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Antiplane strain (shear) of orthotropic non-homogeneous prismatic shell-
like bodies are considered when the shear modulus depending on the body projection
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1. Introduction

The antiplane shear (strain) is a special state of strain in a body. This state
is achieved when the displacements in the body are zero in the plane of interest
but nonzero in the direction perpendicular to the plane. If the plane Ox1x2 of
the rectangular Cartesian frame Ox1x2x3 is the plane of interest, then

(1.1)
uα(x1, x2, x3) ≡ 0, α = 1, 2;

u3(x1, x2, x3) = u3(x1, x2), (x1, x2) ∈ ω,

where uj , j = 1, 2, 3, are the displacements, ω is a projection of the prismatic
shell-like body Ω on the plane Ox1x2, correspondingly ∂ω is a projection of
the lateral boundary S of Ω. The relations (1.1) mean that all the sections of
the body parallel to the plane of interest Ox1x2 will be bent as its section by
the plane Ox1x2. Ω may have either Lipschitz (see Figs. 1–4) or non-Lipschitz
boundary (see Fig. 5), ω has Lipschitz boundary (see Figs. 6, 7). Below Einstein’s
summation convention is used. A bar under one of the repeated indices means
that this convention is not used.
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Fig. 1. A non-homogeneous elastic cylinder. Fig. 2. Ω with a Lipschitz boundary.

Fig. 3. Ω with a smooth boundary. Fig. 4. Ω with a Lipschitz boundary.

Fig. 5. Ω with a non-Lipschitz boundary. Fig. 6. General case of ω.

For an orthotropic linear elastic material the strain ekj and stress Xkj ,
k, j = 1, 2, 3, tensors resulting from a state of antiplane shear can be expressed as

(1.2) eαβ ≡ 0, α, β = 1, 2; e33 ≡ 0; eα3 = 1
2u3,α(x1, x2) 6≡ 0, α = 1, 2,

where the comma after the index means differentiation with respect to the vari-
able corresponding to the index indicated after the comma, and

(1.3)
Xαβ ≡ 0, α, β = 1, 2; X33 ≡ 0;

X3α = Xα3 = µα(x1, x2)u3,α(x1, x2), α = 1, 2,
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since for non-homogeneous body with the shear moduli µα(x1, x2), α = 1, 2,
Hooke’s law is expressed in the following way

(1.4) Xα3 = 2µαeα3 = µα(x1, x2)u3,α(x1, x2), α = 1, 2.

From (1.3), (1.4) it follows that at any point x := (x1, x2, x3) the stress vector
components are

Xnα = Xjαnj = X3αn3 = µαu3,αn3, α = 1, 2;(1.5)

Xn3 = Xj3nj = Xα3nα =
2

∑

α=1

µαu3,αnα,(1.6)

where n is the unit normal of a surface element passing through x.
The equilibrium equations are reduced to

(1.7) Φα ≡ 0, α = 1, 2, Xα3,α + Φ3 = 0,

where Φj , j = 1, 2, 3, are the components of the volume force.
Let u3 ∈ C2(ω), µ ∈ C1(ω), and Φ3 ∈ C(ω). Substituting (1.3) into (1.7) we

get only one governing equation

(1.8)
2

∑

α=1

(µα(x1, x2)u3,α(x1, x2)),α + Φ3(x1, x2) = 0, (x1, x2) ∈ ω.

In the dynamical case we have

(1.9)
2

∑

α=1

(µα(x1, x2)u3,α(x1, x2, t)),α + Φ3(x1, x2, t)

= ρü3(x1, x2, t), (x1, x2) ∈ ω, t ≥ t0.

The aim of the present paper is to investigate static and dynamical prob-
lems for the symmetric prismatic shell-like body Ω (see [1, 2]), in particular, of
constant thickness (which (body) may also be infinite) when the shear moduli

Fig. 7. A finite ω.
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may vanish either on a part or on the entire boundary of the projection ω on
the plane of interest Ox1x2 (see Figs. 6, 7).

In [3] antiplane strain (shear) of an isotropic prismatic shell-like body is
considered when the shear modulus depending on the body projection variables
vanishes either on a part or on the entire boundary of the projection. The depen-
dence of well-posedeness of boundary conditions on the character of vanishing of
the shear modulus is studied. When the above-mentioned domain is either the
half-plane or the half-disk and the shear modulus is a power function with respect
to the variable along the perpendicular to the linear boundary, the basic bound-
ary value problems are solved explicitly in quadratures. In [4] the dynamical
problem of antiplane strain (shear) of an isotropic non-homogeneous prismatic
shell-like body is considered.

2. Investigation of BVPs. General case

In this section the antiplane deformation of an orthotropic non-homogeneous
elastic cylinders and prismatic shell-like bodies (see Figs. 1–5, for other examples
see [2]) are studied.

Evidently (see (1.5), (1.6)), on the lateral boundary S of the cylinder Ω

(2.1) Xnα = 0, α = 1, 2, Xn3 =
2

∑

α=1

µαu3,αnα,

where n is the outward normal to S.
If the cylinder is finite, on the upper and lower bases of the cylinder Ω (see

(1.5), (1.6))

X(+)
n α

= X3α = µαu3,α, α = 1, 2, Xn3 = X33 = 0,

and
X(−)

n α
= −X3α = −µαu3,α, α = 1, 2, Xn3 = −X33 = 0,

respectively (in the case of prismatic shell-like bodies they are given by formulas
(1.5), (1.6) on the face surfaces).

Let the shear moduli µα ∈ C1(ω\(∂ω)2) ∩ C(ω), α = 1, 2, as has already
been assumed, be independent of x3 and µα(x1, x2) > 0 in ω∪ (∂ω)3 (see Figure
6), µα(x1, x2) = 0 on (∂ω)0, where the boundary (∂ω)0 is divided in (∂ω)1 and
(∂ω)2, i.e., ∂ω = (∂ω)1 ∪ (∂ω)2 ∪ (∂ω)3 (correspondingly S = S1 ∪ S2 ∪ S3). If,
moreover, µα(x1, x2) = µα

0µ(x1, x2), µα
0 = const > 0, and

∂µ

∂n

∣

∣

∣

(∂ω)2
= +∞,(2.2)

∂µ

∂n

∣

∣

∣

(∂ω)1
≥ 0,(2.3)



Antiplane strain (shear) of orthotropic non-homogeneous. . . 309

then (compare with [3]): if (∂ω)1 6= ∅, a solution u3 of equation (1.8) is de-
termined uniquely by its values prescribed only on (∂ω)2 ∪ (∂ω)3 (Problem E:
u3 ∈ C2(ω)∩C(ω̄\(∂ω)1)∩Cb(ω), Cb(ω) means a class of bounded functions); if
(∂ω)1 = ∅, for unique solvability of the BVP the values of u3 should be prescribed
on the whole boundary ∂ω (Problem D: u3 ∈ C2(Ω) ∩ C(Ω)).

The criteria (2.2) and (2.3) can be replaced by the equivalent criteria in the
integral form (see [5], formulas (13), (14)).

If Xn3 = ϕ is prescribed on ∂ω, then on (∂ω)0 we have to consider the
weighted boundary condition (BC) (Problem W: u3 ∈ C2(Ω),

∑2
α=1 µαu3,αnα

∈ C(Ω))

(2.4) lim
(x1,x2)→(∂ω)0

2
∑

α=1

µαu3,αnα = ϕ.

The above mentioned problems are well-posed under some restrictions on
classes of functions, where solutions are sought (for classical solutions see below;
for H-weak solutions [6, 7] of Problems D and E see Appendix 1 in [5] which can
be reformulated for our case; see also [8–10]).

As it is seen in the case of Problem D on the cylindrical boundary S de-
flections u3(x1, x2) are prescribed, while in the case of Problem E deflections
u3(x1, x2) should be prescribed only on S2 ∪S3. BC (2.4) means that at S shear
stresses Xα3(x1, x2), α = 1, 2, are applied. In all the cases at face surfaces one
should apply stresses calculated by formulas (1.5), (1.6) in order to maintain the
antiplane state in the body. Note that if the thickness of the prismatic shell-like
body vanishes on a part of ∂ω or on the entire ∂ω, then by the antiplane shear
the character of the thickness vanishing does not affect well-posedness of BVPs
at cusped edges. This is in contrast to cusped prismatic shells for which it is the
case and depends (see [2]) on the sharpening geometry.

Let

(2.5) µα(x1, x2) = µα
0x

κα

2 , µα
0 = const > 0, κα ≥ 0, α = 1, 2, (x1, x2) ∈ ω.

In this case equation (1.8) has the form

(2.6) µ1
0x

κ1
2 u3,11 + µ2

0x
κ2
2 u3,22 + κ2µ

2
0x

κ2−1
2 u3,2 = −Φ3(x1, x2).

The partial differential operator in the left-hand side of equation (1.8) de-
generates on the x1-axis, provided at least one of κ1 and κ2 is not zero.

If µ1
0 = µ2

0 =: µ0, then (2.6) can be rewritten as follows

(2.7) xκ1
2 u3,11 + xκ2

2 u3,22 + κ2x
κ2−1
2 u3,2 = − 1

µ0
Φ3(x1, x2).
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If κ1 = κ2 =: κ, then

(2.8) x2(µ
1
0u3,11 + µ2

0u3,22) + κµ2
0u3,2 = −x1−κ

2 Φ3(x1, x2).

Problem D and Problem E are uniquely solvable for equation (2.7) for κ2 < 1
and κ2 ≥ 1, correspondingly. This follows from the following theorem (see [11]).

Theorem 2.1. If the coefficients aα, α = 1, 2 and c of the equation

xκα

2 u,αα +aα(x1, x2)u,α +c(x1, x2)u = 0, c ≤ 0, κα = const ≥ 0, α = 1, 2,

are analytic in ω bounded by a sufficiently smooth arc (∂ω \ω0) lying in the half
plane x2 ≥ 0 and by a segment ω0 of the x1-axis, then

(i) if either κ2 < 1, or κ2 ≥ 1,

(2.9) a2(x1, x2) < xκ2−1
2

in Iδ for some δ = const > 0, where

Iδ := {(x1, x2) ∈ ω : 0 < x2 < δ},

the Dirichlet problem is well-posed;
(ii) if κ2 ≥ 1,

(2.10) a2(x1, x2) ≥ xκ2−1
2

in Iδ and a1(x1, x2) = O(xκ1
2 ), x2 → 0+ (O is the Landau symbol), the Keldysh

problem is well-posed.

Remark. If 1 < κ2 < 2, a2(x, 0) ≤ 0, the Dirichlet problem is correct.

Using the method applied in [12] (see pages 58, 68–74), it is not difficult to
verify that the theorem is also true for Hölder continuous c and aα, α = 1, 2,
on ω, provided:

(i) lim
x2→0+

x1−κ2
2 a2(x1, x2) = a0 = const < 1 for (x1, 0) ∈ ω0 when 0 ≤ κ2 < 1;

(ii) if a2(x
0
1, 0) = 0 for a fixed (x0

1, 0) ∈ ω0 when 1 < n < 2, then there exists
such a δ = const > 0 that a2(x

0
1, x2) = κ(x0

1, x2) · x2 with bounded κ(x0
1, x2) for

0 ≤ x2 < δ.
Here ω0 is a part of ∂ω lying on the x1-axis.
Indeed, for (2.7) the conditions (2.9) and (2.10) mean

κ2x
κ2−1
2 < xκ2−1

2 , i.e., κ2 < 1,

and
κ2x

κ2−1
2 ≥ xκ2−1

2 , i.e., κ2 ≥ 1,

respectively.
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3. Harmonic vibration

Let us consider the case (2.5) for κ1 = κ2 =: κ < 1.
In the case of harmonic vibration

u3(x1, x2, t) = e−iϑtv(x1, x2), Φ3(x1, x2, t) = e−iϑtΦ(x1, x2),

i2 = −1, ϑ = const > 0,

from equation (1.9) we get

(3.1) µ1
0x

κ
2v,11(x1, x2) + µ2

0x
κ
2v,22(x1, x2) + κµ2

0x
κ−1
2 v,2(x1, x2) + Φ(x1, x2)

= −ρϑ2v(x1, x2),

(x1, x2) ∈ ω, 0 < x2 ≤ l, l = const > 0.

Let
v, v∗ ∈ C2(ω) ∩ C1(ω), Φ ∈ C(ω),

Green’s formula

(3.2)
∫

ω

Av · v∗dω = J(v, v∗) −
∫

∂ω

Tnv · v∗d∂ω =

∫

ω

Φ · v∗dω,

where

A := −xκ
2

(

µ1
0

∂2

∂x2
1

+ µ2
0

∂2

∂x2
2

)

− κµ2
0x

κ−1
2

∂

∂x2
,

J(v, v∗) :=

∫

ω

[µ1v,1 v,
∗
1 +µ2v,2 v,

∗
2 −ρϑ2vv∗]dω(3.3)

=

∫

ω

4[µ1e13(v)e13(v
∗) + µ2e23(v)e23(v

∗) − ρϑ2vv∗]dω

=

∫

ω

[X3αeα3(v
∗) − ρϑ2vv∗]dω,

n := (n1, n2) is the inward normal to ∂ω:

Tn := Xn3 = X3α0nα,

is valid.
If we consider BVPs for equation (3.1) with a homogeneous boundary con-

dition

(3.4) v = 0 on ∂ω
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for which the curvilinear integral along ∂ω in (3.2) disappears, we obtain

J(v, v∗) =

∫

ω

Φ · v∗dω.

Note that throughout the paper, for smooth classical solutions, equation (3.1)
and boundary condition (3.4) are understood in the classical point-wise sense,
while for generalized weak solution equation (3.1) is understood in the distribu-
tional sense and the boundary condition (3.4) is understood in the usual trace
sense ([13], [14]).

Denote by D(ω) a space of infinitely differentiable functions with compact
support in ω. The bilinear form and norm are introduced by the following for-
mulas:

(v, v∗)Xκ :=

∫

ω

xκ
2 [v,1v

∗
,1 + v,2v

∗
,2]dω

and

‖v‖2
Xκ :=

∫

ω

xκ
2 [v,21 +v,22 ]dω.

The last is the norm because of the well-known Hardy-type inequality (see [15],
p. 69; [16]). So, Xκ is a Hilbert space.

The classical and weak setting of the homogeneous Dirichlet problem can be
formulated as follows:

Problem 3.1. Find v ∈ C2(ω) ∩ C1(ω) satisfying equation (3.1) in ω and
the homogeneous Dirichlet boundary condition (3.4).

Problem 3.2. Find v ∈ Xκ satisfying the equality

(3.5) J(v, v∗) = 〈Φ, v∗〉 for all v∗ ∈ Xκ,

here Φ belongs to the adjoint space [Xκ]∗, and 〈·, ·〉 denotes duality brackets
between the spaces [Xκ]∗ and Xκ.

Lemma 3.3. The bilinear form J(·, ·) is bounded and strictly coercive in the
space Xκ(ω), i.e., there are positive constant C0 and C1 such that

|J(v, v∗)| ≤ C1‖v‖Xκ‖v∗‖Xκ ,(3.6)

J(v, v) ≥ C0‖v‖2
Xκ(3.7)

for all v, v∗ ∈ Xκ, if

(3.8) ϑ2 <
µ2

0

4ρl2−κ
.
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Proof. (3.7) immediately follows from (3.3) and Hardy’s inequality (see [15,
p. 69]; [16]), namely,

J(v, v) =

∫

ω

[xκ
2(µ1

0v,
2
1 +µ2

0v,
2
2 ) − ρϑ2v2] dω

≥
∫

ω

[xκ
2(µ1

0v,
2
1 +µ2

0v,
2
2 ) − 4ρϑ2x2v,22 ] dω

≥
∫

ω

xκ
2(µ1

0v,
2
1 +µ2

0v,
2
2 −4ρϑ2l2−κv,22 ) dω

(taking into account of (3.8) µ2
0 − 4ρϑ2l2−κ > 0)

≥ C0

∫

ω

xκ
2(v,21 +v,22 ) = C0‖v‖2

Xκ , C0 := min{µ1
0, µ

2
0 − 4ρϑ2l2−κ}.

Now, we have to prove (3.6). From (3.3) we get

|J(v, v∗)|2 =

∣

∣

∣

∣

∫

ω

[xκ
2(µ1

0v,1 v,
∗
1 +µ2

0v,2 v,
∗
2 ) − ρϑ2vv∗] dω

∣

∣

∣

2

=

∣

∣

∣

∣

∫

ω

xκ
2(µ1

0v,1 v,
∗
1 +µ2

0v,2 v,
∗
2 ) dω

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∫

ω

ρϑ2vv∗ dω

∣

∣

∣

∣

2

+ 2

∣

∣

∣

∣

∫

ω

xκ
2(µ1

0v,1 v,
∗
1 +µ2

0v,2 v,
∗
2 ) dω

∣

∣

∣

∣

∣

∣

∣

∣

∫

ω

ρϑ2vv∗dω

∣

∣

∣

∣

≤ C2

∣

∣

∣

∣

∫

ω

xκ
2(v,1 v,

∗
1 +v,2 v,

∗
2 ) dω

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∫

ω

ρϑ2vv∗ dω

∣

∣

∣

∣

2

+ 2C3

∣

∣

∣

∣

∫

ω

xκ
2(v,1 v,

∗
1 +v,2 v,

∗
2 ) dω

∣

∣

∣

∣

∣

∣

∣

∣

∫

ω

ρϑ2vv∗ dω

∣

∣

∣

∣

:= I1 + I2,

where

C2 := max{(µ1
0)

2, (µ2
0)

2}, C3 := max{µ1
0, µ

2
0},

I1 := C2

∣

∣

∣

∣

∫

ω

xκ
2(v,1 v,

∗
1 +v,2 v,

∗
2 ) dω

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∫

ω

ρϑ2vv∗ dω

∣

∣

∣

∣

2

,

I2 := 2C3

∣

∣

∣

∣

∫

ω

xκ
2(v,1 v,

∗
1 +v,2 v,

∗
2 ) dω

∣

∣

∣

∣

∣

∣

∣

∣

∫

ω

ρϑ2vv∗ dω

∣

∣

∣

∣

.
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Taking into account Hardy’s inequality (see [15, p. 69]; [16]), we have (all the
norms bellow are of the space Xκ)

I1 ≤ C2‖v‖2‖v∗‖2 + 16ρ2ϑ4

∫

ω

xκ
2x

2−κ
2 v,22 dω

∫

ω

xκ
2x

2−κ
2 (v,∗2 )2dω

≤ C2‖v‖2‖v∗‖2 + 16ρ2ϑ4l4−2κ

∫

ω

xκ
2v,

2
2 dω

∫

ω

xκ
2(v,∗2 )2dω

≤ C2‖v‖2‖v∗‖2 + 16ρ2ϑ4l4−2κ

∫

ω

xκ
2(v,21 +v,22 )dω

∫

ω

xκ
2 [(v,∗1 )2 + (v,∗1 )2]dω

= C2‖v‖2‖v∗‖2 + 16ρ2ϑ4l4−2κ‖v‖2‖v∗‖2 ≤ C4‖v‖2‖v∗‖2,

I2 = 2C3ρϑ
2
[∣

∣

∣

∫

ω

xκ
2(v,1 v,

∗
1 +v,2 v,

∗
2 )dω

∣

∣

∣

2∣
∣

∣

∫

ω

vv∗dω
∣

∣

∣

2]1/2

≤ 2C3ρϑ
2

[

‖v‖2‖v∗‖2

∫

ω

xκ
2x

2−κ
2 v,22 dω

∫

ω

xκ
2x

2−κ
2 (v,∗2 )2 dω

]1/2

≤ 2C3ρϑ
2l2−κ[‖v‖2‖v∗‖2‖v‖2‖v∗‖2]1/2 = C5‖v‖2‖v∗‖2.

The last two inequalities prove (3.6). 2

Remark 3.4. If J(v, v) = 0, then v ≡ 0 by (3.7).

Theorem 3.5. Let Φ be a bounded linear functional from [Xκ]∗. Then the
variational problem (3.5) has a unique solution v ∈ Xκ for an arbitrary value of
the parameter κ and

‖v‖Xκ ≤ 1

C0
‖Φ‖[Xκ]∗ .

Proof. Taking into account Lemma 3.3, the proof immediately follows from
the Lax-Milgram theorem. 2

Remark 3.6. It can be easily shown that if Φ ∈ L(ω) and suppΦ ∩ γ0 = ∅,
then Φ ∈ [Xκ]∗ and

〈Φ, v∗〉 =

∫

ω

Φ(x) v∗(x) dω,

since v∗ ∈ H1(ωε), where ε is sufficiently small positive number such that
suppΦ ⊂ ωε = ω ∩ {x2 > ε}. Therefore,

|〈Φ, v∗〉| =

∣

∣

∣

∣

∫

ω

Φ(x) v∗(x) dω

∣

∣

∣

∣

≤ ‖Φ‖L2(ω) ‖v∗‖L2(ωε)

≤ ‖Φ‖L2(ω) ‖v∗‖H1(ωε) ≤ Cε‖Φ‖L2(ω) ‖v∗‖Xκ .
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In this case, we obtain the estimate

‖v‖Xκ ≤ Cε

C0
‖Φ‖L2(ω).

Remark 3.7. The space Xκ is the weighted Sobolev space.

Corollary 3.8. v has the zero trace on ∂ω if κ < 1.

Proof. It follows directly from the trace theorems (see [15] and [16]).
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