with the change of
incident angular frequency. When the incident angular frequency increases, the
energy flux carried by the incident wave concentrates gradually on the reflec-
tion wave with the same type of incident wave, regardless whether the incident
wave is P-wave or SV-wave and the constrained surface is elastic or viscous. Of
course, the energy fluxes carried by the reflection waves for the viscous bound-
ary are smaller than that for the elastic boundary because the viscous boundary
dissipates a part of incident energy.
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Appendix

The explicit expressions of Dij , ei and fi in Eq. (27) are

D11 = µ(2ξ2 − ω2/c2
2) − icKnα − (1 − c)ηnωα,

D12 = 2µζβ + icKnζ + (1 − c)ηnωζ,

D13 = 2iµγζ + icKnζ + (1 − c)ηnωζ,

D21 = −2µξα − icKτξ − (1 − c)ητωξ,

D22 = µ(2ζ2 − ω2/c2
2) − icKτβ − (1 − c)ητωβ,

D23 = µ(2ζ2 − ω2/c2
2) + cKτγ − i(1 − c)ητωγ, D31 = 0,

D32 = 2iηββ2
1 − 1

2
cKgβ

2
1 +

1

2
i(1 − c)ηgωβ2

1 ,

D33 = 2ηγβ2
2 +

1

2
cKgβ

2
2 − 1

2
i(1 − c)ηgωβ2

2 ,

e1 = −µ(2ξ2 − ω2/c2
2) − icKnα − (1 − c)ηnωα,

e2 = −2µξα + icKτξ + (1 − c)ητωξ, e3 = 0,

f1 = 2µζβ − icKnζ − (1 − c)ηnωζ,

f2 = −µ(2ζ2 − ω2/c2
2) − icKτβ − (1 − c)ητωβ,

f3 = 2iηββ2
1 +

1

2
cKgβ

2
1 − 1

2
i(1 − c)ηgωβ2

1 .
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