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Solving the dual-phase lag bioheat transfer equation
by the generalized finite difference method
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The modeling of bioheat transfer process described by the dual-phase lag
equation is considered. The basic equation is supplemented by the appropriate
boundary-initial conditions. In the central part of the cylindrical domain the heated
sub-domain is located. In this region the additional component determining the ca-
pacity of an internal heat source is taken into account. At the stage of numerical
computations the generalized finite difference method (GFDM) is used. The GFDM
nodes distribution is generated in a random way (with some limitations). The exam-
ples of computations for different nodes distribution and comparison with the classical
finite difference method are presented. In the final part of the paper the conclusions
are formulated.
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1. Introduction

The subject of the paper is connected with the numerical modeling of
thermal processes proceeding in the domain of the soft tissues. For many years
the base of these processes description was the Pennes equation [1, 2]. It is the
typical heat diffusion parabolic equation supplemented by additional terms (the
source functions) connected with the blood perfusion and metabolism. The math-
ematical form of the perfusion heat source results from the assumption that soft
tissue is supplied by a big number of capillary blood vessels uniformly distributed
in the tissue domain. The metabolic heat source is assumed as a constant value
or the temperature-dependent function [3].

To take into account the finite velocity of a thermal wave propagation the so-
called relaxation time was introduced by Cattaneo [4] and the energy equation
(a hyperbolic PDE) is known as the Cattaneo–Vernotte equation. Because of
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the specific inner structure of tissue which causes the lag effect of heat flux with
respect to the temperature gradient this equation is also applied in the case of
bio-heat transfer [5, 6]. For example, in the paper [5] the relaxation time for
processed meat is estimated to be of the order of 2 seconds. In literature, the
other values of this parameter can be also found (e.g. [6]).

Recently to describe the heat transfer in the soft tissue domain the dual-phase
lag equation (DPLE) has often been used. The DPL model describes a macro-
scopic temperature, at the same time an inner microscopic tissue structure is
taken into account by an introduction of two delay times to the energy equation
(e.g. [7, 8]). So, the DPLE contains both the relaxation time τq and thermaliza-
tion time τT . In the equation discussed the second derivative of temperature with
respect to time and also the mixed derivative both in time and space appear.

In this paper the presented problem of artificial hyperthermia modeling can
be understood as a medical treatment in which the local tissue temperature is
raised to 41–46◦C. Problems of the thermal processes proceeding in the domain
of heated living tissue were analyzed by Liu [9]. Next in 2009, Liu and Chen [10]
used the DPL equation for the hyperthermia treatment modeling. The similar
problems are discussed in the papers [11–13]. The authors consider the thermal
damage of the biological tissues due to the laser irradiation.

At the stage of computations the different methods of the PDE numerical
solutions have been applied. The majority of them based on the classic variant
of the finite difference method (FDM) for hyperbolic equations, e.g. [14–17], or
its modifications [18, 19]. Quite often the control volume method is also used
[12, 13, 20]. One should also mention the use of the finite element method [11]
or the boundary element method [21–23].

In this paper the application of the generalized finite difference method
(GFDM) is discussed. It is said that the GFDM constitutes, in a certain degree,
the bridge between the classical FDM and FEM. It results from the possibility
of practically optional discretization of the domain considered (the similar ad-
vantages has a version of the control volume method presented in [20]). One of
the first publications concerning the GFDM was the paper presented by Orkisz

and Liszka [24]. The method has been used for the elliptical PDE. The similar
topics have been developed in the papers [25, 26]. The GFDM for the parabolic
PDE has been used by Mochnacki and Pawlak [27]. In the paper the sta-
bility condition for GFDM explicit scheme has also been formulated. In turn,
in the paper [28] GFDM was applied for numerical modeling of a solidification
process.

In this paper the GFDM is proposed to solve the DPL model describing the
bioheat transfer process in an axisymmetrical domain.

According to the author’s knowledge the method so far has not been used
for this type of thermal diffusion problems.
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2. Governing equation

The domain of healthy tissue Ω1 and centrally located sub-domain of the
tumor Ω2, as shown in Fig. 1, is considered. Under the assumption that thermal
properties of the healthy tissue and tumor region are the same, only one DPL
equation describing the temperature field in the domainΩ1∪Ω2 is considered [13]:

(2.1) C

[

∂T (r, z, t)

∂t
+ τq

∂2T (r, z, t)

∂t2

]

= λ∇2T (r, z, t)λτT
∂∇2T (r, z, t)

∂t
+Q(r, z, t) + τq

∂Q(r, z, t)

∂t
,

where (r, z) [m] are the spatial coordinates, t [s] is the time, T [◦C] is the tempera-
ture of tissue, C [J/(m3 ·K)] is the volumetric specific heat of tissue, λ [W/(m·K)]
is the thermal conductivity of tissue, while τq [s] is a relaxation time and τT [s]
is the thermalization time.

The source function Q(r, z, t) [W/m3] in Eq. (2.1) consists of three compo-
nents, first one connected with the blood perfusion, next one connected with
metabolism Qm and last one is the source function Qe describing the artificial
heating of tissue

(2.2) Q(r, z, t) = Gcb[Tb − T (r, z, t)] +Qm(r, z, t) +Qe(r, z, t)

where G [kg/(m3 · s)] is the blood perfusion rate, cb [J/(kg · K)] is the specific
heat of blood, Tb [◦C] is the arterial blood temperature, Qm(r, z, t) is a metabolic

Ω1

Ω2

Γ2

r

z

Γ1

Γ3

Fig. 1. The considered domain (Ω1) with a heating zone (Ω2).
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heat source. The function Qe(r, z, t) is defined as follows:

(r, z) ∈ Ω2 : Qe(r, z, t) =

{

Q0, t ≤ tex,

0, t > tex,
(2.3)

where Q0 is a constant value and tex is the exposure time. For
(r, z) ∈ Ω1 : Qe(r, z, t) = 0, of course.

The Eq. (2.1) is supplemented by the no-flux boundary condition q(r, z, t) = 0
and initial conditions:

(2.4) t = 0 : T (r, z, 0) = Tp,
∂T (r, z, 0)

∂t
= w,

where Tp is the initial temperature and w is the initial heating rate.
Taking into account the form of the source function (2.2) and assuming that

Qm is a constant value, the equation (2.1) can be written as follows

(2.5) (C +Gcbτq)
∂T (r, z, t)

∂t
+ Cτq

∂2T (r, z, t)

∂t2

= λ

[

∇2T (r, z, t) + τT
∂∇2T (r, z, t)

∂t

]

+Gcb[Tb − T (r, z, t)] +Qm +Qe(r, z, t).

The Eq. (2.5) supplemented by boundary and initial conditions is solved
using the generalized finite difference method presented in the next section.

3. Method of solution

To solve the formulated problem, an explicit scheme of the generalized finite
difference method has been used. The time discretisation, with the constant
time step ∆t, is introduced and the temperature at the node i is denoted as
T f

i = T (ri, zi, f∆t). So, for time tf = f∆t (f ≥ 2) the following approximate
form of equation (2.5) is proposed

(3.1) (C +Gcbτq)
T f

i − T f−1
i

∆t
+ Cτq

T f
i − 2T f−1

i + T f−2
i

(∆t)2

= λ

[

(∇2T )f−1
i + τT

(∇2T )f−1
i − (∇2T )f−2

i

∆t

]

+Gcb(Tb − T f−1
i ) +Qm +Qe

f−1
i ,

where

(∇2T )s
i =

[

1

r

∂

∂r

(

r
∂T

∂r

)

+
∂2T

∂z2

]s

i

(3.2)

=

(

1

r

∂T

∂r
+
∂2T

∂r2
+
∂2T

∂z2

)s

i

=
1

r
T s

r + T s
rr + T s

zz

and s = f − 1 or s = f − 2. After introducing the formula (3.2) into Eq. (3.1)
the following notation has been received
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(3.3)
∆t(C +Gcbτq) + Cτq

(∆t)2
T f

i

=
∆t(C +Gcbτq) + 2Cτq −Gcb(∆t)

2

(∆t)2
T f−1

i

− Cτq

(∆t)2
T f−2

i +
λ(∆t+ τT )

∆t

[

1

r
(Tr)

f−1
i + (Trr)

f−1
i + (Tzz)

f−1
i

]

− λτT
∆t

[

1

r
(Tr)

f−2
i + (Trr)

f−2
i + (Tzz)

f−2
i

]

+GcbTb +Qm +Qe
f−1
i .

In the next step of GFDM, in the domain considered Ω = Ω1 ∪Ω2 and along
the boundary Γ = Γ1 ∪ Γ2 ∪ Γ3, the cloud of points (nodes) is generated – cf.
Fig. 2. For each node in the generated cloud the n-point star is assigned. The
n-point star is composed by the central node Ni = (ri, zi) and surrounding points
Nj = (rj , zj). The selection of the points creating the star is very important
for the accuracy of numerical computations. These problems are described by
Liszka and Orkisz in [24]. In this paper, the adjacent nodes are located inside
the circle of the radius Rd or the constant number n is assumed. Additionally,
the regular density of nodes is under guard.

The function T (r, z, t) is expanded into the Taylor series taking into account
the second derivatives

T (r, z, t) = T (ri, zi, t) +

[

∂T (r, z, t)

∂r

]

i

(r − ri)(3.4)

+

[

∂T (r, z, t)

∂z

]

i

(z − zi) +
1

2

[

∂2T (r, z, t)

∂r2

]

i

(r − ri)
2

+
1

2

[

∂2T (r, z, t)

∂z2

]

i

(z − zi)
2 +

[

∂2T (r, z, t)

∂z∂r

]

i

(r − ri)(z − zi).

i

j

n

r

z

Ω

Γ

Rd

Fig. 2. Cloud of points and n-point star.
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For the point (rj , zj) one has:

T s
j = T s

i + (Tr)
s
ihj + (Tz)

s
ikj(3.5)

+
1

2
(Trr)

s
ih

2
j +

1

2
(Tzz)

s
ik

2
j + (Trz)

s
ihjkj ,

where hj = rj − ri, kj = zj − zi and s denotes a certain time level.
The best approximation of the local values of the first and second deriva-

tives appearing in equation (3.5) results from the least squares criterion in the
form:

J =
n

∑

j=1

{[

T s
i − T s

j + (Tr)
s
ihj + (Tz)

s
ikj(3.6)

+
1

2
(Trr)

s
ih

2
j +

1

2
(Tzz)

s
ik

2
j + (Trz)

s
ihjkj

]

1

ρm
j

}2

,

where

ρj =

√

(rj − ri)
2 + (zj − zi)

2.(3.7)

In Eq. (3.6) a fraction 1/ρm
j is the so-called weighting coefficient and usually it

is assumed that m = 3 [25].
In the Appendix it is shown that

1

r
(Tr)

s
i + (Trr)

s
i + (Tzz)

s
i =

n
∑

j=1

ZijT
s
j − T s

i

n
∑

j=1

Zij .(3.8)

Formula (3.8) is introduced into equation (3.3) and then:

(3.9)
∆t(C +Gcbτq) + Cτq

(∆t)2
T f

i

=
∆t(C +Gcbτq) + 2Cτq −Gcb(∆t)

2

(∆t)2
T f−1

i

− Cτq

(∆t)2
T f−2

i +
λ(∆t+ τT )

∆t

(

n
∑

j=1

ZijT
f−1
j − T f−1

i

n
∑

j=1

Zij

)

− λτT
∆t

(

n
∑

j=1

ZijT
f−2
j − T f−2

i

n
∑

j=1

Zij

)

+GcbTb +Qm +Qe
f−1
i .

From Eq. (3.9) the formula which allows to find the nodal temperatures results:
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T f
i =

∆t(C +Gcbτq) + 2Cτq −Gcb(∆t)
2

∆t(C +Gcbτq) + Cτq
T f−1

i(3.10)

− Cτq
∆t(C +Gcbτq) + Cτq

T f−2
i

+
λ∆t(∆t+ τT )

∆t(C +Gcbτq) + Cτq

(

n
∑

j=1

ZijT
f−1
j − T f−1

i

n
∑

j=1

Zij

)

− λτT ∆t

∆t(C +Gcbτq) + Cτq

(

n
∑

j=1

ZijT
f−2
j − T f−2

i

n
∑

j=1

Zij

)

+
(∆t)2(GcbTb +Qm +Qe

f−1
i )

∆t(C +Gcbτq) + Cτq
.

It should be pointed out that in the case of an explicit scheme application
a criterion of stability should be formulated. In the case of parabolic equations
a two-level difference approximation of a time derivative is used and the explicit
scheme is stable, if the appropriate coefficients in the FDM are non-negative [27].
In the case of the hyperbolic equation considered here the three-level difference
approximation of a time derivative is used and the problem of stability is more
complicated. The equation (3.10) can be written in the form:

T f
i =

∆t(C+Gcbτq)+2Cτq−Gcb(∆t)2−λ∆t(∆t+τT )
∑n

j=1 Zij

∆t(C+Gcbτq)+Cτq
T f−1

i(3.11)

+
λ∆t(∆t+τT )

∆t(C+Gcbτq)+Cτq

n
∑

j=1

ZijT
f−1
j −

Cτq−λτT ∆t
∑n

j=1 Zij

∆t(C+Gcbτq)+Cτq
T f−2

i

− λτT ∆t

∆t(C+Gcbτq)+Cτq

n
∑

j=1

ZijT
f−2
j +

(∆t)2(GcbTb+Qm+Qe
f−1
i )

∆t(C+Gcbτq)+Cτq
.

As in the case of the two-level scheme it is assumed that the coefficients multi-
plied by temperatures T f−1

i , T f−1
j must be non-negative. Thus

(3.12)
∆t(C +Gcbτq) + 2Cτq −Gcb(∆t)

2 − λ∆t(∆t+ τT )
∑n

j=1 Zij

∆t(C +Gcbτq) + Cτq
≥ 0.

Testing calculations have shown that this is not a sufficient criterion. An addi-
tional criterion for coefficients multiplied by temperatures T f−2

i , T f−2
j has been

formulated: these coefficients must be non-positive. So

Cτq − λτT ∆t
∑n

j=1 Zij

∆t(C +Gcbτq) + Cτq
≥ 0(3.13)

but it is not proven mathematically.
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The not very complicated problem of no-flux boundary conditions modeling
is not considered here.

In Fig. 3 the algorithm of the generalized finite difference method is presented.
As it can be seen, the most time-consuming operation is finding adjacent nodes,
because the distances between all nodes have to be calculated. But it is important
to emphasize that finding of adjacent nodes, setting and inverting G matrices
and calculating the Z matrices is performed only once. The process of matrices
inverting does not introduce a significant error because the matrices have the
constant dimensions of 5 × 5 and the symbolic formula is introduced.

START

Generate
nodes

if( )f F≤

Inverting G
matrices

O(  )n

Find
neighbours

O( )n
2

Set Z
matrices

O(  )n

Calculate
temperatures

O(  )n

Set G
matrices

O( )n

STOP

f = 2

f f= + 1

no

yes

Fig. 3. Flowchart for GFDM algorithm with the order of time complexity.

To estimate an error of the generalized finite difference method, the results are
compared with the results obtained using the classical finite difference method
under the assumption that the grid step and time step are very small (then the
FDM solution is close to the analytical one).

The absolute error is the difference between the temperatures:

R(T f
i ) = |(T f

i )FDM − (T f
i )GFDM|.(3.14)

The relative error can be defined as

B(T f
i ) =

R(T f
i )

|(T f
i )FDM|

=

∣

∣

∣

∣

(T f
i )FDM − (T f

i )GFDM

(T f
i )FDM

∣

∣

∣

∣

=

∣

∣

∣

∣

1 − (T f
i )GFDM

(T f
i )FDM

∣

∣

∣

∣

.(3.15)
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Then an average relative error for each time step is calculated:

BA(T f ) =
1

L

L
∑

i=1

∣

∣

∣

∣

1 − (T f
i )GFDM

(T f
i )FDM

∣

∣

∣

∣

,(3.16)

where L is the number of nodes.
Finally, for F time steps the global error is equal to

Err =
1

F − 1

F
∑

f=2

BA(T f ) =
1

(F − 1)L

F
∑

f=2

L
∑

i=1

∣

∣

∣

∣

1 − (T f
i )GFDM

(T f
i )FDM

∣

∣

∣

∣

.(3.17)

4. Results of computations

The cylindrical tissue domain of dimensions R1 = 0.005 m and Z1 = 0.01 m
with centrally located heating zone: R2 = 0.001 m, Z2 = 0.002 m is considered
(Fig. 1). In Table 1 the values of thermophysical parameters used in numeri-
cal computations are collected. As it was mentioned, the heating process takes
place only inside domain Ω2 (the exposure time tex = 75 s, the power density
Q0 = 6 MW/m3). On the surface of cylinder the no-flux boundary condition is
assumed. The initial temperature is equal to Tp = 37 ◦C, the initial heating rate
equals w = 0 (cf. Eq. (2.4)). The time step is equal to ∆t = 0.001 s.

Table 1. Thermophysical parameters [2, 5].

Parameter Value

Volumetric specific heat of tissue [J/(m3 · K)] 4 · 106

Thermal conductivity of tissue [W/(m · K)] 0.5

Specific heat of blood [J/(kg · K)] 3770

Blood perfusion rate [kg/(m3 · s)] 0.53

Blood temperature [◦C] 37

Metabolic heat source [W/m3] 250

Relaxation time [s] 15

Thermalization time [s] 10

The boundary Γ was divided into sections with the length d. Also the interior
Ω was divided into squares (in reality, rings) having sides d. Then, on each
boundary section and inside each inner square, one node has been randomly
generated as shown in Fig. 4, while in Fig. 5 the all generated nodes can be
seen. Two different variants of length d have been considered: d1 = 0.0001 m
and d2 = 0.00005 m.

The radius Rd (cf. Fig. 2) used at the stage of selection of nodes for n-point
star has been assumed as Rd = 5d or Rd = 10d (d = d1 or d = d2). It should be
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a) b) c)

Fig. 4. Examples of nodes distribution: a) d1 = 0.0001 m, b) d2 = 0.00005 m, c) regular grid
(FDM).

noted that using such a criterion of stars creation, the number of nodes used in
stars is not constant. The results are presented for two points: N1 = (0.005, 0.0)
and N2 = (0.005, 0.0025).

r [m]
0

0.001

0.002

0.003

0.004
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0.007

0.008

0.009
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0 0.
00
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0.
00

2

0.
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3

0.
00
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0.
00

5

Ω2

0.00374 m

Fig. 5. An example of nodes generated inside the considered domain.

Figures 6, 7 and 8 show the temperature history at the nodes N1 and N2. It
can be seen (Fig. 6) that at the node where the heating is most intensive (N1),
the differences between the temporary temperatures for stars corresponding to
Rd = 5h1 and Rd = 10h1 are clearly visible. For the node N2, outside the heating
zone, differences are negligible.

Figure 7 illustrates that for the assumed density of nodes (d1 and d2) tem-
porary temperatures at the both points are almost the same.
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Fig. 6. Temperature history for density d1.
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Fig. 7. Temperature history for density d2.

In Fig. 8 the results concerning the same size of n-point star (Rd = 5h) are
shown and one can observe that the node density is important even at the point
with the smaller heating intensity (N2).
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Fig. 8. Temperature history for Rd = 5h.
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Fig. 9. Temperature distribution after 80 s for density d1.
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Fig. 10. Temperature distribution after 80 s for Rd = 10h.
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Fig. 11. Temperature history for GFDM (n = 5) and FDM.
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The temperature distribution after the time t = 80 s is presented in Figs. 9
and 10. Figure 9 confirms that the differences of temperatures obtained for
Rd = 5h1 and Rd = 10h1 take place only close to the heating zone.

In turn, Fig. 10 shows that differences between the nodes density cause
changes in the course of isotherms both inside and outside the heating zone.

The problem considered has also been solved using the FDM algorithm for
the regular spatial discretization described in [29]. In this case 5-points stars are
defined (Fig. 4c), while the mesh step is equal to dr = 0.00005 m. In Fig. 11 the
comparison between GFDM and FDM is shown. The results are practically the
same.

The classical FDM task has also been solved using the time step
∆t = 0.00001 s and the grid 2000 × 1000 nodes (i.e., h = 0.000005 m). These
results allow ones to calculate the global error (cf. Eq. (3.17)). For each example
presented in this paper the global error was smaller than 1 percent (Err < 1%).

Table 2. Error of computations (Eq. (3.17)).

d1 = 0.0001 m d2 = 0.00005 m

Rd = 5d 0.00922 0.00894

Rd = 10d 0.00928 0.00911

Regular grid (n = 5) N/A 0.00871

5. Conclusions

Heating of a cylindrical tissue domain is considered. The bioheat transfer
process is described by the dual-phase lag equation supplemented by an adi-
abatic boundary condition and appropriate initial ones. The part of domain
interior is heated by an internal heat source. The problem is solved using the
explicit scheme of the generalized finite difference method. The nodes creating
the GFDM stars are located inside the circles of the radius Rd or the constant
number of nodes n forming stars is assumed. Additionally, the regular density of
nodes is under guard.

At the stage of computations the numerous numerical experiments have been
done. So, the different values of nodes density and sizes of n-point stars have
been considered. The changes in the courses of heating/cooling curves and also
the courses of isotherms were small, but visible (see Figs. 6–10).

The comparison with the classical finite difference method with a very fine
mesh also have been done. The global error for each example was smaller than
one percent.

Summing up, the use of the GFDM for numerical modeling of the problem
discussed leads to the satisfactory results, while the possibility of generation of
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practically optional stars seems to be a very attractive tool for the approximate
solution of bioheat transfer problems. The further research in this field will be
devoted to more practical aspects of the modeling of cancer ablation during
radiofrequency hyperthermia using the internal electrode.
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Appendix

The necessary and sufficient condition for the existence of minimum of a norm
(3.6) is that the appropriate derivatives are equal to zero:
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Let us introduce the following matrix
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Denoting G = A−1, one obtains the system of equations (A.1) in a matrix form:
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Equation (A.3) allows one to determine the approximations of geometrical
derivatives:

(A.4)

(Tr)
s
i =

n
∑

j=1

1

ρm
j

(G11hj+G12kj+G13h
2
j +G14k

2
j +G15hjkj)(T

s
j −T s

i ),

(Tz)
s
i =

n
∑

j=1

1

ρm
j

(G21hj+G22kj+G23h
2
j +G24k

2
j +G25hjkj)(T

s
j −T s

i ),

(Trr)
s
i =

n
∑

j=1

1

2ρm
j

(G31hj+G32kj+G33h
2
j +G34k

2
j +G35hjkj)(T

s
j −T s

i ),

(Tzz)
s
i =

n
∑

j=1

1

2ρm
j

(G41hj+G42kj+G43h
2
j +G44k

2
j +G45hjkj)(T

s
j −T s

i ),

(Trz)
s
i =

n
∑

j=1

1

ρm
j

(G51hj+G52kj+G53h
2
j +G54k

2
j +G55hjkj)(T

s
j −T s

i ).

From the system of equations (A.4) results that:
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After some mathematical manipulations the formula (A.5) can be written as
follows:
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