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Exact solution to structural instability of a parallel array
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X. WANG, L. LIU

School of Mechanical and Power Engineering

East China University of Science and Technology

130 Meilong Road

Shanghai 200237, China

e-mail: xuwang@ecust.edu.cn

By means of the theory of elasticity, we investigate the structural instability
of a parallel array of identical simply-supported plates. One plate interacts with the
neighboring plates through surface attractive forces. The proposed method is based
on the 2 × 2 transfer matrix for a plate and on the solution of the generalized eigen-
value problem for the plate array. Analytical expressions of the critical interaction
coefficients for two, three and four interacting plates are obtained when the end-effect
of the plates at the ends of the parallel array and the surface energy of the plates are
ignored. The influence of the end-effect and surface energy on the critical interaction
coefficient is also numerically studied. Our solution is valid whether the plates are
thin or extremely thick.
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1. Introduction

Structural instability of a parallel array of microbeams or micro-
plates due to surface attractive forces, such as van der Waals force, electro-
static force, capillary force or Casimir force, has become an intensive research
topic in microelectrical mechanical systems (MEMS) in the last decade [1–6]. In
the structural instability analysis of interacting microbeams or microplates, the
majority of previous investigations have adopted the simplified Euler–Bernoulli
beam bending model.

In this work, we endeavor to employ the rigorous elasticity theory to carry
out a linear perturbation analysis of the structural instability of an arbitrary
number of mutually attracting simply-supported identical plates under plane
strain deformations. Based on the general solution by He and Jiang [7], the
2 × 2 transfer matrix for a plate can be finally derived by considering the fact
that the shear stress on the two surfaces of the plate is zero. Consequently, a gen-
eralized eigenvalue problem for N interacting plates can be obtained. When the
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surface energy of the plates is absent, the eigenvalue is just the normalized in-
teraction coefficient and the eigenvector is composed of the normal displacement
and the normal traction on the upper surfaces of the N plates. The critical in-
teraction coefficient is then determined by the smallest of the (N − 1) positive
and nonzero eigenvalues. The critical interaction coefficient for any number of
mutually attracting plates without or with the end-effect is determined. Finally,
the influence of surface energy of the plates on the structural instability is dis-
cussed.

2. Analysis

As shown in Fig. 1, we consider the plane strain deformations of a parallel
array of N equally spaced and mutually interacting identical plates with equal
shear modulus µ, Poisson’s ratio ν, length L and thickness h. The plates are
simply-supported at x1 = 0 and x1 = L, and they are numbered sequentially
from 1 for the bottom plate to N for the top plate. Let σ11, σ22, σ12 be the
stresses and u1, u2 be the displacements. If the end-effect of the plates at the
ends of the parallel array and the surface energy of the plates are ignored [1],
the perturbed normal displacement and normal traction on the lower surface of
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Fig. 1. A parallel array of N equally spaced and mutually interacting identical
simply-supported plates.
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plate j are related to those on the upper surface of plate j − 1 through

(2.1) σ
L(j)
22 = σ

U(j−1)
22 = Y (u

U(j−1)
2 − u

L(j)
2 ),

where the superscripts L and U are used to distinguish the quantities on the lower
and upper surfaces, the superscripts (j) and (j − 1) refer to plate j and plate
j−1, Y (> 0) is the interaction coefficient that is determined by the first-order
derivative of the surface attractive forces (van der Waals force, electrostatic force,
capillary force or Casimir force) with respect to the relative normal displacement
between the two surfaces [1]. For example, if the attractive stress between two
parallel flat surfaces is described by F = c/dn, where c is a coefficient and d is
the distance between two flat surfaces and n is an integer index, and the end-
effect is ignored, the interaction coefficient is simply Y = nc/dn+1

0 > 0 with
d0 being the initial separation between the two surfaces (see Fig. 1). It is seen
from Eq. (2.1) that the interaction between the two surfaces acts as a uniformly
distributed linear spring with negative spring constant, and is the driving force
for structural instability.

According to He and Jiang [7], the perturbed displacements and tractions
in a simply-supported plate are given by

u1 = [eαx2(C1 + x2C2) + e−αx2(C3 + x2C4)] cos αx1,

u2 =

{

eαx2

[

C1 +

(

x2 −
3 − 4ν

α

)

C2

]

− e−αx2

[

C3 +

(

x2 +
3 − 4ν

α

)

C4

]}

sinαx1,

(2.2)

σ12 = 2µ{eαx2 [αC1 + (αx2 − 1 + 2ν)C2]

− e−αx2 [αC3 + (αx2 + 1 − 2ν)C4]} cos αx1,

σ22 = 2µ{eαx2 [αC1 + (αx2 − 2 + 2ν)C2]

+ e−αx2 [αC3 + (αx2 + 2 − 2ν)C4]} sinαx1,

(2.3)

where C1, C2, C3, C4 are four constants to be determined, and

(2.4) α =
nπ

L
, n = 1, 2, . . . .

For a certain plate, the displacements and tractions on its lower surface can
be expressed in terms of those on its upper surface as follows [8]:

(2.5)

[

uL
1 uL

2

σL
12

2αµ

σL
22

2αµ

]T

= Q(β, ν)

[

uU
1 uU

2

σU
12

2αµ

σU
22

2αµ

]T

,
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where β = αh, and

Q(β, ν) = cosh(β)









I − β

2(1 − ν)









0 −1 1 0
1 0 0 −1
1 0 0 −1
0 −1 1 0

















(2.6)

− sinh(β)

2(1 − ν)









−β −(1 − 2ν) 3 − 4ν β
−(1 − 2ν) β −β 3 − 4ν

1 β −β 1 − 2ν
−β 1 1 − 2ν β









.

Remark. The factors sinαx1 and cos αx1 in the displacements and tractions
have been discarded in Eq. (2.5).

In view of the fact that the shear stress on the two surfaces of the plate is
zero, we can further deduce from Eq. (2.5) that

(2.7)

[

uL
2

σL
22(1 − ν)

αµ

]T

= R(β)

[

uU
2

σU
22(1 − ν)

αµ

]T

,

where R(β) is a 2 × 2 transfer matrix defined by

(2.8) R(β) =
1

2[β cosh(β) + sinh(β)]

[

2β + sinh(2β) 1 − cosh(2β)
1 + 2β2 − cosh(2β) 2β + sinh(2β)

]

.

It is seen from Eq. (2.7) that the normal displacement and normal traction on
the lower surface of the plate are related to those on its upper surface through the
transfer matrix R(β), which is independent of the shear modulus and Poisson’s
ratio of the plates and is only dependent on the thickness parameter β. For
a parallel array composed of N interacting plates, the following set of equations
can then be expediently arrived at:

(2.9)
xU

j−1 − R(β)xU
j =

β

λ

[

0 1
0 0

]

xU
j−1, j = 2, 3, . . . , N,

[

0 1
]

R(β)xU
1 = 0,

[

0 1
]

xU
N = 0,

where

(2.10)

λ =
Y h(1 − ν)

µ
,

xU
j =

[

u
U(j)
2

σ
U(j)
22 (1 − ν)

αµ

]T

.
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Equation (2.9) is equivalent to the following generalized eigenvalue problem:

(2.11) Av = λBv,

where A and B are 2N × 2N matrices, λ is the eigenvalue and v defined below
is the associated eigenvector

(2.12) v =











xU
1

xU
2
...

xU
N











.

It is seen that the eigenvalue defined by Eq. (2.10)1 is just the normalized inter-
action coefficient, while the 2N -dimensional eigenvector defined by Eq. (2.12) is
composed of the normal displacement and normal traction on the upper surfaces
of the N plates. There are in total 2N eigenvalues of Eq. (2.11). Apparently,
the values of all these eigenvalues are independent of the elastic property of the
plates. Among these eigenvalues, (N − 1) eigenvalues are positive and the rest
(N + 1) eigenvalues are zero in view of the fact that the rank of A is (N − 1)
while that of B is 2N . The critical interaction coefficient Y = Yc is determined
by the smallest of the (N − 1) positive and nonzero eigenvalues at β = πh/L.
The reason for this is the fact that the critical interaction coefficient is the low-
est interaction coefficient at the discrete values of α given by Eq. (2.4) and the
fact that the smallest positive and nonzero eigenvalue is always an increasing
function of β.

3. Discussions

3.1. N = 2

First, we consider two interacting plates (N = 2). In this case, the critical
interaction coefficient is

(3.1)
Ych

µ
=

βc[cosh(2βc) − 1 − 2β2
c ]

2(1 − ν)[2βc + sinh(2βc)]
,

where

(3.2) βc = αch =
πh

L
.

The critical interaction coefficient is just half of that for a plate interacting
with a rigid body (or rigid plate).
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When βc → 0 for thin plates, Eq. (3.1) becomes

(3.3)
Ych

µ
∼= β4

c

12(1 − ν)
+ O(β6

c ),

or equivalently

(3.4) Yc =
E∗π4h3

24L4
,

where E∗ is the plane strain elastic modulus, E/(1 − ν2) with E being the Young
modulus. Let us remember that the Euler–Bernoulli beam model adopted by Zhu
et al. [1] is valid for plane stress. When considering a beam with width b under
plane stress condition, Eq. (3.4) becomes

(3.5) Ycb =
E( 1

12bh3)π4

2L4
,

which is just the result presented by Zhu et al. [1].
When βc → ∞ for extremely thick plates, Eq. (3.1) becomes

(3.6)
Ych

µ
∼= βc

2(1 − ν)
+ O(β−1

c ).

If a simply-supported plate with shear modulus µ1, Poisson’s ratio ν1, length
L and thickness h1 interacts with another simply-supported plate with shear
modulus µ2, Poisson’s ratio ν2, length L and thickness h2, the critical interaction
coefficient can be derived as

(3.7)
Ych1

µ1
=

β1

(1−ν1)[sinh(2β1)+2β1]
cosh(2β1)−1−2β2

1

+ µ1

µ2

(1−ν2)[sinh(2β2)+2β2]
cosh(2β2)−1−2β2

2

,

where β1 = πh1/L and β2 = πh2/L. When the two plates are identical, Eq.
(3.7) reduces to Eq. (3.1). When µ2 → ∞, Eq. (3.7) reduces to that of a plate
interacting with a rigid body.

3.2. N = 3

Next, we consider three interacting plates. In this case, the critical interaction
coefficient can be analytically given by

(3.8)
Ych

µ
=

βc[cosh(2βc)−1−2β2
c ][2βc+sinh(2βc)−

√

β2
c +βc sinh(2βc)+(1+β2

c ) sinh2(βc)]

(1−ν)[7β2
c +6βc sinh(2βc)−(1+β2

c ) cosh(2βc)+cosh(4βc)]
,

where βc is given by Eq. (3.2).
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When βc → 0 for thin plates, Eq. (3.8) becomes

(3.9)
Ych

µ
∼= β4

c

18(1 − ν)
+ O(β6

c ).

When βc → ∞ for extremely thick plates, Eq. (3.8) becomes

(3.10)
Ych

µ
∼= βc

2(1 − ν)
+ O(β−1

c ).

3.3. N = 4

We now consider four interacting plates. In this case, we have to solve a cu-
bic equation. It is found that a root of the cubic equation is just the critical
interaction coefficient in Eq. (3.1) for N=2. As a result, the critical interaction
coefficient for N=4 can still be analytically determined as

(3.11)
Ych

µ
=

βc[cosh(2βc)−1−2β2
c ][2βc+sinh(2βc)−

√

β2
c−1+2βc sinh(2βc)+(1+β2

c ) cosh(2βc)]

2(1−ν)[3β2
c +2βc sinh(2βc)−(1+β2

c ) cosh(2βc)+cosh2(2βc)]
,

where βc is also given by Eq. (3.2).
When βc → 0 for thin plates, Eq. (3.11) becomes

(3.12)
Ych

µ
∼= (2 −

√
2)β4

c

12(1 − ν)
+ O(β6

c ).

When βc → ∞ for extremely thick plates, Eq. (3.11) becomes

(3.13)
Ych

µ
∼= βc

2(1 − ν)
+ O(β−1

c ).

3.4. N > 4

When N > 4, the generalized eigenvalue problem in Eq. (2.11) has to be
numerically solved. We illustrate in Fig. 2 the normalized critical interaction
coefficient Ych(1 − ν)/µ as a function of βc = πh/L for different values of N .
N = 1 is for the case of a single plate interacting with a rigid body. It is seen
from Fig. 2 that Ych(1 − ν)/µ is an increasing function of βc and a decreasing
function of N . When βc → ∞ for extremely thick plates, Ych(1 − ν)/µ for N=1
approaches βc while those for N = 2, . . . ,∞ approach the same value βc/2. To
see more clearly the influence of N on the critical interaction coefficient, we list
in Table 1 Ych(1 − ν)/µ for different values of N when h/L = 1.
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Fig. 2. The normalized critical interaction coefficient Ych(1 − ν)/µ as a function of
βc = πh/L for different values of N .
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Fig. 3. The critical interaction coefficient for different values of N when βc → 0.

It is seen from the above table that the critical interaction coefficient for
N = 100 has become extremely close to that for N = ∞.

In order to numerically validate the correctness of the present solution, we
present in Fig. 3 the critical interaction coefficient for different values of N
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Table 1. Ych(1 − ν)/µ for different values of N when h/L = 1.

N Ych(1 − ν)/µ

1 2.831816
2 1.415908
4 1.134956

10 1.062239
20 1.052117
50 1.049295

100 1.048892
150 1.048818
200 1.048792
∞ 1.048759

when βc → 0. Apparently, the present results for thin plates just recover those
presented by Zhu et al. [1] by using the Euler–Bernoulli beam bending model.
Roughly speaking, the relative errors between the results using the beam model
and those using the rigorous theory of elasticity are less than 10% when
h/L < 0.2. The errors caused by using the beam model are unacceptable when
h/L > 0.5. In this case, we have to resort to the present solution based on the
theory of elasticity.

3.5. The end-effect

In the above analysis and discussions, the end-effect of the plates at the
ends of the parallel array is ignored by assuming that the equilibrium defor-
mations of all the plates are negligibly small [1]. The end-effect can be roughly
taken into account by replacing the interaction coefficient Y in Eq. (2.1) by ρY
(ρ > 1) for j = 2 and N with ρ being the amplified factor while Eq. (2.1) should
still be adopted for other values of j [1] to reflect the fact that the equilibrium
deformations of the two end plates are unignorable. Figure 4 shows the nor-
malized critical interaction coefficient Ych(1 − ν)/µ as a function of βc = πh/L
for different values of the amplified factor with N → ∞. It is observed from
Fig. 4 that the end-effect will the lower critical interaction coefficient and that
Ych(1 − ν)/µ ∼= βc/2ρ as βc → ∞. As ρ increases, Ych(1 − ν)/µ approaches its
asymptotic value of βc/2ρ at a smaller value of βc. To make a direct comparison
with Fig. 6 by Zhu et al. [1], we illustrate in Fig. 5 the end-effect factor ε as
a function of the amplified factor ρ for different values of βc = πh/L. The end-
effect factor ε is defined as the ratio between the critical interaction coefficient
when N → ∞ with end-effect and that without end-effect. It is observed from
Fig. 5 that:

(i) When βc → 0 for thin plates, the results just recover those by Zhu
et al. [1].
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Fig. 4. The normalized critical interaction coefficient Ych(1 − ν)/µ as a function of
βc = πh/L for different values of the amplified factor with N → ∞.
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Fig. 5. The end-effect factor ε as a function of the amplified factor ρ for different values of
βc = πh/L.

(ii) The end-effect factor decreases with increasing βc for thicker plates. For
example, ε = 1/3 when ρ = 3 and βc → ∞ for extremely thick plates. This
value is only about half of the value ε = 0.5993 when ρ = 3 and βc → 0 for thin
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Fig. 6. The influence of surface energy on the critical interaction coefficient.

plates. This fact implies that the critical interaction coefficient for interacting
thick plates is more sensitive to the end-effect.

3.6. The influence of surface energy

In this section, we discuss the influence of surface energy on the critical inter-
action coefficient. If the end-effect is ignored, the perturbed normal displacement
and normal traction on the lower surface of plate j are related to those on the
upper surface of plate j−1 through

(3.14)
σ

L(j)
22 = Y (u

U(j−1)
2 − u

L(j)
2 ) − γu

L(j)
2,11 ,

σ
U(j−1)
22 = Y (u

U(j−1)
2 − u

L(j)
2 ) + γu

U(j−1)
2,11 ,

where γ is the surface energy of the plates. Equation (3.14) can be equivalently
written into

(3.15)
σ

L(j)
22 + σ

U(j−1)
22 = (2Y − α2γ)(u

U(j−1)
2 − u

L(j)
2 ),

σ
L(j)
22 − σ

U(j−1)
22 = α2γ(u

U(j−1)
2 + u

L(j)
2 ).

For a parallel array composed of N interacting plates, the following set of
equations can then be expediently arrived at
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(3.16)

[

1 0
βγ̄ 1

]

xU
j−1 −

[

1 0
−βγ̄ 1

]

R(β)xU
j

=
β

2λ

[

0 1
0 0

]

[

R(β)xU
j + xU

j−1

]

, j = 2, . . . , N,

[

−βγ̄ 1
]

R(β)xU
1 = 0,

[

βγ̄ 1
]

xU
N = 0,

where R(β) and xU
j have been defined in Eqs. (2.8) and (2.10), and

(3.17) γ̄ =
γ(1 − ν)

µh
, λ =

Y h(1 − ν)

µ
− β2γ̄

2
.

The last two equations in Eq. (3.16) imply that the surface energy on the
lower surface of the bottom plate and that on the upper surface of the top plate
have been taken into account. It is seen from Eq. (3.17) that when the surface
energy is taken into account, the eigenvalue is a linear function of the normal-
ized interaction coefficient and the normalized surface energy. Equation (3.16)
can also be written into the generalized eigenvalue problem in Eq. (2.11) with
rank(A) = N − 1 and rank(B) = 2N . Among the 2N eigenvalues, (N − 1)
eigenvalues are positive and the rest (N + 1) eigenvalues are zero. The normal-
ized critical interaction coefficient Ych(1 − ν)/µ is just the sum of 1

2β2
c γ̄ and

the smallest of the (N − 1) positive eigenvalues. We illustrate in Fig. 6 the
influence of surface energy on the critical interaction coefficient for an infinite
number of interacting plates. Apparently, the surface energy will increase the
magnitude of the critical interaction coefficient. We can see that the surface en-
ergy plays a stabilizing role. Our results also indicate that the surface energy
on the lower surface of the bottom plate and that on the upper surface of the
top plate exert minimal influence on the critical interaction coefficient. Further-
more, the critical interaction coefficient for an infinite number of interacting
plates can be accurately given by the following formula with the relative errors
below 0.025%

(3.18)
Ych(1 − ν)

µ
=

Y 0
c h(1 − ν)

µ
+

β2
c γ̄

2
,

where Y 0
c is the critical interaction coefficient for an infinite number of interact-

ing plates in the absence of surface energy. The reason for the relationship in
Eq. (3.18) is due to the fact that σ

L(j)
22 ≈ σ

U(j−1)
22 when the number N of the

interacting plates is sufficient large. The results in Sections 3.1 to 3.4 indicate
that Y 0

c h(1 − ν)/µ is proportional to β4
c when βc → 0 for thin plates and is pro-

portional to βc when βc → ∞ for extremely thick plates. Consequently, it is seen
from Eq. (3.18) that the contribution from surface energy cannot be ignored for
both thin and thick plates.
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4. Conclusions

We rigorously study the structural instability of N mutually interacting iden-
tical simply-supported plates by using the general solution for an elastic strip by
He and Jiang [7]. Through a 2 × 2 transfer matrix R(β), the normal displace-
ment and normal traction on the lower surface of a plate are related to those on
its upper surface. By using this relationship, we obtain a generalized eigenvalue
problem for the plate array. The critical interaction coefficient is determined by
the smallest of the (N − 1) positive eigenvalues. Analytical expressions of the
critical interaction coefficients for N = 2, 3, 4 are derived when the end-effect
and surface energy are ignored. It is confirmed that the results obtained by
Zhu et al. [1] are valid for thin plates (h/L < 0.2). For interacting thick plates
(h/L > 0.5), the present solution based on the exact elasticity theory should be
adopted. For example, the critical interaction coefficients for different numbers
of interacting extremely thick plates are the same.
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