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An acoustic metamaterial consisting of a homogeneous damped plate with
parallel attached resonators is presented. Theoretical analysis shows that the meta-
material plate can generate multiple resonant-type band gaps and the lower-bound
frequency of each band gap coincides with the resonance frequencies of the resonators.
The parallel arrangement of resonators, compared with the metamaterial plate with
resonators attached in series reported by Peng et al. (2015), results in a wider second
band gap with a lower edge, while the first band gap is almost the same, creating
therefore an easier combination of the multiple band gaps into a wider one. It is noted
that damping has a significant influence on the band gaps and the effective mass den-
sity (especially for the damping of resonators). Specifically, it can be concluded that
damping cannot be neglected in practical engineering applications, damping in the
material of the host plate can smooth and lower the responses in the whole frequency
range, especially in the higher frequency range, and a high level of damping of res-
onators deactivates the effect of band gaps. Such weak/damped resonators actualise
the metamaterial damping poorly, and rather tend only to contribute to the overall
damping such as the damping of the host plate.
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1. Introduction

An acoustic metamaterial is an artificial periodic structure having special
properties such as effective negative mass density [1–3], effective negative Young’s
modulus [4–6] and negative refraction index [7], which cannot be observed in na-
ture when a structure is treated as a homogeneous medium. The significance
of acoustic metamaterials for practical applications lies in their confinement of
elastic wave propagation. Frequency ranges where waves can propagate through
the acoustic metamaterial are called pass bands, while frequency ranges within
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which waves are completely blocked are known as band gaps. Researchers have
recently attempted to obtain multiple broad band gaps by constructing differ-
ent acoustic metamaterial structures and investigating their absorption of elastic
waves and suppression of structural vibration. Early studies in this field focused
on one-dimensional lattice [8–13] and were concerned with the constraints of
longitudinal wave propagation only. In engineering applications, however, flexu-
ral waves propagate predominantly in classical structures and radiate energy to
the surroundings, thus threatening the safety of the structure, and deleteriously
influencing the accuracy of apparatus. Thus, structure design is vital for con-
trolling the behaviour of flexural wave within continuum structures [14]. Several
studies of flexural wave propagation in beams of acoustic metamaterial have been
reported. Yu et al. [15–17] attached local resonant structures to different beams
such as Timoshenko and Euler–Bernoulli beams, to generate a flexural band gap
through which flexural waves could not pass. Chen et al. [18–20] extended the
study to a sandwich structure containing spring-mass resonators. Chen et al.

confirmed that waves were unable to propagate through the sandwich structure
with the presence of a band gap, and thus concluded that such resonators could
be used as mechanisms for suppressing flexural motion in a sandwich beam.
Chen et al. also studied the wave attenuation and power flow characteristics of
sandwich beams with different absorbers to reveal the energy dissipation [21].

Metamaterial plates are more common structures than beams in engineering
applications. Examples of such applications are reduction of vibration during
submarine activities and absorption of noise in residential houses. The diffi-
culty lies in designing and analysing a metamaterial plate owing to its higher
dimensions than those of metamaterial beams and bars. Nouh et al. [22, 23]
investigated wave propagation through a metamaterial beam with periodic local
resonances and extended the analysis to a metamaterial plate. The local reso-
nance was achieved by cavities filled with a viscoelastic membrane that supported
a small mass. Their results showed that within the band gaps, the metamaterial
beam and plate could effectively attenuate and filter structural vibrations in the
low-frequency range. The problem, however, was that although band gaps were
obtained, the strength of both beam and plate was significantly reduced. Gusev

and Wright [24] improved the work of Nouh et al. [16] by attaching spring-mass
structures to a plate with different patterns, generating a band gap with double
negativity. That work opened a way for flexural wave control. Xiao et al. [25]
applied a plane wave expansion method to studying the propagation of flexural
waves in a plate with spring-mass resonators. They found that resonance-type
and Bragg-type band gaps coexisted in the plate, indicating a potential for vibra-
tion isolator design. Pai and his colleagues [26–28] theoretically and numerically
analysed longitudinal and flexural wave propagation in metamaterial beams and
flexural wave suppression in metamaterial plates via the Hamilton principle and
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finite element (FE) simulation. Their numerical results for a sandwich metama-
terial plate and a metamaterial plate with two resonators attached in series on
one side showed that multiple band gaps were obtained for wave suppression. In
the FE simulation, damping from the resonators was added, and the effects of
damping on the band gaps and wave propagation were numerically investigated.

Damping exists in all practical engineering applications, and can greatly af-
fect the performance of metamaterials. From the foregoing review, however, it is
evident that most previous work has neglected the effects of damping from the
host material (beams or plates) and resonators on the band gaps and wave prop-
agation. Even in Peng and Pai’s study [28], analysis of damping was performed
by the FE simulation only, and the damping effect of the beam or plate material
was also neglected. The working mechanism and effect of the damping from host
material and resonators have rarely been theoretically presented and discussed.
Moreover, it remains interesting if the series resonators are divided on both sides
of the homogeneous plate. Does that produce wider and lower band gaps? To
find the answers and provide better choices for the design of devices with multi-
band gaps, we propose a new metamaterial with parallel resonators attached to
a damped homogeneous plate with the aim of obtaining multiple resonance-type
band gaps for flexural wave absorption and determining the effects of damping
from the resonators on the wave propagation. The thin plate theory and Bloch’s
theorem are used here to derive the explicit formulations for the dispersion sur-
faces and the effective area mass density with damping considered. In this work,
hysteretic damping from the plate material and resonators is first introduced for
the theoretical analysis, and the damping effects on the band gaps and flexural
wave propagation are systematically investigated. FE simulation and frequency
response analysis (FRA) are performed to validate the theoretical results and
to analyse the damping effect on wave propagation. Some practical models are
proposed for future engineering implementations of the metamaterial.

2. Theoretical formulation

2.1. Dispersion surfaces and effective area mass density of the metamaterial plate

For a flexural wave with wave lengthλ, the distribution of normal force arising
from the distribution of resonant elements is well approximated as continuous,
provided that the distances among the adjacent elements on the plate surface
are significantly smaller than the wavelength. As shown in Figs. 1 and 2, the
acoustic metamaterial plate is composed of a homogeneous plate with Young’s
modulus E, Poisson’s ratio ν and density ρ, and parallel attached resonators
with the mass and stiffness m1, m2, k1 and k2, respectively. The size of a single
metamaterial plate unit is ax×ay. The resonators vibrate freely in the zdirection.
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Fig. 1. Acoustic metamaterial plate with parallel attached resonators arranged.

Fig. 2. Unit cell of the acoustic metamaterial: a) front view, b) perspective view.

Making use of the well-known Kirchhoff plate theory of the plate [29, 30] and
Newton’s second law, when a harmonic flexural wave is incident, the equations
of the motion for a unit cell can be expressed as [31, 32]

ρh
∂2w(x, y, t)

∂t2
=(2.1)

−D
(

∂4w(x, y, t)

∂x4
+ 2

∂4w(x, y, t)

∂y2∂x2
+
∂4w(x, y, t)

∂y4

)

+ q(x, y, t),

q(0, 0, t) = −nk1(w0(t) − u1) − nk2(w0(t) − u2),(2.2)

m1ü1 = k1(w0(t) − u1),(2.3)

m2ü2 = k2(w0(t) − u2),(2.4)

where w(x, y, t), u1 and u2 are the displacement of the plate deflection and
vertical displacement of resonators, respectively. n = 1/(ax× ay) is the total
number of dual resonators per unit area, andD = Eh3/[12(1 − ν2)] is the flexural
rigidity of the plate.
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For unit cells periodically placed in the x, y direction, Bloch’s theorem is
adopted here to represent the displacement in the three equations above, and
the wave solution in an infinite lattice is assumed to be in harmonic form as

(2.5) w(x, y, t) = Wei(αx+βy+ωt) = w0e
i(αx+βy), u1 = U1e

iωt, u2 = U2e
iωt

with K̃ being the wavenumber, α andβ being its projections along the x, y di-
rections respectively, and K̃2 = α2 + β2. W , U1 and U2 are the complex-valued
amplitudes of plate deflection and vertical displacement of resonators, respec-
tively. When damping is taken into account, the complex Young’s modulus and
complex stiffness will be introduced with E′ = E(1 + jη0), k′1 = k1(1 + jη1) and
k′2 = k2(1 + jη2) in the frequency domain, where η0 denotes the loss factor of the
plate material, and η1 and η2 denote the loss factors of the springs. Substitution
of Eq. (2.5) into Eqs. (2.1)–(2.4) yields

(2.6)




ρhω2 −D′
(

α2 + β2
)2 − nk′1 − nk′2 nk′1 nk′2

k′1 m1ω
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2 − k′2
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= 0.

To obtain a nontrivial solution of [W U1 U2]
T, the determinant of the coef-

ficient matrix is set to zero, and its expanded equation is written as

(2.7) γ1ω
6 + γ2ω

4 + γ3ω
2 + γ4 = 0

with

γ1 = ρhm1m2,(2.8)

γ2 = ρh(−m1k
′

2 −m2k
′

1) +m1m2[−D′(α2 + β2)2 − n(k′1 + k′)],(2.9)

γ3 = ρhk′1k
′

2 + [−D′(α2 + β2)2 − n(k′1 + k′)](−m1k
′

2 −m2k
′

1)(2.10)

− nk′21 m2 − nk′22 m1,

γ4 = [−D′(α2 + β2)2 − n(k′1 + k′)]k′1k
′

2 + nk′21 k
′

2 − nk′22 k
′

1.(2.11)

For a specific wave vector K = (α, β), there are six different angular fre-
quencies. These angular frequencies, denoted as ω(K), are used to calculate the
dispersion relation. Also, it is obvious that the angular frequencies are complex,
and the dispersion relation can be obtained from them. The determinant of the
matrix can also be translated as

(2.12) α2 + β2 = ± ω
√
D

′

√

ρh+
nk′1m1

k′1 −m1ω2
+

nk′2m2

k′2 −m2ω2

for the analysis of wave attenuation, and the effective area mass density is

(2.13) ρeff = ρ+
1

h

(

nk′1m1

k′1 −m1ω2
+

nk′2m2

k′2 −m2ω2

)

.
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Equation (2.12) presents the dispersion relation of the metamaterial plate,
and Eq. (2.13) is the effective area mass density. From the dispersion relation,
the band gaps can be obtained, and when the second item of Eq. (2.12) becomes
zero, the effective area mass density equals the density of the homogeneous plate.
When the second item becomes negative, with its absolute value greater than
the value of ρ, the effective area mass density of the metamaterial plate also
becomes negative. From Eq. (2.13), the interval of the negative mass density
can be obtained by setting the right-hand side of Eq. (2.13) to zero and let-
ting the denominator of Eq. (2.13) approach zero. Since the effective area mass
density is determined from the corresponding dispersion relation (Eq. (2.12)), it
can be concluded that the negative mass density ranges coincide with the band
gaps.

We now focus on Eqs. (2.1) and (2.2). The force q in Eq. (2.2) is the total force
in the z direction. A metamaterial plate with one vertical resonator attached to
a unit cell can generate one band gap only. In this work, the unit cell of the
metamaterial plate has two different resonators directly attached to the plate and
can generate two band gaps. Assuming there are n resonators attached to the unit
cell of a homogeneous plate, it can form an n-band-gap-generating metamaterial
plate. The positions of the attached resonators are unimportant if the total
vertical force remains the same. This assumption can be easily validated by
analysing the n+1 DOF system. However, in accordance with the concept of [33],
more band gaps require more series of resonators. In the case of a metamaterial
plate with multiple resonators arranged in series, the effect of the second- and
higher-order resonators will be deactivated, resulting in more complex lower
edges of band gaps, and less flexible tuning for the band gaps. If we compare
these two metamaterials, the parallel attached metamaterial plate is superior in
terms of practical application.

2.2. Comparison with metamaterial plate series of attached dual resonators

The parallel arrangement of resonators improves the performance of acoustic
metamaterials with resonators attached in series. The advantages are identified
in this subsection. Set k1/k2 = µ, m1/m2 = θ, ω1 =

√

k1/m1, ω2 =
√

k2/m2

and ω2 < ω1. The explicit formulas of the band gaps are too complex to show,
but to facilitate the analysis, the lower edges of the first two band gaps for the
plate proposed in this article are given as [ω1, ω2]. Using the same parameter
setting and analysis method, the lower edges for the metamaterial in [30] are
[

√

(

(ω2
1 + ω2

2 + ω2
1/µ) ±

√

(ω2
1 + ω2

2 + ω2
1/µ)2 − 4ω2

1ω
2
2

)/

2
]

. Comparing these

lower edges, it can be seen that the lower edge of the first band gap for the
metamaterial studied in this article is a little higher than that reported in [33],
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while the lower edge of the second band gap is much lower than that in [33]. It
is also noted that a change in either of the two resonators has no influence on
the lower edges of the band gaps for the metamaterial considered in this work,
which is different from the plate in [33].

To visually highlight the superiority of the characteristics of the metamaterial
studied in this paper a comparison of the dispersive surfaces is shown in Figs. 3
and 4, with the parameters shown in Table 1. In the meantime, damping is
neglected in this part.

Fig. 3. Dispersion surface of the metamaterial plate with parallel attached resonators:
a) perspective view, b) front view.

Fig. 4. Dispersion surfaces of the metamaterial plate with unilaterally attached resonators:
a) perspective view, b) front view.
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Table 1. Material properties of a single unit cell of the metamaterial plate.

Host plate Attached resonators

Thickness h = 0.002 m Mass1 m1 = 0.001 kg

Density ρ = 7800 kg/m3 Mass2 m2 = 0.005 kg

Poisson’s ratio ν = 0.3 Stiffness1 k1 = 1 × 104 N/m

Young’s modulus E = 2.1 × 1011 Pa Stiffness2 k2 = 0.5 × 104 N/m

A comparison of the dispersion surfaces of these two different metamaterial
plates shows two main advantages of the metamaterial plate proposed in this pa-
per over the metamaterial plate with unilaterally attached resonators. They are:
(1) band gaps of the proposed metamaterial are 159.23 Hz ∼ 261 Hz and 503.54
Hz ∼ 674 Hz with the gap widths of 102 Hz and 171 Hz, respectively, whereas
band gaps of the metamaterial plate with unilaterally attached dual resonators
are 128 Hz ∼ 222 Hz and 623.88 Hz ∼ 711 Hz with the gap widths of 94 Hz and
87 Hz, respectively. It can be seen that the second band gap has been signifi-
cantly widened, while the first band gap is nearly identical, (2) with the attached
resonators arranged in parallel, the two band gaps are closer to each other, which
means that it is easier to combine these two band gaps into a single broader one.
From the theoretical analysis, changing the parameters of either of the parallel
attached resonators has no effect on the lower bound of the other band gap,
and (3) both structures generate two band gaps because of the resonance of the
attached resonators, but the locations and the gap widths are significantly dif-
ferent. For the metamaterial with unilateral series of attached resonators, the
interaction of the resonators connected in series changes the original resonance,
slightly lowering the first band gap and dramatically pushing the second band
gap to higher frequency range. As a result, the formation mechanism of band
gaps becomes complicated, and it is difficult to adjust the attached resonators to
achieve desired band gaps. The proposed metamaterial plate, on the other hand,
retains the characteristics of the attached resonators because the separation of
the two resonators largely isolates their influences on the resonances, even the
band gaps, which means that each of the band gaps can be tuned individually.

2.3. Effect of damping on band gap and wave propagation

In the theoretical derivation, damping of the plate material and resonators
is considered in the frequency domain. Subsection 2.2, however, was focused on
showing the metamaterial’s capability of generating complete band gaps, and
therefore damping was ignored. In general, damping is always a significant fac-
tor in practical engineering. Therefore, the effects of damping on band gaps,
especially on flexural wave propagation, are examined in this subsection. Addi-
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tionally, the subsection explores whether the formation mechanism of the band
gaps is attributable to the resonance or the Bragg scattering. The damping fac-
tor is the only variable, while the other parameters used in Table 1 are fixed
during the calculation.

Figures 5 and 6 are the results obtained from Eq. (2.12), given a specific fre-
quency. They show the effects of damping from the resonators and plate material,
respectively.

Fig. 5. Effect of damping from the resonators on band gaps.

Figure 5 shows the effects of various damping values from the resonators on
the band gaps with the damping of plate material equal to zero, η0 = 0. First,
when damping is set at zero, there are no real wavenumbers within the band gaps.
Correspondingly, the imaginary part of the wavenumbers approaches infinity at
two resonant frequencies of the parallel attached resonators, and decreases as
the frequency increases. Let us set the wave vector as K = (α, β). Within the
band gaps with damping equal to zero, we have

(2.14) |K|2 = |α2 + β2| = imaginary part.

Therefore,

α = κ11 + jκ12, β = κ21 + jκ22,(2.15)

w(x, y) = We−κ12x−κ22yej(κ11x+κ21y).(2.16)
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Equation (2.16) shows an evanescent wave field as the exponential function of
distance along the x, y direction.

When damping from the resonators is added, η1 = 0.01 and η2 = 0.01, the
value of the imaginary part of the wavenumber decreases, and the real part is
no longer zero but some small value which can be expressed as

(2.17) |K|2 = |α2 + β2| = real part + imaginary part.

Therefore,

α = κ11 + jκ12, β = κ21 + jκ22,(2.18)

w(x, y) = We−κ12x−κ22yej(κ11x+κ21y).(2.19)

Since |κ12| > |κ11| and |κ22| > |κ21|, the amplitudes of the flexural wave
decrease as it propagates through the metamaterial, while the attenuation rate
slows. Furthermore, with a resonator damping increasing to η1 = 0.1 and
η2 = 0.1, the absolute value of the imaginary part of the wave vector becomes no
greater than that of the real part for the band gaps and frequency ranges beside
the band gaps. In this case, the response of the plate is decreased and smoothed,
while the band gap effect is deactivated.

Figure 6 reveals the effects of the damping of the plate on the band gaps
with damping of resonators equal to zero, η1 = 0 and η2 = 0. As the damping of
the metamaterial increases, within the band gaps, the real part of the wavenum-

Fig. 6. Effect of damping from the plate on band gaps.
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ber increases while the imaginary part is slightly smaller. This means that the
attenuation capability is deactivated little, while the waves oscillate simultane-
ously. In Fig. 6b, for the edges of band gaps, the wavenumbers’ imaginary part
becomes much greater than the previous values and large attenuation occurs
correspondingly, leading to broad band gaps. Simultaneously, outside the band
gaps, the imaginary part of the wavenumber is not always zero, especially for
the edges of band gaps, which means that attenuation within these frequency
ranges occurs and responses are lowered and smoothed. At the resonance fre-
quencies, i.e., 159 Hz and 503 Hz, there are two steps when the damping is
at η0 = 0.5. These two steps are caused by the vigorous resonance of the two
resonators.

In summary, damping from the plate and resonators has a more significant
influence on the band gaps and wave propagation. These effects help to widen
the band gaps and smooth and lower the frequency response of the plate. Too
much damping, whether from the plate or the resonators, can deactivate the
effect of band gaps.

2.4. The effective area mass density with various damping values

In Subsection 2.1, the explicit formula Eq. (2.13) of the effective mass density
was derived. To analyse the characteristics of the effective mass density with
various damping values, the effective density vs. frequency is plotted in Fig. 7.
In the calculation, the parameters are the same as those in Subsection 2.3 with
various values of damping.

Fig. 7. The effective area mass density of the metamaterial with different damping values.
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In Fig. 7, there are three curves for effective mass density with different
damping factors. However, the effective density curve without damping coin-
cides with that of non-plate damping, which means that the plate damping has
little influence on the effective mass density. Actually, from Eq. (2.13) it can
be found that the effective mass density has nothing to do with plate rigidity,
not to mention plate material damping. The non-damping density curve reaches
unbounded positive values at the resonance frequencies of the two attached res-
onators, then drops to negative infinity and remains negative within the band
gaps, while in the other bands it is positive. The steps at the resonance frequency
are attributable to the instantaneous energy transformation and storing of the
resonators which vibrate vigorously and generate large inertia forces to counter-
balance the bending force of the plate. When damping is added to the resonators
(referring to the blue dashed line in Fig. 7), the value of the density at resonance
frequencies is greatly decreased, because the resonance energy is damped out. It
should be noted that the starting frequencies of the negative-density range are
enhanced, corresponding to the shaded areas which are decreased. As a result,
damping from the resonators may reduce the singularity of the mass density,
with the sacrifice of shrinking of negative-density ranges.

The negative mass density provides an explanation for the occurrence of the
band gaps from a specific perspective. As in the previous assumption, in the
low-frequency range, because the wave length is much longer than the reciprocal
lattice constant, the metamaterial can be treated as a homogeneous plate with
effective parameters. For the proposed metamaterial plate, using the effective
area mass density, the closed form governing equation can be expressed as

(2.20) ρeffh
∂2w(x, y, t)

∂t2
−D

(

∂4w(x, y, t)

∂x4
+ 2

∂4w(x, y, t)

∂y2∂x2
+
∂4w(x, y, t)

∂y4

)

= 0.

Substitution of the harmonic vibration w(x, y, t) = Wei(ωt−αx−βy) into Eq. (2.20)
yields

(∇2∇2 − (α2 + β2)2)W = 0,(2.21)

α2 + β2 =
ω√
D

√

2hρeff .(2.22)

From Eq. (2.22), it can be seen that, when the effective mass density is
negative, it will lead to complex wave vectors. Assuming α = κ11 + jκ12 and
β = κ21+jκ22 with κ11, κ21 > 0 and real, the flexural vibration can be expressed
as

(2.23) w(x, y, t) = We−κ11x−κ21yei(κ12x+κ22y+ωt).

Equation (2.23) indicates that within the negative-density ranges, the ampli-
tude of the flexural wave is evanescent, and attenuates exponentially along the
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x, y directions. When damping of the resonators is added, the absolute value of
the effective density decreases. This may result in less attenuation within the
negative-density ranges, as well as the band gaps.

3. FE simulation with ANSYS

The FE simulation is conducted here to validate the theoretical results of
the damping effects on the band gaps and wave propagation performance of the
proposed metamaterial. The fundamentals of FE methods can be found in the
literature [34–37]. Details of the FE modelling with ANSYS 15.0 are described
here with the material properties used in Table 1.

Masses are modelled using element MASS 21 with free vibration in the z di-
rection. Springs are modelled using element COMBIN 14 in the z direction. The
homogeneous plate is modelled by using element SHELL 63. The meshing size
is 0.005 m, and the type of meshing is mapped to ensure accuracy.

Figure 8 shows the FE model composed of three parts. The first and third
parts are the homogeneous plate with 50×80unit cells respectively; in the middle
part, 200 × 80 unit cells lie along the x-y plane. The FRA is used to obtain the
steady response of the metamaterial plate under a harmonic excitation with
a free-boundary condition. The harmonic excitationF = F0e

jωt, F0 = 100N is
applied on the central node of the left line, as shown in Fig. 8.

Fig. 8. Schematic FE model of the metamaterial plate with parallel attached resonators.

3.1. Effect of the damping on band gaps

Since the simulation attempts to capture the vibration of the plate in engi-
neering applications, damping is an important factor to be considered. From pre-
vious theoretical analysis, we are aware that damping has a significant influence
on the band gaps as well as on wave propagation. By using the relation between
the viscous damping and the damping factor c1 = 2η1

√
k1m1, c2 = 2η2

√
k2m2,

viscous damping of the resonators is added on the springs of the finite element
model. For the plate, damping η0 = 0.1 is involved through the material prop-
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erties (i.e., in the complex Young’s modulus). There are four sets of parameters
to feature the effects of damping:

(1) η1 = 0, η2 = 0, η0 = 0,
(2) η1 = 0.01, η2 = 0.01, η0 = 0,
(3) η1 = 0.1, η2 = 0.1, η0 = 0,
(4) η1 = 0, η2 = 0, η0 = 0.1.

The corresponding frequency response function (FRF) is shown in Fig. 9.

Fig. 9. FRF of nodes at x = 3 m with different parameter settings.

In Fig. 9, four lines in different colours represent the FRF under different pa-
rameter settings. Firstly, considering the solid line with η1 = 0, η2 = 0, η0 = 0,
two large dips are evident in which the flexural waves are greatly attenuated.
These two dips coincide with the band gaps described in the theoretical analy-
sis. The attenuation within the band gaps decreases as the frequency increases,
because the resonance occurs at the lower edges of the two band gaps, and the
resonators vibrate vigorously. With an increase in frequency, the resonances die
down and the stored energy drops, as does the influence on wave propagation.
The numerical results indicate that the metamaterial can restrain wave propa-
gation in two specific frequency ranges; on the other hand, the numerical results
validate the accuracy of the theoretical derivation. Secondly, from a comparison
of the solid line with the dashed line, which represent the metamaterial without
damping (η1 = 0, η2 = 0, η0 = 0) and with minor damping from the resonators
(η1 = 0.01, η2 = 0.01, η0 = 0), respectively, it is evident that the band gap
effect remains, while the response peaks are slightly decreased from the first
band gap to the higher frequency range (the response in the lower frequency
range changes little). With damping from the resonators increasing to η1 = 0.1,
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η2 = 0.1, η0 = 0, corresponding to the dotted line in Fig. 9, both band gaps are
widened, while the band gap effect is dramatically deactivated. For the middle
and higher frequency ranges, responses are greatly lowered and smoothed, and
the entire energy of the system is reduced, effects of which are attributed to the
damping out of energy. However, the response changes little from 0 ∼ 150 Hz.
This drawback can be remedied by the damping from the host material, shown
as the dash-dotted line (η1 = 0, η2 = 0, η0 = 0.1). Damping from the plate
can lower the response across the whole frequency range, especially for ranges
of 0 ∼ 150 Hz and 260 Hz ∼ 503 Hz. Comparison of the curves of η1 = 0.1,
η2 = 0.1, η1 = 0 and η1 = 0, η2 = 0, η0 = 0.1 reveals that damping from the
host material has less influence on the band gap effect and improves the whole
performance of the metamaterial plate.

In real engineering applications, damping cannot be neglected. How to utilise
damping to acquire desired outcomes needs investigation. Thus, this paper can
provide guidance for practical implementation of the metamaterial plate for the
absorption of multi-frequency flexural elastic wave and the suppression of struc-
tural vibration.

3.2. Vibration modes for wave propagation

To observe the wave propagation within the band gaps and the pass band
graphically, the vibration modes are investigated and some results are presented
in Fig. 10. Figure 10a shows the wave propagation under 200 Hz, which is within
the first band gap, Fig. 10b displays the mode shape under 400 Hz, which is in
the pass band, and Fig. 10c shows the wave propagation under 600 Hz, which is
within the second band gap.

In Fig. 10a it can be seen that the plate in the first part vibrates vigor-
ously as the excitation begins, but when the waves reach the middle section
(the metamaterial part), they attenuate dramatically. Because the vibration has
been blocked as it approaches the metamaterial, the rest of the metamaterial
and the third part remain quiet. From the analysis of the vibration behaviour,
we find that it is the downside resonator that vibrates vigorously to generate an
inertial force to counterbalance the shear forces of the plate, and consequently
the waves cannot pass through. In striking contrast to Fig. 10a, vibration in the
third part in Fig. 10b is similar to that in the first part, which means the waves
pass through the plates without attenuation. Figure 10c is much like Fig. 10a
regarding the wave packets. Waves with a frequency of 600 Hz are blocked be-
cause of the upside resonator vibration. With the attenuation mechanism, i.e.,
the different resonances from the upside and downside, it can be seen that the
band gap is formed because the parallel attached resonators vibrate vigorously
and generate inertial forces to counterbalance the shear forces induced by the
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Fig. 10. Vibration modes under different frequencies without damping.

plate. Owing to the separation of the two resonators, the band gaps can be tuned
flexibly with a little influence on each other, a result that is significant in the
fields of low-frequency vibration and noise control.

3.3. Wave propagation history within the band gaps

Although it has been demonstrated that the proposed metamaterial plate
can prevent wave propagation within the band gaps, the propagation of elastic
waves in transient analysis is still essential for dynamic analysis. In the fol-
lowing simulation, damping is removed to promote deep understanding of the
wave propagation through the structure. The plate is simply supported at four
corner nodes. The excitation is at the central node on the left side line with
F1 = sin(2π(200 Hz)t), F2 = sin(2π(600 Hz)t) and F3 = sin(2π(200 Hz)t) +
sin(2π(600 Hz)t). The response is obtained from the nodes on the centreline
of the metamaterial plate at different distances from the incident waves. The
frequencies of the excitation are all located within the band gaps.
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Fig. 11. Under f=200 Hz: a) transient analysis, b) vibration mode of the centreline from
the FRA.

Figure 11a shows the transient vibrations of nodes on the centreline
(y = 0.4 m) along the x axis at x = 0 m, 1.5 m and 3 m, which lie on the
three different parts of the plate. When the excitation begins at x = 0 m, the
plate vibrates at the specific frequency of 200 Hz and reaches a steady state.
It is obvious that, as the wave propagates through the metamaterial plate, the
amplitude of the wave attenuates with the increase of distance as well as with
the function of the metamaterial. When the wave reaches the node at x = 1.5 m,
it takes about 0.002 s during which the wave speed can be calculated as 750 m/s.
Figure 11b shows the mode shape on the centreline of the plate from the FRA. It
can be seen that waves in the plate without attached resonators propagate with
no attenuation. As the waves reach the metamaterial plate, the amplitude of
the metamaterial plate decreases dramatically, indicating that the metamaterial
blocks the waves efficiently. Since the boundary condition is simply supported at
the two corner nodes on the right side, there are no reflected waves to interfere
with the mode shape. Therefore, the metamaterial plate can efficiently prevent
wave propagation within the first band gap.
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Fig. 12. Under f = 600 Hz: a) transient analysis, b) vibration mode of the centreline from
the FRA.

In a manner similar to that in Fig. 11, Fig. 12a shows the wave propaga-
tion history progressing with the frequency of 600 Hz in transient analysis, and
Fig. 12b shows the mode shapes of the metamaterial plate under the frequency
of 600 Hz from the FRA. In Fig. 12a, it is obvious that it takes about 0.01 s
for the plate to reach the steady state, and as the distance of the node from the
excitation points increases, the wave amplitudes decrease. In Fig. 12b, the plate
at x > 0.75 m has almost no vibration where the metamaterial plate starts at
x = 0.5 m. The dramatic attenuation of the wave in the complex plate shows the
capability of the metamaterial plate, which can be useful in a vibration isolator
to restrain flexural wave propagation.

In engineering applications, waves always propagate with a combination of
different frequencies, and it is therefore useful for a metamaterial to have the ca-
pacity to prevent multiple band flexural waves. In this simulation, the frequency
of the excitation is a combination of 200 Hz and 600 Hz frequencies, which are
within the first and second band gap, respectively. The transient result is pre-
sented in Fig. 13.
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Fig. 13. Transient analysis under f = (200 Hz + 600 Hz).

Figure 13 shows the elastic wave propagation history in the metamaterial
plate. After the excitation begins, the plate reaches a steady state in 0.02 s. It
can be seen that the wave attenuates quickly as it reaches the metamaterial plate.
From the previous analysis, both the parallel attached resonators vibrate to gen-
erate the corresponding inertial force to counterbalance the shear forces from the
plate to block the waves. It can be concluded that the metamaterial can restrain
multi-frequency waves propagating simultaneously within the band gaps.

4. Discussion about the implementation of the metamaterial

This study has provided a conceptual design for harmonic suppression us-
ing damped metamaterial exhibiting negative effective mass density. Theoretical
derivation and computer simulation validation were presented. A detailed anal-
ysis of the acoustic metamaterial with parallel attached resonators showed that
the metamaterial proposed in this paper could efficiently block flexural waves
within the band gaps. Although much work has been done to investigate elas-
tic wave suppression through metamaterial, damping effects on the band gaps
from the host material still remain systematically investigated. This article has
provided full explanation of the damping arising from different constituents of
the metamaterial, which is close to practical implementation. In this section, we
present two different practical models based on this metamaterial unit, as shown
in Fig. 14.

(1) In general, springs with viscous damping in the theoretical model can be
realised using silicon rubber bars/beams, as shown in Fig. 14a. In this case, the
effective stiffness of the rubber can be obtained by

(4.1) K ′ =
E′S

L
,
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Fig. 14. Practical model of the acoustic metamaterial plate with parallel attached resonators:
a) silicon rubber bars/beams, and b) real steel springs with viscous damping (dashpot).

where E′ , S and L are the complex Young’s modulus, the cross-section and the
length of the rubber, respectively, under the circumstance of a short rubber bar.
Actually, there are several constitutive models for the rubber when it is used as
a damping component, examples being the Flory–Erman model and the Arruda–
Boyce eight-chain model. To build the practical metamaterial precisely, further
investigation of the modelling of the rubber should be developed, which is merely
introduced here. Hysteretic damping can also be obtained by the introduction
of the damping coefficient of the rubber.

(2) Another possible configuration is real steel springs with viscous damping
(dashpot). As shown in Fig. 14b, the spring-mass resonators are parallel, at-
tached to the homogeneous plate. In this case, the mounting requirements need
to be examined. Any slippage among contacts of the steel springs and the masses
should be noted, as that can greatly influence the performance of the metamate-
rial. The central point of the mass should be consistent with that of the springs
in cases of torsion and rotation. Such cases will be further analysed in a future
study to provide more detailed guidance.

We are aware that the analysis in this work is limited: the host plate is as-
sumed to be homogeneous elastic, the attached resonators ideally vibrate in the
z direction and theoretical and numerical analysis is limited to unconstrained
systems, to name a few limitations. However, since a free-boundary system
demonstrates a worst-case scenario, unconstrained systems can ideally satisfy
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one’s needs for a particular practical purpose with desirable properties under all
circumstances. Moreover, viscoelastic material behaviour is neglected. Instead,
hysteretic damping of the resonators and host plate is analysed numerically for
the practical engineering. Furthermore, when the proposed configuration is used
in practical engineering, the coupling loss factor may be another quantity in-
fluencing the behaviour of the metamaterial plate. The attached resonators and
the host plate are independent constituents. When they are assembled together
for vibration suppression, power flow among these constituents determines the
vibration modes. The coupling loss factor and power flow can be analysed using
statistical energy methods, which will be elaborated in future work.

For the practical model proposed in this part, the connection between the
resonators and the plate is no longer a single point. Consequently, the results may
differ from the theoretical results, but the trends of the curves and conclusions
show the capability of the metamaterial. These matters should be dealt with in
future experimental validation.

Practical engineering may need to apply the concept of attaching damped
resonators to a cylindrical shell in parallel configuration, such as a submarine
shell, and it may be useful to construct a metamaterial cylinder shell for vi-
bration absorption and wave attenuation. In our future analysis, the practical
metamaterial plate model and theoretical metamaterial cylinder model will be
developed. The analysis presented in this article may provide a foundation for
future complex implementations. There is still much room in this work for ex-
ploration in practical engineering design.

5. Conclusion

The acoustic characteristics of a damped metamaterial plate composed of
a homogeneous plate with parallel attached resonators were investigated theo-
retically and numerically. Comparison with a metamaterial plate with two res-
onators attached in series showed that the second band gap of the proposed
metamaterial is much wider and lower, whereas the first band gap changes little.
For the metamaterial plate with parallel attached resonators, the lower edges
of the band gap isolate each other, facilitating merging of the band gaps into
a wider single band gap and leading to better potential for practical application.
Damping from different parts of the metamaterial unit was fully investigated
with respect to the band gaps and wave propagation performance. The results
reveal that damping from the host plate can broaden the band gaps, and smooth
and lower the responses across the whole frequency range. At the same time,
damping of the resonators can greatly affect the effective mass density within
the negative-density ranges through vigorous resonance and damping out the en-
ergy. FE modelling and the FRA were adopted to investigate wave propagation
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through the proposed metamaterial plate. The addition of a reasonable level
of damping in the simulation efficiently lowered and smoothed the responses,
a finding which was consistent with the theoretical results. On the other hand,
a high level of damping of the resonators dramatically deactivated the band gap
effect. Separation of the two resonators weakened the effects of damping from
each other, facilitating detection of the source of damage caused by damping. The
mode shapes with different frequencies showed the behaviour of the waves within
and outside the band gaps. They also revealed that the metamaterial plate is
based on the concept of conventional multi-frequency vibration absorbers which
generate inertial forces to counteract the shear forces induced by the flexural
waves within the band gaps.
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