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This paper analyzes the frictionless double contact problem of a two-layer
laminate pressed against a homogeneous half-plane substrate by a rigid punch. The
laminate is composed of a homogeneous elastic strip and a functionally graded layer,
perfectly bonded along their interface. The mechanical properties of the graded layer
are modeled by an exponentially varying shear modulus and constant Poisson’s ra-
tio. Both the governing equations and the boundary conditions of the double contact
problem are converted into a pair of singular integral equations by Fourier integral
transforms, which are numerically integrated by Chebyshev–Gauss quadrature. The
contact pressure and the contact size at both the advancing and the receding con-
tact interface are eventually obtained by an iterative algorithm, developed from the
method of steepest descent. Extensive parametric studies suggest that it is possible to
control contact stress and contact size by introducing functionally graded materials
into multilayered elastic structures.
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1. Introduction

The material properties and/or functions of functionally graded materi-
als (FGMs) are typically allowed to vary along one or more dimensions [1]. FGMs
have been invented in the 1980s and have found their applications in materials
science, mechanical engineering, and aerospace engineering, among other scien-
tific and engineering fields. They often act as a transitional medium bridging the
load-bearing elements and the exterior coating of an engineering structure. For
example, in self-lubricating sliding bearings voids are used to store lubricants.
More voids help to better lubricate the sliding surface but typically result in
lower load-bearing capacity. To solve this contradiction, the void concentration
is now designed to continuously change along the radial axis of a bearing. FGMs
can also be directly employed as coatings. In both scenarios, FGMs help to pre-
vent primary components from excessive degradation. Mechanical contact is one



200 J. Yan, C. Mi

of the major factors that are responsible for the damage of FGMs. Suresh et al.

were the first to perform an indentation experiment aiming to measure the con-
tact damages of FGMs resulting from impact loading and surface invasion [2].
A number of mechanical properties can be predicted from the experiments of
this kind. Later, Suresh et al. further concluded that the damage and failure
resistance of a solid surface to both quasistatic and dynamic contact loading can
be substantially improved by using FGMs [3].

In the experimental and theoretical study of contact mechanics involving
FGMs, simple mathematical functions, such as exponential and power law distri-
butions, are typically chosen to represent the spatial gradient of shear modulus.
For most engineering materials, the Poisson’s ratio does not vary much. Guler
and Erdogan revisited the Hertzian contact problem between two deformable
elastic solids with exponentially graded elastic coating [4]. The same authors
also solved the frictional sliding contact problem between a rigid stamp and a
homogeneous substrate with graded coating [5]. Elloumi et al. studied the non-
linear partial slip contact problem of an exponentially graded half-plane indented
by a rigid punch [6]. Following this line of research, Guler et al. have recently
investigated the plane contact problem of an exponentially graded elastic half-
plane in sliding contact with a rigid punch [7].

Contact problems associated with FGMs assuming a power-law distribution
of elastic modulus have also received much attention. In a single study, Gian-
nakopoulos and Pallot tackled the normal, sliding and rolling type of contact of
a rigid cylinder on a graded elastic substrate [8]. The adhesive contact problem
between a rigid sphere and a power-law graded elastic half-space has also been
solved [9].

Both the exponential and power-law model suggest a continuous and suffi-
ciently smooth distribution of elastic modulus. A multilayered model that divides
an FGM layer into several sublayers has been developed to address a possible
demand for less smoother grading of elastic modulus. In this model, the shear
modulus is assumed to vary linearly within each sublayer and is continuous at
every interface among the sublayers [10]. In the framework of the multilayered
model, Ke and Wang solved the frictionless contact problem of an FGM coated
half-plane indented by flat, triangular and cylindrical stamps [11]. Liu et al.

further extended the multilayered model to examining axisymmetric contact
problems [12].

All the literature reviewed above focuses on the advancing and stationary
contact problems. Problems concerning receding contact form another important
branch of contact mechanics [13]. As a simple example, let us consider an air
mattress resting on the floor. Due to gravity, the mattress can be assumed to
be in full contact with the floor. A receding contact occurs after a child jumps
onto the mattress, formed from the shrinking area of contact during the loading
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process. Nowadays, decks of battleships are often coated with FGMs, which help
to prevent the decks from wear and damage due to a high strain rate typically
occurring during taking-off and landing of aircrafts. Receding contact inevitably
occurs in individual laminates in a multilayered deck structure.

Due to the limited area of receding contact, significant stresses develop in
and nearby the contact region, making the material highly susceptible to damage
and failure. Nevertheless, few studies have focused on receding contact problems.
Even less research was devoted to the receding contact of FGMs. El-Borgi et al.
investigated both the frictionless and the frictional receding contact mechanics
between an FGM layer and an elastic substrate [14, 15]. The frictionless version
was shortly generalized to the axisymmetric case by Rhimi et al. [16]. In addition,
Adıyaman considered an FGM layer supported by two homogeneous quarter
planes [17]. These above mentioned studies are all concerned with single receding
contact, since, instead of using an indenter, traction loads are directly applied
onto the other surface of the FGM layer.

By replacing the normal pressure with an axisymmetric rigid stamp, Rhimi
et al. solved the double contact problem of an FGM layer [18]. In the same way,
Yan et al. further explored the double contact problem of an FGM layer pressed
against an elastic substrate of finite thickness by a rigid circular punch [19].
Furthermore, Çömez has recently solved the receding contact problem between
two FGM media, both of finite thickness. In addition to the exponential model
universally used in the receding contact problems stated above, Liu et al. inves-
tigated the axisymmetric receding contact problem of an FGM layer indented
against a homogeneous substrate, by the use of the multilayered model [20].

Previous work on the mechanics of receding contact addressed at most two
layers, i.e., models formed by the combination of two elements out of an elas-
tic strip, an FGM layer, or a half-plane substrate. Multilayered laminates con-
structed by distinct layers perfectly bonded together, however, are one common
component employed in engineering structures [21, 22]. A number of fundamen-
tal issues in the receding contact of these models, particularly in those involving
an FGM element, remain unresolved [23, 24]. As one step to this end, we consider
in this paper a double contact problem composed of three layers: a homogeneous
elastic strip, an FGM layer, and a half-plane substrate. The elastic strip and the
FGM layer are assumed to be perfectly bonded along their interface, neglecting
any possible mismatch strains.

The three-layer system is then loaded by a rigid punch with a convex perime-
ter, resulting in both an advancing contact at the indenter-elastic strip inter-
face and a receding contact between the FGM-substrate interface. We assume
frictionless conditions at both contact interfaces. The distribution of the shear
modulus of the FGM layer is modeled by an exponential function, varying
along its thickness. By employing the method of Fourier integral transforms,
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the equations of equilibrium of the double contact problem are transformed
into a pair of singular integral equations. Extensive numerical calculations are
subsequently performed to illustrate the impact of indentation load, geomet-
ric dimensions and material properties of individual components on the contact
pressure and the contact length at both contact interfaces. Although the numer-
ical experiments were performed with reference to a rigid circular punch, the
proposed mathematical formulation is equally valid for convex punches of other
shapes.

The remainder of this paper is organized as follows. Section 2 outlines the
mathematical formulation of the proposed double contact problem. The main
result of this section is a pair of singular integral equations whose solution algo-
rithm is detailed in Section 3. In Section 4, a variety of numerical experiments
detailing the contact pressure and the contact length at both contact interfaces
are reported and discussed. Finally, in Section 5, conclusions are provided and
future works described.

2. Formulation of the double contact problem

As shown in Fig. 1, let us consider a rigid circular indenter of radius R pressed
against a two-layer composite, which is composed of a homogeneous elastic strip
of thickness h1 and an FGM layer of thickness h2. These two media are perfectly
bonded at their interface and supported as a whole by a homogeneous half-plane
substrate. Both the elastic strip and the half-plane substrate are homogeneous,
characterized by their shear moduli µ1 and µ3, whereas the mechanical property

a
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Fig. 1. Schematic of the double contact problem consisting of an advancing contact between
a rigid circular punch and an elastic strip and a receding contact between a functionally
graded layer and a homogeneous half-plane. The elastic strip and the functionally graded

layer are assumed to be perfectly bonded.
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of the FGM layer is assumed to be position-dependent:

(2.1) µ2(y) = µ1e
−βy, −h2 ≤ y < 0,

where β is an arbitrary nonzero constant. In the absence of body forces, the
elastostatic Navier equations of equilibrium for the three deformable media are
given by

(κ+1)
∂2ul

∂x2
+(κ−1)

∂2ul

∂y2
+2

∂2vl

∂x∂y
= 0,(2.2a)

(κ−1)
∂2vl

∂x2
+(κ+1)

∂2vl

∂y2
+2

∂2ul

∂x∂y
= 0,(2.2b)

(κ+1)
∂2u2

∂x2
+(κ−1)

∂2u2

∂y2
+2

∂2v2

∂x∂y
−β(κ−1)

∂u2

∂y
−β(κ−1)

∂v2

∂x
= 0,(2.2c)

(κ−1)
∂2v2

∂x2
+(κ+1)

∂2v2

∂y2
+2

∂2u2

∂x∂y
−β(3−κ)

∂u2

∂x
−β(κ+1)

∂v2

∂y
= 0,(2.2d)

where the parameter κ is related to Poisson’s ratio ν, i.e., κ = 3 − 4ν for plane
strain and κ = (3 − ν)/(1 + ν) for plane stress. It should be clear that the first
two equations of (2.2a) work for the homogeneous elastic strip and half-plane
substrate (l = 1 or 3). The technique of standard Fourier transform is now
applied to Eqs. (2.2a–d) since we prefer to work in the transformed space. For
the homogeneous elastic strip (0 ≤ y ≤ h1), the transformed displacements and
stresses are given by

ũ1(λ, y) = (C1 + yC2)e
λy + (C3 + yC4)e

−λy,(2.3a)

ṽ1(λ, y) = i

[(

C1 +

(

y − κ

λ

)

C2

)

eλy −
(

C3 +

(

y +
κ

λ

)

C4

)

e−λy

]

;(2.3b)

σ̃yy1(λ, y) = 2µ1i

[(

λC1 −
(

1 + κ

2
− λy

)

C2

)

eλy(2.4a)

+

(

λC3 +

(

1 + κ

2
+ λy

)

C4

)

e−λy

]

,

σ̃xy1(λ, y) = 2µ1

[(

λC1 +

(

1 − κ

2
+ λy

)

C2

)

eλy(2.4b)

−
(

λC3 −
(

1 − κ

2
− λy

)

C4

)

e−λy

]

,

where C1, C2, C3 and C4 are unknown functions of the transformation variable λ,
to be determined from the boundary conditions of the present problem. In a sim-
ilar fashion, the displacements and stresses for the FGM layer (−h2 ≤ y < 0) in
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the Fourier transformed space can be derived as

ũ2(λ, y) =
4
∑

k=1

Ck+4e
mky,(2.5a)

ṽ2(λ, y) =
4
∑

k=1

Ck+4ske
mky;(2.5b)

σ̃yy2(λ, y) =
µ1e

−βy

κ − 1

4
∑

k=1

[−iλ(3 − κ) + (1 + κ)mksk]Ck+4e
mky,(2.6a)

σ̃xy2(λ, y) = µ1e
−βy

4
∑

k=1

[mk − iλsk]Ck+4e
mky,(2.6b)

where

m1(λ) =
1

2

(

β +

√

β2 + 4λ2 − 4iβλ

√

3 − κ

1 + κ

)

,(2.7a)

m2(λ) =
1

2

(

β −

√

β2 + 4λ2 − 4iβλ

√

3 − κ

1 + κ

)

,(2.7b)

m3(λ) = m̄1(λ), m4(λ) = m̄2(λ),(2.7c, d)

(2.8) sk(λ) =
(κ − 1)m2

k − β(κ − 1)mk − λ2(κ + 1)

iλ(2mk − β(κ − 1))
, k = 1, 2, 3, 4,

and C5, C6, C7 and C8 are also unknown functions of λ. They can also be
determined by enforcing the boundary conditions. Due to the semiinfinite nature
of the half-plane substrate (−∞ < y < −h2), it is easy to see

(2.9a, b) u3(x, y) = 0, v3(x, y) = 0, x2 + y2 → ∞.

In view of the above equations (2.9a, b), the displacements and stresses of
the half-plane substrate in the transformed space can be significantly simplified

ũ3(λ, y) = (C9 + C10y)e|λ|y,(2.10a)

ṽ3(λ, y) = i

[

C9
λ

|λ| +

(

λ

|λ|y − κ

λ

)

C10

]

e|λ|y;(2.10b)

σ̃yy3(λ, y) = 2iµ3

[

λC9 +

(

−(1 + κ)λ

2|λ| + λy

)

C10

]

e|λ|y,(2.11a)

σ̃xy3(λ, y) = 2µ3

[

|λ|C9 +

(

1 − κ

2
+ |λ|y

)

C10

]

e|λ|y.(2.11b)
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It is seen that only two unknown functions, i.e., C9 and C10, are required to
determine the elastic fields in the substrate.

For the frictionless contact, the boundary conditions at the indenter-elastic
strip interface (y = h1) are straightforward:

(2.12a, b) σyy1(x, h1) = −p(x)H(a − |x|), σxy1(x, h1) = 0, |x| < ∞,

where H(a − |x|) denotes the Heaviside step function and a is the half contact
length. It should be noted that here we have chosen to formulate the bound-
ary conditions at the advancing contact interface in terms of contact pressure
p(x). Later, this unknown function will be related to the displacement boundary
conditions at the same interface.

Since the elastic strip and the FGM layer are assumed to be perfectly bonded,
both displacements and stresses must be continuous across their interface (y = 0)

σyy1(x, 0) = σyy2(x, 0), σxy1(x, 0) = σxy2(x, 0), |x| < ∞,(2.13a, b)

u1(x, 0) = u2(x, 0), v1(x, 0) = v2(x, 0), |x| < ∞.(2.13c, d)

For the receding contact occurring at the FGM-substrate interface (y = −h2),
the frictionless assumption yields

σyy2(x,−h2) = −q(x)H(b − |x|), σxy2(x,−h2) = 0, |x| < ∞,(2.14a, b)

σyy3(x,−h2) = −q(x)H(b − |x|), σxy3(x,−h2) = 0, |x| < ∞,(2.14c, d)

where q(x) is the contact pressure and b is the half contact length.
Alternatively, the normal component of the traction boundary conditions at

both the advancing and the receding contact interface can be expressed in terms
of displacements:

∂v1(x, h1)

∂x
= f(x), |x| < a,(2.15a)

∂v2(x,−h2)

∂x
=

∂v3(x,−h2)

∂x
, |x| < b,(2.15b)

where f(x) stands for the slope of the stamp profile. To eliminate possible rigid
body displacements, these two equations were deliberately formulated with re-
spect to the slopes of both contact interfaces. Furthermoe, it is worth noting that
at both the advancing and the receding contact interface integration of contact
pressure must balance the indentation load (P ) applied to the rigid stamp

(2.16a, b)

a
∫

−a

p(t)dt = P,

b
∫

−b

q(t)dt = P.
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The above three groups of boundary conditions (2.12a, b; 2.13a–d; 2.14a–d)
provide ten equations to evaluate the ten unknown functions Ck(λ), k = 1, . . . , 10,
in terms of contact pressures and half contact lengths. This process is accom-
plished by substituting the displacements and stresses in the transformed space,
i.e. Eqs. (2.3a, b; 2.4a, b; 2.5a, b; 2.6a, b; 2.11a, b), into the Fourier transforms of
the boundary conditions

Ck = (−1)k

(

D1k

D
P̃ +

D7k

D
Q̃

)

, k = 1, . . . , 8,(2.17a)

C9 =
(2|λ|h2 − 1 + κ)µ1e

(|λ|+β)h2

4iλµ3(κ − 1)
Q̃, C10 =

|λ|µ1e
(|λ|+β)h2

2iλµ3(κ − 1)
Q̃,(2.17b, c)

where

(2.18a,b) P̃ (λ) =
1

2πµ1

a
∫

−a

p(t)eitλdt, Q̃(λ) =
κ − 1

2πµ1eβh2

b
∫

−b

q(t)eitλdt,

and Djk denotes the determinant of a 7 × 7 matrix obtained by eliminating the
jth row and kth column of an 8 × 8 square matrix D. The expression for this
matrix is detailed in the Appendix. It is noted that the pressure functions (p(x)
and q(x)) and the half contact lengths (a and b) are still unknowns that must
be eventually determined from Eqs. (2.15a, b) and (2.16a, b). Substituting Eqs.
(2.17a–c) back into the vertical displacement components (2.3b), (2.5b), and
(2.10b), and subsequently implementing the displacement boundary conditions
(2.15a, b), we arrive at a pair of singular integral equations

1

πµ1

a
∫

−a

k1(x, t)p(t)dt +
κ − 1

πµ1eβh2

b
∫

−b

k2(x, t)q(t)dt = f(x), |x| ≤ a,(2.19a)

a
∫

−a

k3(x, t)p(t)dt +
κ − 1

eβh2

b
∫

−b

k4(x, t)q(t)dt = 0, |x| ≤ b,(2.19b)

where

k1(x, t) =

∞
∫

0

A(λ) sin[λ(t − x)]dλ,(2.20a)

k2 =

∫ +∞

0
i

[(

−λ
D71

D
+ (λh1 − κ)

D72

D

)

eλh1(2.20b)

−
(

−λ
D73

D
+ (λh1 + κ)

D74

D

)

e−λh1 ] sin[λ(t − x)

]

dλ,
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k3 =

+∞
∫

0

λ

[ 4
∑

k=1

(−1)k D1k+4

D
ske

−mkh2

]

sin[λ(t − x)]dλ,(2.20c)

k4(x, t) =

∞
∫

0

B(λ) sin[λ(t − x)]dλ,(2.20d)

in which

A(λ) = i

(

−λ
D11

D
+ (λh1 − κ)

D12

D

)

eλh1(2.21a)

− i(−λ
D13

D
+ (λh1 + κ)

D14

D
)e−λh1 ,

B(λ) = λ

[ 4
∑

k=1

(−1)k D7k+4

D
ske

−mkh2

]

+
µ1(1 + κ)eβh2

4µ3(κ − 1)
.(2.21b)

Asymptotic analysis helps to greatly simplify Eqs. (2.21a, b) [25]

(2.22a, b) A(λ) = a0 + O
(

1

λ

)

, B(λ) = b0 + O
(

1

λ

)

,

where

(2.23a, b) a0 = −1 + κ

4
, b0 =

(1 + κ)(eβh2µ1 + µ3)

4µ3(κ − 1)
.

By the use of these results, Eqs. (2.19a, b) now become

a
∫

−a

[

1

t−x
+k5(x, t)

]

p(t)dt+
κ−1

a0eβh2

b
∫

−b

k2(x, t)q(t)dt =
πµ1

a0
f(x), |x| ≤ a,(2.24a)

eβh2

b0(κ−1)

a
∫

−a

k3(x, t)p(t)dt+

b
∫

−b

[

1

t−x
+k6(x, t)

]

q(t)dt = 0, |x| ≤ b,(2.24b)

where

k5(x, t) =

∞
∫

0

[

A(λ)

a0
− 1

]

sin[λ(t − x)]dλ,(2.25a)

k6(x, t) =

∞
∫

0

[

B(λ)

b0
− 1

]

sin[λ(t − x)]dλ.(2.25b)
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3. Solution to dual singular integral equations

In this section, we aim to develop an efficient and robust algorithm to numer-
ically tackle the fundamental unknowns of the present double contact problem,
i.e., p(x), q(x), a, and b. To this end, let us first define a few dimensionless
variables

r1 =
x

a
, r2 =

x

b
, s1 =

t

a
, s2 =

t

b
,(3.1a–d)

p1(s1) =
p(t)

P/h1
, q1(s2) =

q(t)

p/h1
,(3.1e, f)

k2(x, t) = K2(r1, s2), k3(x, t) = K3(r2, s1),(3.1g, h)

k5(x, t) = K5(r1, s1), k6(x, t) = K6(r2, s2).(3.1j, k)

The dual singular integral equations (2.24a, b) and the force equilibrium con-
ditions (2.16a, b) can therefore be nondimensionalized:

1
∫

−1

[

1

s1 − r1
+ aK5(r1, s1)

]

p1(s1)ds1(3.2a)

+
b(κ − 1)

a0eβh2

1
∫

−1

K2(r1, s2)q1(s2)ds2 =
πµ1

a0P/.h1
f(r1), |r1| ≤ 1,

aeβh2

b0(κ − 1)

1
∫

−1

K3(r2, s1)p1(s1)ds1(3.2b)

+

1
∫

−1

[

1

s2 − r2
+ bK6(r2, s2)

]

q1(s2)ds2 = 0, |r2| ≤ 1,

a

h1

1
∫

−1

p1(s1)ds1 = 1,
b

h1

1
∫

−1

q1(s2)ds2 = 1.(3.2c, d)

Given the fact that all four dimensionless independent variables, i.e., r1, r2, s1,
and s2 share the same closed interval [−1, 1], their subscripts can be safely
dropped. One of the quadrature rules applicable to Eqs. (3.2a–d) is Chebyshev–
Gauss formula [26, 27]. Consequently, an N-point quadrature rule discretizes
Eqs. (3.2a–d) to

N
∑

k=1

1 − s2
k

N + 1

{[

1

sk − rj
+ aK5(rj , sk)

]

P (sk)(3.3a)

+
b(κ − 1)

a0eβh2

K2(rj , sk)Q(sk)

}

=
µ1

a0P/h1
f(rj),
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N
∑

k=1

1 − s2
k

N + 1

{

aeβh2

b0(κ − 1)
K3(rj , sk)P (sk)(3.3b)

+

[

1

sk − rj
+ bK6(rj , sk)

]

Q(sk)

}

= 0,

πa

h1

N
∑

k=1

1 − s2
k

N + 1
P (sk) = 1,

πb

h1

N
∑

k=1

1 − s2
k

N + 1
Q(sk) = 1,(3.3c, d)

where

sk = cos

(

kπ

N + 1

)

, k = 1, . . . , N,(3.4a)

rj = cos

(

π

2

2j − 1

N + 1

)

, j = 1, . . . , N + 1,(3.4b)

P (s) = p1(s)(1 − s2)−1/2,(3.4c)

Q(s) = q1(s)(1 − s2)−1/2, |s| ≤ 1.(3.4d)

Without loss of generality, we may choose N as an even number. In this
case, Eqs. (3.3a,b) are automatically satisfied for j = N/2 + 1 [26]. As a result,
Eqs. (3.3a–d) render us a total number of 2N + 2 algebraic equations for the
same number of unknowns, i.e., P (sk), Q(sk), a and b. This system of equations
is simply linear for P (sk) and Q(sk), but highly nonlinear for the half contact
lengths a and b. A numerical algorithm for the calculation of these unknown
functions can be summarized as follows.

1. Make initial guesses at the half contact lengths a and b.
2. Calculate functions P (sk) and Q(sk), by Eqs. (3.3a, b).
3. Evaluate the residual errors of Eqs. (3.3c, d). If both residuals are found

to be less than a predefined degree of tolerance, e.g. 10−5, the calculation
can be satisfactorily terminated. Otherwise, guesses of a and b must be
updated by following the method of steepest descent (the Newton downhill
method) [28].

4. Results and discussion

While the solution strategy developed in the previous sections is valid for
arbitrary rigid punches of convex profiles, in this section we discuss parametric
studies due to a rigid circular punch of radius R. The slope function of such
a simple punch is given by

(4.1) f(x) = x(R2 − x2)−1/.2, |x| ≤ a.
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To calibrate the accuracy and robustness of the developed algorithm, we first
tested a simplified version of the model shown in Fig. 1 by assigning h2 = 0. In
this case, the original geometry degenerates to an elastic layer pressed against
a homogeneous half-plane by a rigid circular punch. Table 1 compares the half
lengths at both the advancing and the receding contact interface obtained in
the present study with those presented in Kahya et al. [29], for several combi-
nations of stamp size and indentation load. To make these results comparable,
all parameters and variables were nondimensionalized. Although marginal, the
improved residual errors of Eqs. (3.3c, d) clearly demonstrate the accuracy of the
developed algorithm.

Table 1. Comparison of the half contact lengths obtained in the present study
with those reported in the literature [29] for a few combinations of stamp radius
and indentation load. Also tabulated in the table are the residual errors of the

forces transmitted across both the advancing (Eadv) and the receding (Erec)
contact interface, cf. Eqs. (3.3c, d).

a/h1 Eadv b/h1 ErecR/h1 µ1h1/P
Present Kahya Present Kahya Present Kahya Present Kahya

10 500 0.0979 0.0979 3.48E-08 5.85E-05 1.3271 1.3300 9.78E-06 9.60E-05

1000 0.0692 0.0692 9.89E-06 1.87E-05 1.3248 1.3250 8.46E-06 1.87E-05

2000 0.0489 0.0489 2.93E-06 7.81E-05 1.3298 1.3300 9.98E-06 9.13E-05

500 500 0.7422 0.7426 1.56E-06 5.75E-05 1.5028 1.5026 9.88E-06 1.08E-05

1000 0.5110 0.5111 9.54E-06 9.06E-05 1.3980 1.3980 5.62E-06 7.79E-05

2000 0.3542 0.3543 9.52E-06 9.42E-05 1.3557 1.3557 4.06E-06 6.54E-05

Table 2. Variation of the half contact lengths at both the advancing and the
receding contact interface as functions of normalized stamp radius, indentation

force, and FGM layer stiffness for the simplified model shown in Fig. 2.

βh2 = −1 βh2 = 0.001 βh2 = 1
R/h2 µ3h2/P

a/h2 b/h2 a/h2 b/h2 a/h2 b/h2

10 100 0.2444 1.1650 0.2208 1.3328 0.2041 1.5844

500 0.1028 1.1478 0.0979 1.3300 0.0940 1.5820

1000 0.0716 1.1422 0.0692 1.3248 0.0671 1.5774

250 100 1.4186 1.7669 1.2171 1.7621 1.0628 1.8713

500 0.6029 1.2746 0.5106 1.4198 0.4480 1.6402

1000 0.4080 1.2040 0.3542 1.3543 0.3178 1.6048

500 100 1.9834 2.2332 1.7418 2.1596 1.5560 2.2334

500 0.8815 1.4190 0.7424 1.5020 0.6419 1.6825

1000 0.6029 1.2747 0.5110 1.3978 0.4479 1.3554
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As an alternative to the simplified model studied in [29], we further consid-
ered the degenerated case of the receding contact problem between an FGM layer
and a half-plane substrate, as sketched in Fig. 2. In this model, the elastic strip
was simply removed (h1 = 0). The effects of stamp radius, thickness of the FGM
layer, and substrate stiffness on the half contact lengths at both the advancing
and the receding contact interface are numerically investigated, for three types
of FGM models. Table 2 tabulates the contact sizes at both the stamp-FGM and
FGM-substrate interface for 27 combinations of the above mentioned governing
parameters. It can be seen that larger stamps always lead to higher values of
contact lengths at both interfaces. For punches with the same size, larger inden-
tation forces result in more intensive contact among three components of the
structure. Both observations are universally true, irrespective of the stiffness of
the FGM layer.

a
- a RP y

xF G MH a l f & p l a n eb
- b2h

Fig. 2. A functionally graded layer pressed against an elastic half-plane by a rigid circular
stamp. This setting represents a simplified model in comparision to the one shown in Fig. 1.

In the remainder of this section, we aim to numerically investigate the contact
pressure and the contact size at both interfaces for the full model shown in Fig. 1.
Figs. 3 and 4 present the distributions of the advancing and the receding contact
pressure for three values of the FGM layer stiffness, respectively. To concentrate
on the influence of the FGM layer stiffness, the remaining parameters are all
chosen as constants, i.e. h1 = h2, µ1 = µ3, µ1h1/P = 500 and R/h1 = 1000.
At both contact interfaces, it is evident that the maximum contact pressure and
the contact length are negatively correlated. In addition, both pressure distribu-
tions conform according to our intuition. Under the application of a concentrated
load, distributions of both contact pressures are symmetric about the vertical
axis passing through the center of the circular stamp. At either of the contact
interfaces, the maximum pressure is identified at the center of stamp tip.

As explained by Eq. (2.1), a positive βh2 represents a hard FGM layer
whereas a negative βh2 stands for a soft one. The special case of a homoge-
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Fig. 3. Distribution of the advancing contact pressure p(x) along the stamp-elastic strip
interface. The adjustable parameters are set to: h1 = h2, µ1 = µ3, µ1h1/P = 500 and

R/h1 = 1000.
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Fig. 4. Distribution of the receding contact pressure q(x) along the FGM-substrate
interface. The adjustable parameters assume the same values as their counterparts used to

produce Fig. 3.

neous elastic strip can reasonably be approximated by assigning the FGM layer
stiffness βh2 = 0.001. This setting, again, degenerates to the simplified model of
an elastic layer of thickness h1 + h2 indented against a half-plane substrate by
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Fig. 5. Variation of the half contact length at the advancing contact interface as a function
of the FGM layer stiffness. The adjustable parameters are chosen as: h1 = h2, µ1 = µ3 and

µ1h1/P = 500.
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Fig. 6. Variation of the half contact length at the receding contact interface as a function of
the FGM layer stiffness. The adjustable parameters assume the same values as their

counterparts used to produce Fig. 5.

a rigid punch. Such a neutral FGM layer provides us with a basis for compar-
ison. It is found that the maximum contact pressure at the advancing contact
interface is always larger than that at the receding contact interface, regardless
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Fig. 7. Variation of the half contact length at the advancing contact interface as a function
of the shear moduli ratio µ3/µ1. The adjustable parameters are choosen as: h1/h2,

R/h1 = 500 and µ1h1/P = 500.
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Fig. 8. Variation of the half contact length at the receding contact interface as a function of
the shear moduli ratio µ3/µ1. The adjustable parameters assume the same values as their

counterparts used to produce Fig. 7.

of the FGM layer stiffness. On the contrary, longer contact length can always
be found at the FGM-substrate interface, for all three values of the FMG layer
stiffness.
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Our next task is to explore the effects of the FGM layer stiffness on the
contact length at both contact interfaces, as shown in Figs. 5 and 6. Three
indenters of different sizes are considered. Both the contact size and the indenter
radius are normalized with reference to the thickness of the elastic strip. While
the FGM layer stiffness is allowed to vary, the values of other parameters are set
to h2 = h1, µ1 = µ3 and µ1h1/P = 500. As can be seen from Figs. 5 and 6, both
contact lengths are increasing functions of the indenter radius, for all FGM layer
stiffness considered in the numerical calculation (−3 ≤ βh2 ≤ 1). This seems to
be consistent with common sense.

Nonetheless, the ‘story’ is quite different for the functional dependence of the
contact size on the FGM layer stiffness. At the advancing contact interface, the
half contact length a monotonically decreases with the FGM layer stiffness. For
the receding contact, a point of inflection is introduced, irrespective of the rigid
punch size. The specific value of the FGM layer stiffness at which the receding
contact size takes the minimum depends on the indenter radius. Large indenters
tend to result in high values of the critical FGM layer stiffness. Let us recall that
a universal law states that the contact size is inversely proportional to the max-
imum contact pressure. Consequently, if the receding contact pressure is of the
primary concern in engineering practice, the critical FGM layer stiffness should
be avoided. More generally, this observation provides a means of optimizing the
FGM layer stiffness and indenter radius.

Figs. 7 and 8 show the variation of the half contact length at both contact
interfaces as functions of the shear moduli ratio µ3/µ1. Three types of FGM
layer were considered in the calculation, including negative (βh2 = −1), nearly
zero (βh2 = 0.001) and positive (βh2 = 1) FGM layer stiffness. The remaining
governing parameters are chosen as h1 = h2, R/h1 = 500 and µ1h1/P = 500. It
is observed that the half contact lengths at both contact interfaces are decreasing
functions of the shear moduli ratio between the substrate and the elastic strip.
In other words, a hard substrate always leads to small contact size and thus high
maximum contact pressure at both interfaces. Therefore, the contact stresses
at both the advancing and the receding contact interface can be controlled to
a certain extent by the use of a reasonably soft substrate.

The impact of the thickness ratio between the FGM layer and the elastic
strip h2/h1 on the nondimensionalized half contact lengths is shown in Figs. 9
and 10. Three types of FGM layer with distinct stiffness were calculated for both
contact interfaces, while the other parameters are fixed as constants, i.e. µ1 = µ3,
R/h1 = 500 and µ1h1/P = 500. The advancing and the receding contact lengths
are in general a decreasing and increasing function of the thickness ratio, re-
spectively. Particularly, the half contact length at the receding contact interface
behaves nearly a linear function of the thickness ratio, for small thickness ra-
tios (h2/h1). The half contact length at the advancing contact interface, on the
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Fig. 9. Variation of the half contact length at the advancing contact interface as a function
of the thickness ratio h2/h1. The adjustable parameters are chosen as: µ1 = µ3, R/h1 = 500

and µ1h1/P = 500.
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Fig. 10. Variation of the half contact length at the receding contact interface as a function
of the thickness ratio h2/h1. The adjustable parameters assume the same values as their

counterparts used to produce Fig. 9.

other hand, shows strong nonlinearity. As can be inferred from the inverse pro-
portionality between contact pressure and contact size, the greater the thickness
ratio h2/h1 is the higher (lower) the maximum contact pressure develops at the
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Fig. 11. Distribution of the advancing contact pressure p(x) along the stamp-elastic strip
interface. The adjustable parameters are set to: βh2 = −1, h1 = h2, µ1 = µ3 and R/h1 = 500.
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Fig. 12. Distribution of the receding contact pressure q(x) along the FGM-substrate
interface. The adjustable parameters assume the same values as their counterparts used to

produce Fig. 11.

advancing (receding) contact interface. For the limiting case of a very thin FGM
layer (h2 → 0), the contact pressure and the contact length at both interfaces
converge to the degenerated case of a single elastic strip, cf. Table 1.
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The last numerical experiment we performed aims to investigate the signifi-
cance of the indentation load. Figs. 11 and 12 illustrate the distributions of the
normalized advancing and receding contact stress. Three levels of normalized
indentation forces are considered. In the meantime, the other governing param-
eters, such as the stiffness distribution of all deformable media, the thickness
ratio of the elastic strip to the FGM layer, and the indenter radius, are all kept
constant. It is observed that the magnitude of the indentation load serves as
the most important factor in the determination of the results. Unlike the other
factors, the qualitative effects of the indentation load on the contact pressure
and contact size are identical. High indentation loads result in both high contact
pressure and large contact size, at both the advancing and the receding contact
interface. In Figs. 11 and 12, this conclusion is reflected by the fact that no
intersections were found among the three curves of either plot.

5. Concluding remarks

In this paper, we successfully developed a semianalytical solution to the fric-
tionless double contact problem of a double-layered laminate, pressed against
a homogeneous elastic substrate by a rigid punch. The punch can be of any
shape with a convex profile. The laminate is composed of a homogeneous elastic
strip and an FGM layer, perfectly bonded along their interface. By the use of
the method of Fourier transform, the elastostatic Navier equations of equilib-
rium were transformed into a pair of singular integral equations, formulated in
terms of the contact pressure and the contact size at both the advancing and
the receding contact interface. The dual singular integral equations were then
numerically tackled by Chebyshev–Gauss quadrature. On the basis of extensive
parametric studies involving the indentation load, the indenter radius, the thick-
ness of both the elastic strip and the FGM layer, and the stiffness distribution
of all deformable media, a few observations and conclusions regarding contact
pressure and contact size can be drawn as follows.

First, under the application of a constant indentation force, the maximum
contact pressure behaves as a decreasing function of the contact length, at both
the advancing and the receding contact interface. Second, large indenters and
indentation loads tend to increase the half contact length at both contact in-
terfaces. By contrast, high maximum pressure resulted from small indenters and
high indentation forces. Furthermore, soft and thin FGM layers can effectively re-
duce the advancing contact pressure. When low contact stress is preferred at the
receding contact interface, a hard and thick FGM layer should be considered. Fi-
nally, soft substrates result in large receding and small advancing contact length.

In light of these findings, we believe that it is possible to optimize contact
pressure and contact size by introducing FGM components into multilayered
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elastic structures. Future work could entail extending our model to an FGM
layer applied to other sites of a multilayered elastic composite.
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Appendix: Expression for the matrix D first appeared in Eq. (2.17)

D =

∣

∣

∣

∣

D′ O
O D′′

∣

∣

∣

∣

,

where O denotes a 2 × 4 zero matrix and
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,

with

∆k = −iλ(3 − κ) + (1 + κ)mksk, Λk = mk − iλsk, k = 1, 2, 3, 4.
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