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Analysis of thermal processes occurring in heated multilayered
metal films using the dual-phase lag model
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A multilayered thin metal film subjected to an ultra-short laser pulse is consid-
ered. A mathematical description of the discussed process is based on the system of
the dual-phase lag equations supplemented by appropriate boundary and initial con-
ditions. Special attention is devoted to the ideal contact conditions at the interfaces
between the layers, which in the case of the dual-phase lag model must be formulated
in a different way than in the macroscopic Fourier model. To solve the problem the
explicit scheme of the finite difference method is developed. In the final part of the
paper the example of computations is shown.
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1. Introduction

One of the models describing the thermal processes occurring in
thin metal films subjected to an ultra-short laser pulse is the dual-phase lag
equation [1–6]

x ∈ Ω : c

[

∂T (x, t)

∂t
+ τq

∂2T (x, t)

∂t2

]

= ∇
[

λ∇T (x, t)

]

(1.1)

+ τT∇
[

λ
∂∇T (x, t)

∂t

]

+Q(x, t) + τq
∂Q(x, t)

∂t
,

where T (x, t) is the temperature, c is the volumetric specific heat, λ is the thermal
conductivity, τq is the relaxation time, τT is the thermalization time and Q(x, t)
is the source function connected with the laser heating.

This equation can be derived when the following formula is introduced in
place of the classical Fourier law q(x, t) = −λ∇T (x, t):

(1.2) q(x, t+ τq) = −λ∇T (x, t+ τT ),

where ∇T is the temperature gradient and q is the heat flux.
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Using the Taylor series expansions the following first-order approximation of
equation (1.2) can be accepted

(1.3) q(x, t) + τq
∂q(x, t)

∂t
= −λ

[

∇T (x, t) + τT
∂∇T (x, t)

∂t

]

.

In the case of multilayered domains, the system of equations of type (1.1) for
each subdomain should be taken into account and on the contact surfaces the
appropriate boundary conditions should be assumed. In the case of ideal contact
these boundary conditions take the following form:

(1.4) x ∈ Γe :

{

Te(x, t) = Te+1(x, t),
qe(x, t) = qe+1(x, t),

e = 1, 2, . . . , E − 1.

Using the relationship (1.3) between the heat flux and temperature gradient, the
second part of boundary condition (1.4) should be properly formulated.

It should be noted that in the literature different ways of modeling of ideal
contact condition (1.4) are presented. For example, at the stage of computations,
the FDM grid in which the nodes are located not on the contact surface but at
a certain distance from this surface is introduced [7–9]. Another approach is to
use the staggered grid where the ‘temperature nodes’ and ‘heat flux nodes’ are
distinguished separately, e.g., [10, 11]. Finally, in several articles (e.g. [12, 13]),
the condition of ideal contact is formulated in the same manner as in the case
of macroscopic Fourier model, which is, of course, a significant simplification.

In this paper, the second part of interfacial condition (1.4) is expressed in
terms of temperature. This allows to introduce the spatial grid with the nodes
located on the contact surface. The aim of the study is also to compare the
results of computations for different ways of ideal contact condition modeling.
Thus, in Section 2 the mathematical model of thermal processes in the multilay-
ered thin metal film subjected to the ultrashort laser pulse is presented. Section
3 presents the boundary condition of ideal contact, which takes into account the
relationship (1.3) between the heat flux and temperature gradient. The explicit
scheme of the finite difference method is presented in Section 4. The FDM algo-
rithm constitutes a basis for an ‘in house’ computer program used at the stage
of numerical modeling (Section 5). In the final part of the paper the conclusions
are formulated.

2. Governing equations

A multilayered thin film of thickness L = L1 + L2 + · · · + LE , as shown in
Fig. 1, with an initial temperature distribution T (x, 0) = Tp is considered. The
constant thermal properties of successive layers and the ideal thermal contact
between the layers are assumed.
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Fig. 1. Multilayered thin metal film.

The temperature distribution in the successive layers is described by the
system of equations (1D problem) [7, 8]:

(2.1) Le−1 < x < Le :
∂Te(x, t)

∂t
+ τqe

∂2Te(x, t)

∂t2
= ae

∂2Te(x, t)

∂x2

+ τTeae
∂3Te(x, t)

∂t∂x2
+

1

ce
Qe(x, t) +

τqe

ce

∂Qe(x, t)

∂t
, e = 1, 2, . . . , E,

where ae = λe/ce (λe is the thermal conductivity of e-th layer, ce is the volumetric
specific heat), τqe is the relaxation time, τTe is the thermalization time, Te is the
temperature, x is the spatial coordinate and t is the time.

A front surface x = L0 = 0 is irradiated by a laser pulse and the source
function Q1(x, t) connected with the laser heating is defined as follows [14]:

(2.2) Q1(x, t) =

√

β

π

1 −R1

tpδ1
I0 exp

[

− x

δ1
− β

(t− 2tp)
2

t2p

]

,

where I0 is the laser intensity, tp is the characteristic time of a laser pulse, δ1 is
the absorption depth, x ≤ δ1 < L1, R1 is the reflectivity of the irradiated surface
and β = 4 ln 2. For e = 2, 3, . . . , E: Qe(x, t) = 0.

Introducing the source function (2.2) allows to assume for x = 0 and x = L
the no-flux conditions, namely [14]:

(2.3) q1(0, t) = 0, qE(L, t) = 0.

The boundary conditions on the contact surfaces between subdomains have the
form of continuity ones, this means that

(2.4) x = Le :

{

Te(x, t) = Te+1(x, t),
qe(x, t) = qe+1(x, t),

e = 1, 2, . . . , E − 1.

The initial conditions (t = 0) are also given
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(2.5)

t = 0 : Te(x, 0) = Tp,

x ≤ δ1 :
∂T1(x, t)

∂t

∣

∣

∣

∣

t=0

=
Q1(x, 0)

c1
,

x > δ1 :
∂Te(x, t)

∂t

∣

∣

∣

∣

t=0

= 0.

One can see that the initial heating rate is defined in different ways for x ≤ δ1 and
for x > δ1. It results from the assumption that the internal heat source connected
with the laser radiation acts only in the layer of thickness δ1 corresponding to
the absorption depth.

3. Interfacial condition

From the numerical point of view, it is convenient to express the ideal con-
tact condition (2.4) in terms of temperature. For this purpose, the following
relationship between the heat flux and temperature gradient must be applied
(cf. formula (1.3)):

(3.1) qe(x, t) + τqe
∂qe(x, t)

∂t
= −λe

[

∂Te(x, t)

∂x
+ τTe

∂2Te(x, t)

∂t∂x

]

.

The dependence (3.1) is differentiated with respect to time and then multiplied
by τqe+1

(3.2) τqe+1
∂

∂t

[

qe(x, t) + τqe
∂qe(x, t)

∂t

]

= −λeτqe+1
∂

∂t

[

∂Te(x, t)

∂x
+ τTe

∂2Te(x, t)

∂t∂x

]

.

Adding the sides of equations (3.1) and (3.2) gives

(3.3) qe(x, t) + (τqe + τqe+1)
∂qe(x, t)

∂t
+ τqeτqe+1

∂2qe(x, t)

∂t2

= −λe

[

∂Te(x, t)

∂x
+ τTe

∂2Te(x, t)

∂t∂x

]

− λeτqe+1
∂

∂t

[

∂Te(x, t)

∂x
+ τTe

∂2Te(x, t)

∂t∂x

]

.

In a similar way one obtains

(3.4) qe+1(x, t) + (τqe + τqe+1)
∂qe+1(x, t)

∂t
+ τqeτqe+1

∂2qe+1(x, t)

∂t2

= −λe+1

[

∂Te+1(x, t)

∂x
+ τTe+1

∂2Te+1(x, t)

∂t∂x

]

− λe+1τqe
∂

∂t

[

∂Te+1(x, t)

∂x
+ τTe+1

∂2Te+1(x, t)

∂t∂x

]

.



Analysis of thermal processes. . . 279

Taking into account the second part of condition (2.4) it can be seen that the
left-hand sides of equations (3.3) and (3.4) are the same. Thus the right-hand
sides of these equations are created equal

(3.5) − λe
∂Te(x, t)

∂x
− λe(τTe + τqe+1)

∂2Te(x, t)

∂t∂x
− λeτTeτqe+1

∂3Te(x, t)

∂t2∂x

= −λe+1
∂Te+1(x, t)

∂x
− λe+1(τTe+1 + τqe)

∂2Te+1(x, t)

∂t∂x

− λe+1τTe+1τqe
∂3Te+1(x, t)

∂t2∂x
.

The final form of the above designated condition (3.5) corresponds to the formula
presented in [15].

It should be noted that in the case of Neumann boundary conditions (2.3)
one has (cf. formula (3.1))

(3.6)

[

∂T1(x, t)

∂x
+ τT1

∂2T1(x, t)

∂t∂x

]

x=0

= 0,

[

∂TE(x, t)

∂x
+ τTE

∂2TE(x, t)

∂t∂x

]

x=L

= 0.

4. Method of solution

At the stage of numerical computations the finite difference method is pro-
posed. A geometrical mesh is shown in Fig. 2.

Fig. 2. Geometrical mesh.

Let T f
i = T (xi, f∆t) where ∆t is the time step, xi = ih (h is the mesh step)

and f = 0, 1, . . . , F . Taking into account the initial conditions (2.5) one has

T 0
i = Tp, xi ≤ δ1 : T 1

i = Tp + ∆tQ1(x, 0)/c1, xi > δ1 : T 1
i = Tp.

For transition tf−1 → tf (f ≥ 2) the approximate form of Eq. (2.1) resulting
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from the introduction of adequate differential quotients can be proposed

(4.1)
T f

i − T f−1
i

∆t
+ τqi

T f
i − 2T f−1

i + T f−2
i

(∆t)2
= ai

T f−1
i+1 − 2T f−1

i + T f−1
i−1

h2

+ aiτT i

(

T f−1
i+1 − 2T f−1

i + T f−1
i−1

∆th2
− T f−2

i+1 − 2T f−2
i + T f−2

i−1

∆th2

)

+
1

ci
Qf−1

i +
τqi

ci

(

∂Q

∂t

)f−1

i

.

After the mathematical manipulations one has

T f
i =

∆th2 + 2τ qih
2 − 2ai∆t(∆t+ τT i)

h2(∆t+ τqi)
T f−1

i − τqih
2 − 2ai∆tτT i

h2(∆t+ τqi)
T f−2

i(4.2)

+
ai∆t(∆t+ τT i)

h2(∆t+ τqi)
(T f−1

i+1 + T f−1
i−1 ) − ai∆tτT i

h2(∆t+ τqi)
(T f−2

i+1 + T f−2
i−1 )

+
(∆t)2

ci(∆t+ τqi)

[

Qf−1
i + τqi

(

∂Q

∂t

)f−1

i

]

.

This formula allows to calculate the temperatures at the internal nodes i. Let
me, e = 1, 2, . . ., and E− 1 is the node located on the interfacial surface x = Le,
as shown in Fig. 2. The approximate form of boundary condition (3.5) can be
taken in the following way:

(4.3) −λe

T f
me − T f

me−1

h
−λe(τTe + τqe+1)

1

∆t

(

T f
me − T f

me−1

h
− T f−1

me − T f−1
me−1

h

)

− λeτTeτqe+1
1

(∆t)2

(

T f
me − T f

me−1

h
− 2

T f−1
me − T f−1

me−1

h
+
T f−2

me − T f−2
me−1

h

)

= −λe+1

T f
me+1 − T f

me

h
−λe+1(τTe+1 + τqe)

1

∆t

(

T f
me+1 − T f

me

h
− T f−1

me+1 − T f−1
me

h

)

−λe+1τTe+1τqe
1

(∆t)2

(

T f
me+1 − T f

me

h
− 2

T f−1
me+1 − T f−1

me

h
+
T f−2

me+1 − T f−2
me

h

)

,

hence

T f
me

=
Ae1

Ae1 +Ae2
T f

me−1 +
Ae2

Ae1 +Ae2
T f

me+1(4.4)

+
Ae3(T

f−1
me − T f−1

me−1)+Ae5(T
f−2
me − T f−2

me−1)

Ae1 +Ae2

− Ae4(T
f−1
me+1 − T f−1

me ) +Ae6(T
f−2
me+1 − T f−2

me )

Ae1 +Ae2
,
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where

(4.5)

Ae1 = λe[(∆t)
2 + ∆t(τTe + τqe+1) + τqe+1τTe],

Ae2 = λe+1[(∆t)
2 + ∆t(τTe+1 + τqe) + τqeτTe+1],

Ae3 = λe[∆t(τTe + τqe+1) + 2τqe+1τTe],

Ae4 = λe+1[∆t(τTe+1 + τqe) + 2τqeτTe+1],

Ae5 = −λeτqe+1τTe, Ae6 = −λe+1τqeτTe+1.

In turn, for the nodes 0 (x = 0) and n (x = L) (cf. boundary conditions (3.6))
one has

(4.6)

T f
1 − T f

0

h
+ τT1

1

∆t

(

T f
1 − T f

0

h
− T f−1

1 − T f−1
0

h

)

= 0,

T f
n − T f

n−1

h
+ τTE

1

∆t

(

T f
n − T f

n−1

h
− T f−1

n − T f−1
n−1

h

)

= 0,

it means that

(4.7)
T f

0 = T f
1 − τT1

∆t+ τT1
(T f−1

1 − T f−1
0 ),

T f
n = T f

n−1 +
τTE

∆t+ τTE
(T f−1

n − T f−1
n−1 ).

Because the explicit scheme of the finite difference method is proposed here,
therefore the stability criteria should be formulated (see [16, 17]).

5. Results of computations

As an example, a double-layered thin film (gold and chromium) subjected
to a laser pulse is considered. The thicknesses of layers are equal to 50 nm.
The initial temperature is equal to Te0 = 300 K. In Table 1 the thermophysical
parameters of materials are collected [18, 19].

Table 1. Thermophysical parameters.

Gold Chromium

Volumetric specific heat [MJ/(m3·K)] c1 =2.4897 c2 = 3.21484

Thermal conductivity [W/(m·K)] λ1 = 315 λ2 = 93

Relaxation time [ps] τq1 = 8.5 τq2 = 0.136

Thermalization time [ps] τT1 = 90 τT2 = 7.86

Reflectivity R1 = 0.95 R2 = 0.974

Absorption depth [nm] δ1 = 15.3 δ2 = 15.3
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Fig. 3. Temperature history at the irradiated surface: 1 – n = 100, ∆t = 2 · 10−4 ps,
2 – n = 1000, ∆t = 2 · 10−6 ps.

The computations are performed for the laser intensity I0 = 40 W/m2 and
the characteristic time of the laser pulse tp = 0.1 ps (cf. formula (2.2)). In Fig. 3
the temperature history at the irradiated surface for n = 100, ∆t = 2 · 10−4 ps
and n = 1000, ∆t = 2 · 10−6, respectively, is shown. Because the results are
grid independent for n ≥ 1000, so in the further calculations n = 1000 nodes is
assumed.

Fig. 4. Temperature distribution for 0.2 and 0.3 ps (1 – DPL model, 2 – DPL with the
macroscopic boundary conditions).

In Figs. 4–6 the temperature profiles for times 0.2, 0.3, 0.4 and 0.5 ps are
shown. The curves marked as 1 correspond to the solution of DPL equation (2.1)
with the boundary conditions (3.5), (3.6), while the curves marked as 2 illustrate
the solution of the same equation supplemented by the classical macroscopic
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Fig. 5. Temperature distribution for 0.4 ps (1 – DPL model, 2 – DPL with the macroscopic
boundary conditions).

Fig. 6. Temperature distribution for 0.5 ps (1 – DPL model, 2 – DPL with the macroscopic
boundary conditions).

continuity conditions (in equations (3.5), (3.6): τqe = 0 and τTe = 0). It can be
seen that over time the temperature differences increase especially in the vicinity
of the contact surface.

Figure 7 illustrates the temperature courses on the contact surface between
the layers for the DPL model (curve 1) and the DPL model with the macroscopic
boundary conditions (curve 2). After 0.5 ps the maximum temperature on the
contact surface is equal to 304.29 K and 306.35 K, respectively.

In Fig. 8, the temperature history at the irradiated surface for both cases
is presented. The differences between the temperatures are small (temperatures
for time 0.5 ps are equal to 319.84 K and 319.92 K, respectively), which shows
that in the case of the Neumann boundary condition (cf. equation (3.6)) the
assumption that τT1 = 0 is acceptable.
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Fig. 7. Temperature courses on the contact surface (1 – DPL model, 2 – DPL with the
macroscopic boundary conditions).

Fig. 8. Temperature courses on the irradiated surface (1 – DPL model, 2 – DPL
supplemented by the macroscopic boundary conditions).

Fig. 9. Temperature courses at points 1–40 nm, 2–50 nm, 3–60 nm, solid lines – one layer,
symbols – two layers.
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To check the correctness of the ideal contact modeling the following problem
has been analyzed. In the first version, the layer of thickness L made of gold is
considered, while in the second version two layers of thicknesses L/2 made of the
same material (gold) are taken into account. Between these layers the condition
corresponding to the ideal thermal contact (3.5) is assumed. It turned out that
the same solutions were obtained, what is shown in Fig. 9. So the analytical form
of condition (3.5) and its numerical realization are definitely correct. It should
be noted that when using the dual-phase lag equation for numerical modeling of
thermal processes occurring in the heated metal films
the physical anomalies can take place [20–22]. They are connected with the val-
ues of the delay times τq and τT [23]. When τT > τq (cf. Table 1) the DPL
model might violate the second law of thermodynamics and this case is defined
as over-diffusion [20, 24]. Such phenomena, however, can be explained by the
non-equilibrium entropy production theory [25]. The interpretation of this phe-
nomenon, from a mathematical point of view, can be also found in [20]. On the
other hand, the thermalization time τT and the relaxation time τq are the in-
trinsic properties of the material in question and in the literature one can find
a lot of papers connected with the ultrafast pulse-laser heating on metal films
related to the case τq < τT , e.g., [5–11, 14–19]. Moreover, the calculations show
very good agreement with the experimental results [7, 24].

6. Conclusions

A dual-phase lag model describing the thermal processes occurring in the
multilayered thin metal film subjected to the ultrashort laser pulse is considered.
The ideal contact conditions at the interfaces between the layers are formulated
according to the formula describing the dependence between the heat flux and
temperature gradient in which the phase lag times are taken into account. To
solve this problem the explicit scheme of the finite difference method is proposed.
The results of computations show that the condition of ideal contact assumed
in the same manner as in the case of macroscopic Fourier model is a significant
simplification.

Presented in this paper, formulation of ideal contact condition supplementing
the dual-phase lag model can be used in the case of other numerical methods,
e.g. the general boundary element method [26–28] or analytical methods [29–31].
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