
Arch. Mech., 69, 6, pp. 413–433, Warszawa 2017

A study of critical point instability of micro and nano beams

under a distributed variable-pressure force in the framework

of the inhomogeneous non-linear nonlocal theory

Z. RAHIMI1), G. REZAZADEH1), W. SUMELKA2), X.-J. YANG3)

1)Mechanical Engineering Department

Urmia University

Urmia, Iran

e-mail: st_z.rahimi@urmia.ac.ir, g.rezazadeh@mail.urmia.ac.ir

2)Institute of Structural Engineering

Poznań University of Technology

Piotrowo 5

60-965 Poznań, Poland

e-mail: wojciech.sumelka@put.poznan.pl

3)School of Mechanics and Civil Engineering

China University of Mining and Technology

Xuzhou 221116, China

and

State Key Laboratory for Geomechanics and Deep Underground Engineering

China University of Mining and Technology

Xuzhou 221116, China

e-mail: dyangxiaojun@163.com

Fractional derivative models (FDMs) result from introduction of fractional
derivatives (FDs) into the governing equations of the differential operator type of
linear solid materials. FDMs are more general than those of integer derivative models
(IDMs) so they are more fixable to describe physical phenomena. In this paper the
inhomogeneous nonlocal theory has been introduced based on conformable fractional
derivatives (CFD) to study the critical point instability of micro/nano beams under
a distributed variable-pressure force. The phase of distributed variable-pressure force
is used for electrostatic force, electromagnetic force and so on. This model has two free
parameters: i) parameter to control the order of inhomogeneity in constitutive relation
that gives a general form to the model, and ii) a nonlocal parameter to consider size
dependence effects in micron and sub-micron scales. As a case study the theory has
been used to model micro cantilever (C-F) and doubly-clamped (C-C) silicon beams
under a distributed uniform electrostatic force in the presence of von-Karman non-
linearity and their static critical point (static pull-in instability), moreover, effects of
different inhomogeneity have been shown on the pull-in instability.
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1. Introduction

Micro/nano structures are widely used in the micro/nano electro-me-
chanical systems (MEMS & NEMS), for example in micro-pumps, micro/nano
mirrors, accelerometers, micro and nano switches. A critical point of such mi-
cro structures under a distributed variable-pressure force (electrostatic, electro-
magnetic and so on) is one of the most important phenomena that should be
considered in the design, analysis and simulation of the MEMS/NEMS systems.

Let one assume a micro/nano beam in the electrostatic field that contains
two electrodes, upper movable electrode which can be modelled as an elastic
beam deflects towards the fixed electrode due to electrostatic attraction as an
example. As the voltage increases, the deflection of the micro beam also increases.
At a certain voltage, the movable electrode becomes unstable and collapses to the
fixed electrode, the excitation voltage corresponding to the instability is called
the static pull-in instability, and in this case, the critical point is the pull-in
voltage. Many works have been done on the dynamic and static instability [1–9]
but none of them considered the effects of FDs.

At the small-scale, the size of micro and nano structures often becomes promi-
nent. Both experimental [10] and atomistic simulation [11] results have shown a
significant ‘size-effect’ in the mechanical properties when the dimensions of these
structures become small. From this point of view, scale-free continuum models
may not be directly applicable in the nano and micro world, thus size-dependent
continuum models are necessary [12]. The vast majority of structural theories
are derived using the constitutive assumptions that the stress at a point depends
only on the strain at the point, so-called local formulations. On the other hand,
the nonlocal constitutive behaviour advanced by Eringen [13, 14] and Erin-
gen and Edelen [15] is based on the hypothesis that the stress at a point is
a function of strains at all points in the continuum.

In Eringen nonlocal theory (ENT) only the integer gradient of stress (usu-
ally the second gradient of stress) has been used in constitutive equations but
more recently Challamel et al. [16] by using a fractional gradient of the stress
generalized Eringen nonlocal theory (FNT) showed that the optimized fractional
derivative model gives perfect matching with the dispersive wave properties of
the Born–Karman model of lattice dynamics and it is better than ENT (cf. also
Sumelka [17]).

FDMs have more advantages in comparison with classical integer-order mod-
els [18]. In the last few decades many authors pointed out that derivatives and
integrals of non-integer are very suitable for description of properties of various
real materials. It has been shown that fractional-order models are more adequate
than previously used integer-order models [19] therefore many efforts concentrate
on this field for instance: Demir et al. [20] studied application of fractional cal-
culus in the dynamic of beam and concluded that the order and the coefficient of
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the fractional derivative have a significant effect on the natural frequency and the
amplitude of vibrations. Lazopoulos [21] introduced fractional derivative strain
in the strain energy formulation. FDs have been also recently used to model non-
local elastic media for wave propagation applications, which leads to some new
spatial nonlocality kernels [22–24]. Atanackovic et al. [23] generalized Hooke’s
law by replacing the displacement gradient with the symmetrized Caputo spatial
fractional derivative. Michelitsch [25, 26] performed the generalization of the
classical theory on the level of the potential energy, which then led to a fractional
derivative of the Marchaud type. Sumelka by using fractional calculus general-
ized the Kirchhoff–Love plate’s theory [27] and also studied the new concept
of nonlocal continuum body definition by utilizing the fractional calculus [18].
More recently, Rahimi et al. [28] have presented a generalized form of nonlocal
elasticity theory using conformable fractional derivatives definition (CFDD) and
showed its application in non-linear and linear free vibration of nano beams.

In present work like Challamel et al. [16] by introduction of FD a gen-
eralization form of ENT [28] has been presented, but here the CFD definition
has been used instead of Caputo definition, which leads to a very different form
of governing equations that could be solved easily by numerical solution just
like an equation with integer derivatives. The resulting model can be classified
as a nonlocal theory with inhomogeneous length scale effects based on Erin-
gen’s stress gradient model. The non-linear motion equation of a beam under
a distributed variable-pressure force in presence of von-Karman non-linearity
has been obtained and as a case study the pull-in voltage of C-C and C-F silicon
micro beams have been studied. Herein, it should be pointed out, that there is
a debate in the literature about the meaning of the CFD concept [29].

2. Mathematical modelling

2.1. FDs definitions

Different types of definitions for FDs exist [30–32]. Two of the most popular
ones are as bellow:

I: Riemann–Liouville definition. For α ∈ [n − 1, n), the α derivative of f is
[30–32]

(2.1) Dα
a (f)(x) =

1

Γ (n− α)

dn

dxn

x
∫

a

f(x)

(x− τ)α−n+1
dτ.

II: Caputo definition. For α ∈ [n− 1, n), the α derivative of f is [30–32]

(2.2) Dα
a (f)(x) =

1

Γ (n− α)

x
∫

a

fn(x)

(x− τ)α−n+1
dτ,
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where n− 1 ≤ α < n, and Γ represents the Euler-gamma function as below:

(2.3) Γ =

∞
∫

0

tz−1e−t dt.

These definitions have some defects (see Khalil et al. [33]) as a rule so-
lution of governing fractional differential equations is difficult [36–37]. In the
present work the new definition of FDs has been used that presented by Khalil
et al. [33]. The form of the definition shows that it is the most natural definition,
and the very fruitful one [23–37]. Based on this definition, the FDs change to
integer forms and they do not comprise integrals, so they can be solved easily
by numerical methods (cf. also [29] for debate on CFD controversies).

The CFDD of multi-variables function for f : [0,∞) → R, is defined as bellow
(Appendix A):

(2.4)
Dn

x(f)(x, y) =
dαf(x, y)

dxα
= lim

ε→0

f ⌈α⌉−1(x+ εx⌈α⌉−α, y) − f ⌈α⌉−1(x, y)

ε
,

Dn
y (f)(x, y) =

dαf(x, y)

dyα
= lim

ε→0

f ⌈α⌉−1(x, y + εy⌈α⌉−α) − f ⌈α⌉−1(x, y)

ε
,

where n− 1 < α ≤ n and ⌈α⌉ is the smallest integer number bigger or equal to
α. In the case of α = n it reduces to:

(2.5)
Dn

x(f)(x, y) = x(n−n)d
nf(x, y)

dxn
→ dnf(x, y)

dxn
=
dnf(x, y)

dxn
,

Dn
y (f)(x, y) = y(n−n) d

nf(x, y)

dyn
→ dnf(x, y)

dyn
=
dnf(x, y)

dyn
.

2.2. Formulation

In this section, we obtain the equation of motion of the Euler–Bernoulli
beam in the presence of von-Karman non-linearity under a distributed variable-
pressure force.

Assume the displacement field of the Euler–Bernoulli beam as bellow:

(2.6) u1(x, z) = −z dw
dx
, u2(x, z) = 0, u3(x, z) = w,

where w is the transverse displacement of the point (x, 0) on the mid-plane (i.e.,
z = 0) of the beam. The only nonzero von-Karman non-linear strain in the plane
strain condition is:

(2.7) εxx = −z d
2w

dx2
+

1

2

(

dw

dx

)2

= ε+ zk, ε =
1

2

(

dw

dx

)2

, k = −z d
2w

dx2
,

where ε is the non-linear extensional strain and k is the bending strain.
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Next, the principle of a virtual displacement has the form

(2.8)

∫

(−N0δε−Mδκ+ q(x)δw) dx = 0,

where q(x) is the transverse distributed force (measured per unit unreformed
length) and N and M are the stress resultants as bellow:

(2.9) N0 =

∫

σ dA, M =

∫

σz dA.

Finally, one obtains the following Euler–Lagrange equations in 0 < x < L

dN0

dx
= 0 → N0 = cte,(2.10)

d2M

dx2
− d

dx
(N0

dw

dx
) + q = 0 → d2M

dx2
−N0

d2w

dx2
+ q(x) = 0.(2.11)

2.3. The inhomogeneous nonlocal theory

The general form of the Eringen theory or FNT is as bellow [16]:

(2.12) σ − µαd
ασ

dxα
= Eε,

where σ and ε are the uniaxial stress and strain, respectively, E is the Young
modulus, µ = e0a, e0 is a material constant to be determined experimentally,
a is the internal (e.g. lattice parameter, granular size) characteristic length and
α is integer or non-integer number n − 1 < α ≤ n, herein n = 2. The ENT is
obtained when α = 2 and the local form of strain-stress is achieved when µ = 0.

As opposed to the ENT, the FNT results in fractional differential relations
involving the stress resultants and the strain. In the following, we present these
relations for homogeneous isotropic beams under the assumption that the nonlo-
cal behaviour is negligible in the thickness direction. Here we assume 1 < α ≤ 2
and govern the equations of the motion of the Euler–Bernoulli beam based on
a conformable fractional derivative [33].

By using Eq. (2.4) when 1 < α ≤ 2 we have:

(2.13)
dασ

dxα
= x2−αd

2σ

dx2
.

Next, by substituting Eq. (2.13) into the Eq. (2.12), the fractional derivative
in Eq. (2.12) changes to the integer derivative as follow:

(2.14) σ − µαx2−αd
2σ

dx2
= Eε.
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Herein it should be noticed that application of CFD, results in Eringen’s stress
gradient model with an inhomogeneous length scale effect – parameter α which
defines the order of CFD is in this sense an inhomogeneity parameter). Integrat-
ing Eq. (2.14) over the beam’s cross-section area leads to the axial force-strain
relation as:

(2.15) N0 − µαx2−αd
2N0

dx2
= EAε.

Next, according to Eq. (2.10)

(2.16) N0 = EAε = EA

(

dw

dx

)2

,

where A is a cross section of the beam. For convenience, the non-linear term
of the strain tensor can be averaged along the beam length and consequently
a mean value of the generated axial force can be given as [5, 38]:

(2.17) N =
EA

2L

L
∫

0

(

dw

dx

)2

dx,

where L is the length of a beam. Integrating over the cross-section area, we
obtain the moment curvature relation as bellow:

(2.18) M − µαx2−αd
2M

dx2
= EIk.

Finally, taking the second derivative of Eq. (2.18) and substituting the second
derivative of M from Eq. (2.11) into Eq. (2.18), the inhomogeneous nonlocal
equation of the Euler–Bernoulli beam is obtained as bellow:

(2.19) −EI d
4w

dx4
+µαN

[

x2−αd
4w

dx4
+x1−α2(2−α)

d3w

dx3
+x−α(2−α)(1−α)

d2w

dx2

]

−N d2w

dx2
−µα[x2−α d

2q

dx2
+x1−α2(2−α)

dq

dx
+x−α(2−α)(1−α)q]+q = 0,

where the external lateral distributed force per unit length q(x, t) is written as:

(2.20) q =
β

(g0 − w)n
,

where β is the parameter which depends on the kind of the force and g0 is an
initial gap. (For instance in the electrostatic force β is γV that γ is a constant
and V is voltage). As an example n = 2 and n = 3 are for electrostatic and
electromagnetic forces and whereas the van der Waals and Casimir force n = 4.
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3. Case study

In this part, as a case study, the critical point (static pull-in instability) of
a micro/nano beam under electrostatic force has been presented and the effects
of inhomogeneity and nonlocal parameters on the pull-in voltages have been
shown. Finally, to show the functionality of FDs model versus integer derivatives
model, the calculated voltages from FNT, CT and ENT have been compared with
experimental data for micro cantilever silicon beams.

One obtains Eq. (2.19) for a micro/nano beam under electrostatic force when
the electrostatic force states as bellow [39]:

(3.1) q =
ε0bV

2

2(g0 − w)2
,

where ε0 and b are the dielectric constant of the gap medium and width of the
beam, respectively. Figure 1 shows a schematic view of the micro beam in an
electrostatic field.

Fig. 1. Cantilever and Fixed-Fixed micro beam in the electrostatic field.

For convenience, the non-dimensional form of Eq. (3.1) is obtained by utiliz-
ing: w = w/g0, x = x

L

(3.2) − d4w

dx4
+ [A1x

2−αd
4w

dx4
+ x1−αA8

d3w

dx3
+ x−αA2

d2w

dx2
] −A3

d2w

dx2

−
[

x2−α A4V
2

(1 − w3
)

d2w

dx2
+

A5V
2

(1 − w)4

(

dw

dx

)2

+ x1−αA9
V 2

(1 − w)3
dw

dx
+ x−αA7

V 2

(1 − w)2

]

+A6
V 2

(1 − w)2
= 0,

where

A1 =
ANg2

0µ
αL2−α

L2I
, A2 =

ANg2
0L

−αµα(2 − α)(1 − α)

I
,

A3 =
Ng2

0A

I
, A4 =

ε0bµ
αL2L2−α

EIg3
0

,
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A5 =
3ε0bµ

αL2L2−α

EIg3
0

, A6 =
ε0bL

4

2EIg3
0

,

A7 =
(2 − α)(1 − α)ε0bµ

αL4−α

2EIg3
0

, A8 =
2ANg2

0µ
α(2 − α)L1−α

L2I
,

A9 =
2µαε0b(2 − α)L1−αL3

g3
0EI

, N =

1
∫

0

1

2

(

dw

dx

)2

dx.

3.1. Numerical solution

The CFD definition gives the ability to solve the governing equation by using
the numerical methods which are used for the integer differential equations.
Therefore, we use Galerkin and step-by-step linearization (SSLM) methods [39–
41]. Because of non-linearity of the governing equation, a SSLM method is used
to make it linear. Afterwards, the obtained linear differential equation is solved
using the Galerkin weighted residual method. Using SSLM, the voltage applied to
the micro beam and substrate are increased from zero to its final value gradually;
wk

s is the displacement of the micro beam due to the applied voltage V k. In the
next step by increasing voltage, the displacement at the step of (k + 1) can be
obtained as:

(3.3) ŵk+1
s = wk

s + δw = wk
s + ψ(x),

when

(3.4) V k+1 = V k + δV.

So, the equation of the static deflection of the micro beam (Eq. (3.2)) by using
the Taylor series expansion about ws at step of k+1 can be rewritten as follows:

(3.5) −
(

d4wi

dx4
+
d4ψ

dx4

)

+A1x
2−α

(

d4wi

dx4
+
d4ψ

d
⌢
x

4

)

+{A2x
−α−A3}

(

d2wi

dx2
+
d2ψ

d
⌢
x

2

)

−
{

x2−α

{(

A4V
2
i+1

(1 − wi)3
+

3A4V
2
i+1

(1 − wi)4
ψ

)(

d2wi

dx2
+
d2ψ

dx2

)

−
(

A5V
2
i+1

(1 − wi)4
+

4A5V
2
i+1

(1 − wi)5
ψ

)((

dwi

dx

)2

+

(

dwi

dx

)(

dψ

dx

))}}

+A8x
1−α

(

d3wi

dx3
+
d3ψ

dx3

)

−A9x
1−α

(

V 2
i+1

(1 − w)3
+

3V 2
i+1

(1 − w)4
ψ

)(

dwi

dx
+
dψ

dx

)

+{A6 −A7x
−α}

(

V 2
i+1

(1 − wi)2
+

2V 2
i+1

(1 − wi)3
ψ

)

= 0.
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It is expected that ψ(x) would be small enough by considering a small value
of δV , hence it is possible to obtain the desired accuracy. The linear equation to
calculate w(x) can be expressed as:

(3.6) − d4ψ

d
⌢
x

4 +A1x
2−αd

4ψ

d
⌢
x

4 + [A2x
−α −A3]

d2ψ

d
⌢
x

2 − x2−α A4V
2
i+1

(1 − wi)3
d2ψ

d
⌢
x

2

−3x2−α A4V
2
i+1

(1 − wi)4
ψ
d2wi

dx2
− 2x2−α A5V

2
i+1

(1 − wi)4

(

dwi

dx

)(

dψ

dx

)

−4x2−α A5V
2
i+1

(1 − wi)5
ψ

(

dwi

dx

)2

+A8x
1−α

(

d3ψ

dx3

)

−A9x
1−α

(

3V 2
i+1

(1 − w)4
ψ
dwi

dx

)

+ [2A6 − 2A7x
−α]

V 2
i+1

(1 − wi)3
ψ

= x2−αA5(V
2
i+1 − V 2

i )

(1 − wi)4

(

dwi

dx

)2

+ x2−αA4(V
2
i+1 − V 2

i )

(1 − wi)3

+A9x
1−α (V 2

i+1 − V 2
i )

(1 − wi)3
dwi

dx
− [A6 −A7x

−α]
(V 2

i+1 − V 2
i )

(1 − wi)2
.

In the obtained linear differential equation that is solved by the Galerkin method,
ψ(x) can be expressed based on function spaces as:

(3.7) ψ(x) =
∞

∑

j=1

ajφj(x) ≈
N

∑

j=1

ajφj(x).

In this paper φj(x)is selected as j-th un-damped mode shape of the straight
micro beam. Substituting Eq. (3.7) into Eq. (3.6), and multiplying by φi(x) as
a weight function in the Galerkin method and then integrating the outcome from
x̂ = 0 to 1 leads to a set of linear algebraic equations as:

(3.8) Fi =
n

∑

j=1

kijaj , i = 1, . . . , n,

where

Kij = Km
ij +Kf1

ij +Kf2
ij +Kf3

ij +Kf4
ij +Kf5

ij +Kf6
ij +Kf7

ij ,

Km
ij = −

1
∫

0

φ′′′′j φi dx, Kf1
ij =

1
∫

0

A1x
2−αφ′′′′j φi dx,

Kf2
ij =

1
∫

0

(A2x
−α −A3)φ

′′
jφi dx,
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Kf3
ij =

1
∫

0

−A4x
2−αV 2

i+1

(1 − w3
i )

φ′′jφi dx,

Kf4
ij =

1
∫

0

−3A4x
2−αV 2

i+1
d2w
dx2

(1 − w4
i )

φjφi dx,

Kf5
ij =

1
∫

0

−A52x
2−αV 2

i+1
dw
dx

(1 − w4
i )

φ′jφi dx,

Kf6
ij =

1
∫

0

−4A5x
2−αV 2

i+1

(

dw
dx

)2

(1 − w5
i )

φjφi dx,

Kf7
ij =

1
∫

0

2(A6 −A7x
−α)V 2

i+1

(1 − w3
i )

φjφi dx,

Kf8
ij =

1
∫

0

(A8)x
1−αφ′′′j φi dx,

Kf9
ij =

1
∫

0

(−3A9x
1−αV 2

i+1

(1 − wi)4

)

dw

dx
φjφi dx,

Kf10
ij =

1
∫

0

(−A9x
1−αV 2

i+1

(1 − wi)3

)

φ′′jφi dx,

Fi = F1 + F2 + F3 + F4,

F1 =

1
∫

0

x2−αA5(V
2
i+1 − V 2

i )

(1 − wi)4

(

dwi

dx

)2

φi dx,

F2 =

1
∫

0

x2−αA4(V
2
i+1 − V 2

i )

(1 − wi)3
d2wi

dx2
φi dx,

F3 =

1
∫

0

x1−αA9(V
2
i+1 − V 2

i )

(1 − wi)3
dwi

dx
φi dx,

F4 =

1
∫

0

−(A6 −A7x
−α)(V 2

i+1 − V 2
i )

(1 − wi)2
φi dx.
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3.2. Numerical results

By applying a voltage between the beam and the substrate and slowly in-
creasing the voltage, the system shifts from a stable to an unstable equilibrium.
The instantaneous collapse (pull-in instability) of the beam was observed as the
voltage increased enough and that voltage was named pull-in voltage.

The effects of the inhomogeneity parameter (α) (which includes both integer
and non-integer numbers) and the dimensionless nonlocal parameter (µ/L) on
the pull-in voltage of micro C-F and C-C beams have been shown. Note that
ENT is a subset of the FNT but here to compare the theories ENT has been
separated from the FNT and it has been told the FNT, does not comprise ENT.

In Table 1 the geometrical and material properties of the micro beams are
shown. In Table 2 to validate the results the calculated pull-in for clamped-
clamped (C-C) and clamped-free (C-F) beams have been compared with those
that exist in the literature.

Table 1. Geometrical and material properties.

Cantilever beam Fixed-Fixed beam

Variables Value Value

Length 250 µm 350 µm

Wide 50 µm 50 µm

Height 2.94 µm 3 µm

Initial gap 1.05 µm 1 µm

Dielectric constant 8.8541 × 10−12 8.8541 × 10−12

Young modulus 169 Gpa 169 Gpa

Table 2. Comparison of calculated pull-in voltage from CT.

Baghani [1] Rokni et al. [44] Present

C-F 6.31 V – 6.57 V

C-C – 20.10 V 20.06 V

The FNT enables us to see the effect of different length scale inhomogeneity
on the static instability of the beams. As mentioned above the inhomogeneity
parameter control it therefore in Fig. 2 and Fig. 3 pull-in voltages of micro C-C
and C-F beams are obtained based on the FNT for three values of the fractional
parameter α = 1.84, 1.92, 2 (when α = 2 the FNT reduces to ENT) and also
CT (Cg is non-dimensional center deflection and end deflection of the C-C and
C-F micro beams Cg = 1 − w). In Fig. 2 and Fig. 3 from the comparison of
results of CT and ENT models, it can be seen that for the micro C-C beam
the calculated pull-in voltages by ENT (when α = 2) is smaller than a classical
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Fig. 2. Comparison of pull-in voltages for micro C-C beam based on different theories (the
FNT (α = 1.92, 1.84), ENT (α = 2) and CT) (µ/L = 0.1).

Fig. 3. Comparison of pull-in voltages for C-F micro beam based on different theories (the
FNT (α = 1.92, 1.84), ENT (α = 2) and CT) (µ/L = 0.1).
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value and for the micro C-F beam it is larger than the classical calculated value.
These results for both C-C and C-F beams are in agreement with those from
literature [42, 43]. On the other hand, from Fig. 2 and Fig. 3 it is visible that
decreasing of α leads to increase of pull-in voltage and the pull-in voltages based
on the FNT are greater than calculated pull-in voltage based on ENT and CT
results.

In Figs. 4a and 4b the calculated voltages based on different values of the
parameter for five values of the nonlocal parameter (µ/L = 0.01, 0.02, 0.03,
0.04, 0.05) have been shown. In these figures variation of pull-in voltages with
the inhomogeneity parameter is more visible. As it can be seen for both of the
C-C and C-F micro beam decrease of α parameter from its classical value (α = 2)
causes increase in pull-in voltage. This effect is more pronounced, as the values
of µ/L increase.

Fig. 4. Comparison of pull-in voltages versus different values of fractional parameter (α) and
nonlocal parameter (µ/L); a) C-C micro beam, b) C-F micro beam.

The effects of the non-dimensional nonlocal parameter (µ/L) on the pull-
in voltages in the FNT have been shown in Figs. 5, 6 and Figs. 7, 8 for C-C
and C-F micro silicon beams, respectively. These figures have been plotted to
show the effect of a nonlocal parameter where the inhomogeneity orders are
integer and non-integer. Figure 5 shows that when α = 1.92, the increase in
the non-dimensional nonlocal parameter leads to increase of pull-in voltage but
as it can be seen from Fig. 6 in the ENT (α = 2) increasing of µ/L causes
decrease in pull-in voltage. For the C-F beam in both cases of parameter α =
integer and α = non-integer (Fig. 7 and Fig. 8, respectively) an increase of µ/L
leads to increasing of pull-in voltage. Notice that the results for α = 2 (ENT)
for both C-C and C-F beams are in agreement with Mosavi et al. [42]. As it
could be seen effects of a dimensionless nonlocal parameter on pull-in voltage
for C-C beam are greater than for C-F beam in both cases of α (integer and
non-integer).
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Fig. 5. Effect of the non-dimensional nonlocal parameter on the pull-in of micro C-C beam.
(α = 1.92).

Fig. 6. Effect of the non-dimensional nonlocal parameter on the pull-in of micro C-C beam.
(α = 2 (ENT)).

In Fig. 9 for a large interval of µ/L, variation of pull-in has been plotted.
The diagram has been plotted for both integer (α = 2) and non-integer (α =
1.95, 1.85) values of an inhomogeneity parameter. Their effects are more visible
here and as presented in Fig. 9a when the values of the α parameter are non-
integer (α = 1.95, 1.85) the increase of the µ/L causes increase in pull-in voltage
but when it is integer (α = 2) the increase of µ/L causes a decrease in pull-in
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Fig. 7. Effect of the non-dimensional nonlocal parameter on the pull-in of micro C-F beam.
(α = 1.92).

Fig. 8. Effect of the non-dimensional nonlocal parameter on the pull-in of micro C-F beam.
(α = 2 (ENT)).

voltage. From Fig. 9b, it can be seen that for the C-F micro beam, the increase of
the µ/L causes an increase in pull-in voltages in the both integer and non-integer
values of the inhomogeneity parameter.
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Fig. 9. Comparison of pull-in voltages versus different values of µ/L where the fractional
parameter is α = 2, 1.95, 1.85. a) C-C micro beam, b) C-F micro beam.

In Fig. 10, the calculated results from CT, ENT and the FNT have been
compared with experimental results of Osterberg [45]. As it can be seen the
difference of measured pull-in voltages with calculated ones decreases as α goes
from 2 to 1.84. It can be concluded from Fig. 10 that the FNT could predict
pull-in voltage better than ENT and CT.

Fig. 10. Comparison of experimental pull-in voltage with results of different theories. (From
left side: first column is experimental data [45], second column is the result of classic theory,

third column is the result of Eringen theory, fourth and fifth columns are result of
inhomogeneous nonlocal theory).

For C-C beam the experimental pull-in voltage is 20.3 V [45] and as men-
tioned in Table 2 the value which was calculated based on CT is 20.06 V, also
the value which has been calculated based on ENT is 20.47 V. According to
Fig. 9a the calculated pull-in voltage based on the FNT is higher than ENT so
the pull-in voltage based on the FNT is larger than 20.47 and the difference be-
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tween the experimental value and calculated one, is be greater. This conclusion
does not mean that the FNT is not suitable for C-C micro beam, rather the
inhomogeneity parameter should be different than between 1–2.

4. Conclusion

A FNT that is a generalization of ENT by using the CFD definition was
presented. The resulting model is analogous to Eringen’s stress gradient with
inhomogeneous length scale effects. This theory has two free parameters: 1) the
inhomogeneity parameter (which controls the order of a stress gradient in the
stress-strain constitutive equation that gives a general form to the theory and
this general form makes it more flexible than the integer derivatives based model
to describe behaviour of materials) and 2) nonlocal parameter (to consider size
dependence effects in micron and sub-micron scales).

The equation of a micro/nano beam under a distributed variable pressure
force (electrostatic force, electromagnetic force and so on) in the presence of von-
Karman non-linearity was obtained to study the static critical point instability.
Then as a case study, static pull-in instability of micro C-C and C-F beam
under an electrostatic force was analysed. The governing equation was solved
by the Galerkin method. The effects of the inhomogeneity parameter (integer
and non-integer number) and the nonlocal parameter on the pull-in instability
was shown. It was demonstrated that in both C-C and C-F beams decreasing of
the inhomogeneity parameter leads to increase of pull-in voltage and calculated
pull-in voltage based on the FNT are larger than ENT and CT result. In C-C
beam increasing of non-dimensional nonlocal parameter leads to an increase of
the pull-in voltage when α = 2 the increase of µ/L causes a decrease in pull-
in voltage. For the C-F beam in both cases α = integer and α = non-integer
increase of µ/L leads to an increase of pull-in voltage.

To show that the FNT could be effective, the calculated results from CT,
ENT and the FNT of C-F were compared with experimental results. It was
shown that the difference of measured pull-in voltages with calculated ones is
smaller for FNT.

Appendix

Conformable FDs for multi-variables functions:
Assume the function f(x, y), we have:

(A.1)

fx(x, y) =
df(x, y)

dx
= lim

h→0

f(x+ h, y) − f(x, y)

h
,

fy(x, y) =
df(x, y)

dy
= lim

h→0

f(x, y + h) − f(x, y)

h
.
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Based on CFDD we have [13, 41]:

(A.2)
fα

x (x, y) =
dαf(x, y)

dxα
= lim

ε→0

f(x+ εx1−α, y) − f(x, y)

ε
,

fα
y (x, y) =

dαf(x, y)

dyα
= lim

ε→0

f(x, y + εy1−α) − f(x, y)

ε
.

If 0 < α ≤ 1, let h = εxα−1, h = εyα−1 then Eq. (2.2) is:

(A.3)

fα
x (x, y) =

dαf(x, y)

dxα
= lim

ε→0

f(x+ εx1−α, y) − f(x, y)

ε

= x1−α lim
h→0

f(x+ h, y) − f(x, y)

h
= x1−αdf(x, y)

dx
,

fα
y (x, y) =

dαf(x, y)

dyα
= lim

ε→0

f(x, y + εy1−α) − f(x, y)

ε

= y1−α lim
h→0

f(x, y) − f(x, y + h)

h
= y1−αdf(x, y)

dy
.
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