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Abstract

In this paper, the propagation of a Rayleigh wave in an incompressible
prestressed elastic half-space is considered. The main aim is to derive ex-
act formulas for the H/V ratio, the ratio of the amplitude of the horizontal
displacement to the amplitude of the vertical displacement of the Rayleigh
wave. First, the H/V ratio equations are obtained using the secular equa-
tion and the relation between the H/V ratio and the Rayleigh wave velocity.
Then, the exact formulas for the H/V ratio have been derived for a general
strain-energy function by analytically solving the H/V ratio equations. These
formulas are then specified to several particular strain-energy functions. Since
the obtained formulas are exact and totally explicit, they will be a good tool
for nondestructively evaluating pre-stresses of structures before and during
loading.
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1 Introduction

Pre-stressed materials are widely used in many technical applications recently.

That makes the nondestructive evaluation of pre-stresses in structures before and

during loading become necessary and important. For this task, the usage of Rayleigh

wave is a good choice, see for example [1]-[5]. A Rayleigh wave is excited first and

it propagates in the structures whose pre-stresses are needed to identify. Then, its

velocity is measured. An inverse problem is formulated to determine the pre-stresses

based on that measured velocity and on the explicit secular equations.

One of the advantages of using H/V ratio to the velocity in the inverse problem

is that H/V ratio is more sensitive to the state of stress than the Rayleigh velocity as

shown recently by M. Junge et al. [6]. Further, in contrast to the Rayleigh velocity,

H/V ratio is reference-free and dimensionless. Therefore the H/V ratio of Rayleigh

waves is a more convenient tool than the Rayleigh wave velocity for characterizing

the state of stress. In the technique of using the H/V ratio, the explicit H/V ratio

equations are considered as the mathematical base for extracting the pre-stresses

from measured data of the H/V ratio. The inverse problem will become much more

simple if the H/V ratio formulas are given in explicit form.

The main aim of this paper is to derive the explicit exact H/V ratio formulas

for incompressible pre-stressed elastic half-spaces. This is done by establishing the

explicit H/V ratio equations first by using the secular equation and the relation

between the H/V ratio and the Rayleigh wave velocity. This relation is obtained by
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using the surface impedance matrix of Rayleigh waves propagating in incompressible

pre-stressed half-spaces. Then the H/V ratio equations are solved analytically to

derive the explicit exact H/V ratio formulas for a general strain-energy function.

These formulas are then specified to several particular strain-energy functions. The

obtained formulas express directly and explicitly the H/V ratio in terms of material

parameters and pre-stresses. Since the obtained H/V ratio formulas are totally

explicit, they will be a powerful tool in the evaluation of pre-stresses appearing in

structures before and during loading.

It is worth to note that, the H/V ratio is an important quantity which reflects fun-

damental properties of the elastic material [7], and is used as a well-known method

in seismology [8, 9]. It can be used for the nondestructive evaluation of the elastic

constants of material [10] as well.

2 Surface impedance matrix of Rayleigh waves in

incompressible pre-stressed half-spaces

2.1. Surface impedance matrix for elastic half-spaces

Consider a Rayleigh wave propagating on the surface of an elastic half-space

occupying the region x2 ≥ 0 with the velocity c (> 0), the wave number k (> 0) in

the x1-direction and decaying in the x2-direction. Then, the displacement vector u

and the traction vector t at the planes x2 = const of the Rayleigh wave are of the

form:

u = U(y)eik(x1−ct), t = ikΣ(y)eik(x1−ct), y = k x2 (2.1)
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Matrix M is called the surface impedance matrix of the Rayleigh wave if it relates

U(0) and Σ(0) by the equality [11]:

Σ(0) = iMU(0) (2.2)

It is well-known that matrix M is an important tool for studying the existence and

uniqueness of Rayleigh waves in generally anisotropic solids [11].

According to (2.2), for a Rayleigh wave propagating in a traction-free elastic

half-space, its secular equation is: |M| = 0. Therefore we can obtain immediately

explicit secular equations of Rayleigh waves if the corresponding surface impedance

matrices is expressed in explicit form.

2.2. Surface impedance matrix for incompressible pre-stressed half-spaces

Consider the initial state of an unstressed body of incompressible isotropic elastic

material occupying the half-space X2 ≥ 0 and then it is assumed to be deformed to

a new configuration by being applied a pure homogeneous strain of the form:

x1 = λ1X1, x2 = λ2X2, x3 = λ3X3, λi = const, i = 1, 2, 3 (2.3)

where λi > 0 are the principal stretches of the deformation. The deformed configu-

ration the body, therefore, occupies the region x2 ≥ 0.

In the deformed configuration we consider a Rayleigh wave propagating with the

velocity c (> 0), the wave number k (> 0) in the x1-direction and decaying in the

x2-direction. According to Dowaikh & Ogden [12] and Vinh [13], the Rayleigh wave
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is a two-component surface wave: U = [U1 U2]
T , Σ = [Σ1 Σ2]

T with:

U1 = −(b1B1e
−b1y + b2B2e

−b2y), U2 = −i(B1e
−b1y +B2e

−b2y),

Σ1 = −i(β1B1e
−b1y + β2B2e

−b2y), Σ2 = −(η1B1e
−b1y + η2B2e

−b2y) (2.4)

where: B1, B2 are constants, b1, b2 are two roots with positive real part of the equa-

tion:

b4 − Sb2 + P = 0 (2.5)

in which S and P are given by:

S =
2β −X

γ
, P =

α−X

γ
(2.6)

and:

X = ρc2, βk = γb2k + γ∗, ηk =
[
X − (2β + γ∗) + γb2k

]
bk, k = 1, 2 (2.7)

The quantities α, β, γ and γ∗ are defined as:

α = B1212, γ = B2121, 2β = B1111 +B2222 − 2B1122 − 2B1221, γ∗ = γ − σ2 (2.8)

where σ2 is the principal Cauchy pre-stress along the x2-direction [12, 13], Bijkl are

components of the fourth order elasticity tensor defined as follows [12, 13, 14]:

Biijj = λiλj
∂2W

∂λi∂λj

Bijij =

{
(λi

∂W
∂λi

− λj
∂W
∂λj

)
λ2
i

λ2
i−λ2

j
, (i ̸= j, λi ̸= λj)

1
2
(Biiii −Biijj + λi

∂W
∂λi

) (i ̸= j, λi = λj)
(2.9)

Bijji = Bjiij = Bijij − λi
∂W

∂λi

(i ̸= j)
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for i, j ∈ {1, 2, 3},W = W (λ1, λ2, λ3) (noting that λ1λ2λ3 = 1) is the strain-energy

function per unit volume, all other components being zero, the summation conven-

tion does not apply in (2.9). In the stress-free configuration (2.9) reduces to:

Biiii = Bijij = µ (i ̸= j), Biijj = Bijji = 0 (i ̸= j) (2.10)

From the strong-ellipticity condition, it follows that [12, 14]:

α > 0, γ > 0 (2.11)

It has been shown that [13, 15], if a Rayleigh wave exists, then:

0 < X < α (2.12)

and:

P > 0, S + 2
√
P > 0 (2.13)

Taking x2 = 0 in (2.4) we have:

U1(0) = −(b1B1 + b2B2), U2(0) = −i(B1 +B2),

Σ1(0) = −i(β1B1 + β2B2), Σ2(0) = −(η1B1 + η2B2) (2.14)

After eliminating B1, B2 from (2.14) we arrive at the impedance matrix for an

incompressible pre-stressed half-space (see also Vinh et al. [16], pages 182,183),

namely:

M =

 [β] −i[b; β]

−i[η] −[b; η]

 (2.15)
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Here we use the notations:

[f ; g] := f2g1 − f1g2, [f ] := f2 − f1 (2.16)

Using (2.7) it is not difficult to verify that:

[β] = γ

√
S + 2

√
P, [b; β] = (γ∗ − γ

√
P ), [b; η] = −γ

√
P

√
S + 2

√
P, [η] = −[b; β]

(2.17)

Thus M is of the form:

M =

 M11 iM12

−iM12 M22

 (2.18)

where Mik are real and given by:

M11 = γ

√
S + 2

√
P, M12 = γ

√
P − γ∗, M22 = γ

√
P

√
S + 2

√
P (2.19)

It is clear from (2.18), (2.19) and (2.13) that M is hermitian.

Remark 1: It is clear from (2.13), (2.18) and (2.19) that Mik are real and:

M11 > 0, M22 > 0 (2.20)

3 Equations for the H/V ratio

• Secular equation:

Consider a Rayleigh wave propagating in an incompressible deformed isotropic

elastic half-space x2 ≥ 0, as described in Subsection 2.2, with the velocity c (> 0),

the wave number k (> 0), in the x1-direction and decaying in the x2-direction. Let

M is the surface impedance matrix of the Rayleigh wave. Then it is given by (2.18),

7



(2.19). Suppose that the half-space is free of traction, i.e Σ(0) = 0. Then, the

secular equation of the Rayleigh wave is: detM = 0. Using the expressions of Mij

given by (2.19) in this equation gives the secular equation [13]:

γ(α−X) + (2β + 2γ∗ −X)
√

γ(α−X)− γ2
∗ = 0 (3.1)

In terms of the dimensionless parameters:

δ1 = γ/α (> 0), δ2 = β/α, δ3 = γ∗/α (3.2)

the secular equation (3.1) becomes:

δ1(1− x) +
√

δ1
(
2δ2 + 2δ3 − x

)√
1− x− δ23 = 0, 0 < x < 1 (3.3)

where x = c2/c22, c2 =
√
α/ρ, 0 < x < 1 by (2.12).

• Relation between the H/V ratio and the Rayleigh wave velocity:

From the equation MU(0) = 0 and (2.18):
M11

U1(0)

U2(0)
+ iM12 = 0

−iM12
U1(0)

U2(0)
+M22 = 0

(3.4)

From (3.4) it follows: [U1(0)

U2(0)

]2
= −M22

M11

(3.5)

Since: −M22/M11 < 0 by Remark 1, Eq. (3.5) provides:

U1(0)

U2(0)
= i

√
M22

M11

(3.6)

By the definition of H/V ratio κ = |U1(0)/U2(0)|, thus we have:

κ =

√
M22

M11

⇒ κ2 =
M22

M11

(3.7)

8



Introducing the expressions of M11 and M22 given by (2.19) into the second of (3.7)

we arrive at:

κ2 =

√
1− x√
δ1

(3.8)

This is the desired relation between the H/V ratio and the Rayleigh wave velocity.

Remark 2: Since 0 < x < 1, it follows from (3.8): 0 < κ2 < 1 if α < γ; κ2 may go

to ∞ if α is much more large than γ.

• Equations for the H/V ratio:

Putting w = κ2, from (3.8) wa have:

w =

√
1− x√
δ1

, 0 < x < 1 (3.9)

Eliminating x from (3.3) and (3.9) yields a cubic equation for w (provided δ3 ̸= 0):

f1(w) := w3 + w2 + a1w + a0 = 0, w ∈
(
0, δ

−1/2
1

)
(3.10)

where:

a0 = −δ23
δ21
, a1 = (2δ2 + 2δ3 − 1)/δ1 (3.11)

Equation (3.10) is the equation determining the H/V ratio. It is interesting that Eq.

(3.10) for κ2 is just Eq. (5.26) in Ref. [12] for η.

If δ3 = 0 ⇒ a0 = 0, then Eq. (3.10) is equivalent to a quadratic equation,

namely:

f2(w) := w2 + w + a1 = 0, w ∈
(
0, δ

−1/2
1

)
(3.12)

By wr we denote a root of Eq. (3.10) or (3.12) that belong to the interval (0, δ−1/2).
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• Existence of solution of the H/V ratio equations:

Proposition 1. Suppose δ3 ̸= 0, then Eq. (3.10) has a unique root wr if and

only if: √
δ1 + 2δ2 + 2δ3 −

δ23√
δ1

> 0 (3.13)

Proof: Let δ3 ̸= 0. From (3.10) we have:

f1(δ
−1/2
1 ) =

1

δ1
√
δ1

(√
δ1 + 2δ2 + 2δ3 −

δ23√
δ1

)
(3.14)

Let ∆′ = 1− 3a1 be the discriminant of equation f ′
1(w) = 3w2 + 2w + a1 = 0.

If ∆′ ≤ 0: ⇒ f ′
1(w) ≥ 0, ∀w ∈ (−∞,+∞) ⇒ f1(w) is strictly monotonically

increasing in (−∞,+∞) so in (0,+∞). As f1(0) = −δ23/
√
δ1 < 0 and f1(+∞) =

+∞, equation f1(w) = 0 has exact one real root in the interval (0,+∞). Using

(3.14) it is easily to show that this root is wr if (3.13) holds and it is not wr if (3.13)

is not satisfied.

If ∆′ > 0: ⇒ equation f ′
1(w) = 0 has two distinct roots, denoted by wmax and

wmin so that either wmax < wmin ≤ 0 or wmax < 0 < wmin due to wmax + wmin =

−2/3 < 0.

If wmax < wmin ≤ 0: because f1(0) < 0, f1(+∞) = +∞ and f1(w) is strictly

monotonically increasing in (0,+∞), equation f1(w) = 0 has therefore a unique root

in (0,+∞). Due to (3.14), this root is wr if (3.13) holds and it is not wr if (3.13) is

not valid.

If wmax < 0 < wmin: since f1(w) is strictly monotonically decreasing in (wmax, wmin)

and f1(0) < 0 it follows: f1(wmin) < 0. As f1(w) is strictly monotonically increasing
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in (wmin,+∞), f1(wmin) < 0 and f1(+∞) = +∞, equation f1(w) = 0 has therefore

a unique root in (wmin,+∞) so in (0,+∞). From (3.14) it follows: this root is wr

if (3.13) is valid and it is not wr if (3.13) does not hold. The proof of Proposition 1

is completed.

The proof of Proposition 1 for the case ∆′ > 0 shows immediately that:

Proposition 2. Suppose δ3 ̸= 0 and (3.13) holds. If Eq. (3.10) has two or three

distinct real roots, then wr is the largest root.

Proposition 3. Let δ3 = 0, then Eq. (3.12) has a unique root wr if and only if:

−
√

δ1 < 2δ2 < 1 (3.15)

Proof: It follows from (3.12) that:

f2(δ
−1/2
1 ) =

1

δ1
(
√
δ1 + 2δ2) (3.16)

(i) Let δ3 = 0 and (3.15) holds. From (3.15)2 we have: a1 = (2δ2 − 1)/δ1 < 0 ⇒

equation f2(w) = 0 has two distinct roots w1 and w2 so that: w1 < 0 < w2 because

w1.w2 = a1 < 0. This says that Eq. (3.12) has a unique root w2 in (0, +∞).

From (3.16) and (3.15)1 it follows: f2(δ
−1/2
1 ) > 0. Since f2(0) = a1 < 0 ⇒ w2 ∈

(0, δ−1/2) ⇒ w2 = wr.

(ii) If 2δ2 ≥ 1 ⇒ either Eq. (3.12) has no roots or it has two negative roots w1,

w2 because w1 + w2 = −1 and w1.w2 = a1 ≥ 0. That means Eq. (3.12) has no root

wr.

(iii) If 2δ2 ≤ −
√
δ1 and 2δ2 > 1. According to the argument of (i), Eq. (3.12)

has a unique root w2 ∈ (0,+∞), but it is not wr because 2δ2 ≤ −
√
δ1 and (3.16).
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(iv) If 2δ2 ≤ −
√
δ1 and 2δ2 ≥ 1. Following the argument of (ii) yields that Eq.

(3.12) has no root wr. The proof is finished.

Remark 3: Since the mapping (3.9) is a 1-1 mapping that maps x ∈ (0, 1) to

w ∈
(
0, δ

−1/2
1

)
, the conditions (3.13) and (3.15) are also necessary and sufficient for

a Rayleigh wave to exist.

4 Formulas for the H/V ratio for a general strain-

energy function

Theorem 1

If there exists a Rayleigh wave propagating along the x1-direction, and attenuat-

ing in the x2-direction, in an incompressible isotropic elastic half-space subject to a

homogeneous initial deformation (Eq. (2.3)), then it is unique, and its squared H/V

ratio κ2 is determined as follows:

i) If δ3 ̸= 0:

κ2 = −1

3
+

3

√
R +

√
D +

(1− 3a1)

9
3
√

R +
√
D

(4.1)

where each radical is understood as the complex root taking its principal value, R

and D are given by:

R = (9a1 − 27a0 − 2)/54, D = (4a0 − a21 − 18a0a1 + 27a20 + 4a31)/108 (4.2)

a0 and a1 are determined by (3.11).

ii) If δ3 = 0:

κ2 =

√
δ1 − 8δ2 + 4−

√
δ1

2
√
δ1

(4.3)
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Proof: The uniqueness of Rayleigh waves follows immediately from Propositions 1,

3. Now we present the derivation of the formulas (4.1) and (4.3).

(i) Suppose δ3 ̸= 0 and (3.13) holds. Then, a unique Rayleigh wave can propagate

in the half-space, according to Proposition 1, and its H/V ratio is determined by

Eq. (3.10). Let z = w + 1/3, then in terms of z Eq. (3.10) has the form:

z3 − 3q2z + r = 0 (4.4)

where:

r = −2R, q2 =
(a22 − 3a1)

9
(4.5)

According to the theory of cubic equation, three roots zk (k = 1, 2, 3) of Eq. (4.4)

are calculated by [17]:

z1 = S + T, z2 = −1

2
(S + T ) +

i
√
3

2
(S − T ), z3 = −1

2
(S + T )− i

√
3

2
(S − T ) (4.6)

where:

S =
3

√
R +

√
D, T =

3

√
R−

√
D, D = R2 +Q3, Q = −q2 (4.7)

In relation to the formulas (4.7) we emphasize two points:

+ The cube root of a negative real number is taken as the real negative root.

+ If, in the expression S, R +
√
D is complex, the phase angle in T is taken

as the negative of the phase angle in S so that T = S∗ where S∗ is the complex

conjugate of S.

Remark 4:

+ If D > 0, then Eq. (4.4) has one real root and two complex conjugate roots.
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+ If D = 0, this equation has three real roots, at least two of which are equal.

+ If D < 0, it has three real distinct roots.

Let zr = 1/3 + wr, then zr is a real root of Eq. (4.4) and if Eq. (4.4) has two

or three real roots, zr is the largest real root, according to Proposition 2. We will

prove that zr is given by:

zr =
3

√
R +

√
D +

q2

3
√
R +

√
D

(4.8)

where each radical is understood as a complex root taking its principal value, R

and D are calculated by (4.2), q2 is given by (4.5)2. Formula (4.1) is obtained

immediately from (4.8) and the relation wr = −1/3 + zr. We consider the distinct

cases dependent on the values of D for proving (4.8).

• For the values of D > 0, according to Remark 4, Eq. (4.4) has a unique real

root, so it is zr, given by (4.6)1:

zr =
3

√
R +

√
D +

3

√
R−

√
D (4.9)

in which the radicals are understood as real ones. To prove (4.8) we have to show that

the right side of (4.9) in which the radicals being understood as real ones coincides

with the right side of (4.8) where each radical being understood as a complex root

taking its principal value. Since:

3

√
R−

√
D =

q2

3
√

R +
√
D

(4.10)

it is sufficient to prove that R +
√
D > 0. Note that, since Eq. (4.4) has a unique
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real root, so does Eq. (3.10). To prove R +
√
D > 0 we examine the distinct cases

dependent on the values of ∆′, the discriminant of equation f ′
1(w) = 0.

- If ∆′ ≤ 0, then f2(w) is strictly monotonically increasing in (−∞, +∞). By

wN we denote the abscissa of the point of inflexion N of the cubic curve y = f1(w),

then wN = −2/3 < 0. This and the fact f1(0) = a0 < 0 and the strictly increasing

monotonousness of f1(w) lead to f1(wN) < 0. Since r = f1(wN) it follows r < 0, or

equivalently R > 0. This leads to R +
√
D > 0.

- If ∆′ > 0 ⇒ f ′
1(w) = 0 has two distinct roots wmax and wmin and either

wmax < wmin ≤ 0 or wmax < 0 < wmin (see Proposition 1). In both two cases

we always have: f1(wmin) < 0. As Eq. (3.10) has a unique real root as addressed

above it follows: f1(wmax)f1(wmin) > 0, consequently, f1(wmax) < 0. This and

f1(wmin) < 0 provides r = f1(wN) < 0 ⇒ R = −r/2 > 0, therefore we have

R +
√
D > 0.

• For D = 0, analogously as above, one can see that r < 0, consequently R > 0.

When D = 0 we have R2 = −Q3 = q6 (q > 0) ⇒ R = q3 ⇒ r = −2R = −2q3, so

Eq. (4.4) becomes z3 − 3q2z − 2q3 = 0 whose roots are: z1 = 2q, z2 = −q (double

root). This says zr = 2q, since it is the largest root. With the help of q > 0 and

D = 0 it is readily to see that zr calculated by (4.8) is 2q.

• For the values of D < 0, according to Remark 4, Eq. (4.4) has three distinct

real roots and zr is the largest one. Using the arguments presented in Ref. [18]

(page 255), it is not difficult verify that in this case the largest real root of Eq. (4.4)
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is:

zr =
3

√
R +

√
D +

3

√
R−

√
D (4.11)

in which each radical is understood as a complex root taking its principal value. By

3θ we denote the phase angle of R + i
√
−D. Then, it is not difficult to prove that:

3

√
R +

√
D = qeiθ,

3

√
R−

√
D = qe−iθ (4.12)

where radicals are understood as complex roots taking their principal value. From

(4.12) we have immediately (4.10) and then (4.8) by taking into account (4.11).

(ii) Let δ3 = 0. According to Proposition 3, a Raleigh wave can propagate in the

half-space if and only if (3.15) holds and the H/V ratio is computed by Eq. (3.12).

According to the proof of Proposition 3, when (3.15) is valid, the quadratic equation

(3.12): f2(w) = 0 has two distinct real roots w1 and w2 so that: w1 < 0 < w2 and

w2 = wr. It is readily to verify that w2, so wr, is calculated by formula (4.3). The

proof of Theorem 1 is completed

5 Formulas of the H/V for specific strain-energy

functions

5.1 The neo-Hookean material

For this material the strain-energy function is of the form [12]:

W (λ1, λ2) =
1

2
µ(λ2

1 + λ2
2 +

1

λ2
1λ

2
2

− 3) (5.1)
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where µ is a Lame coefficient. Consider the plain strain with λ3 = 1. From (2.8),

(2.9) and (5.1) we have:

α = µλ2, γ =
µ

λ2
, β =

µ

2
(λ2 +

1

λ2
), γ∗ =

µ

λ2
− σ2 (5.2)

thus, according to (3.2) and (5.2):

δ1 =
1

λ4
, δ2 =

1

2

(
1 +

1

λ4

)
, δ3 =

1− λ2σ̄2

λ4
(5.3)

where λ := λ1, σ̄2 = σ2/µ. Note that λ2 = λ−1 due to the incompressibility condition

λ1λ1λ3 = 1 and λ3 = 1. From (3.11) and (5.3), the coefficients a0 and a1 of the H/V

ratio equation (3.10) are:

a1 = 3− 2λ2σ̄2, a0 = −(1− λ2σ̄2)
2 (5.4)

According to Proposition 1 and Theorem 1 (i), if δ3 ̸= 0, i. e. (1 − λ2σ̄2) ̸= 0,

then a Rayleigh wave is possible if only if (coming from (3.13) and (5.3)):

(1 + λ− λ2 + λ3 − λ2σ̄2)(−1 + λ+ λ2 + λ3 + λ2σ̄2) > 0 (5.5)

and the H/V ratio of the Rayleigh wave is calculated by the formula (4.1) in which

a1 is given by (5.4)1, R and D are calculated by:

R =
26

27
+

λ2σ̄2(−8 + 3λ2σ̄2)

6
, D =

(−2 + λ2σ̄2)
2(44− 68λ2σ̄2 + 27λ4σ̄2

2)

108
(5.6)

From (5.3) it is readily to see that 2δ2 > 1, the condition (3.15) is therefore not

satisfied. According to Proposition 3, a Rayleigh wave is impossible for the case

δ3 = 0, i. e.:

1− λ2σ̄2 = 0 (5.7)
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Thus, the H/V ratio is not defined at points in the space of λ and σ̄2 satisfying (5.7).

When σ̄2 = 0, from (5.4) and (5.6) it follows:

a1 = 3, R =
26

27
, D =

44

27
(5.8)

and using (4.1) and (5.17) gives: wr = 0.2956. The condition (5.5) for this case is

λ > 0.5437.

Figure 1 shows some contour lines of the squared H/V ratio in the possible

domain of λ and σ̄2 (shaded) given by (5.5). The thick continuous curve is the set

of points at which the H/V ratio does not exist and it is defined by Eq. (5.7). The

H/V ratio tends to zero when (λ, σ̄2) approaching this curve. If λ is fixed and σ̄2

varies in its possible range, the squared H/V ratio approaches the supremum value

δ
−1/2
1 = λ2 at the two end points as stated in Remark 4.

Figure 2 shows the dependence of the H/V ratio on λ and σ̄2 computed by the

exact formula (4.1) (along with (5.4), (5.6)). The left figure shows the dependence

of the H/V ratio on λ with two fixed values of σ̄2 being 0 and 1. Each curve starts

from a so-called cut-off value of λ computed by (5.5). When σ̄2 = 0, the H/V ratio

is independent of λ and equals 0.2956 as mentioned above. The cut-off value of λ in

this case is 0.5437. For σ̄2 = 1 the cut-off value of λ is 0.4656 and the squared H/V

ratio starts from 0.2168 which is the square of 0.4656 according to Remark 4. For

the case σ̄2 = 1 the exact curve first decreases and approaches zero when λ tending

to λ0 = 1 (the root of Eq. (5.7) with σ̄2 = 1) and then increase with λ.

The right figure shows the dependence of the H/V ratio on σ̄2 with two fixed

18
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Figure 1: Some contours of the squared H/V ratio in the possible domain of λ and
σ̄2 (shaded) for the neo-Hookean material.
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Figure 2: The H/V ratio curves computed by exact formula as a function of λ (left)
and σ̄2 (right) with λ3 = 1 for the neo-Hookean material.

values of λ: λ = 1 and λ = 2. The range of σ̄2 for the case λ = 1 is from −2 to

2 and it is from −3.25 to 1.75 for λ = 2. The H/V ratio curves take a ”V” shape

with two supremum points δ
−1/2
1 = λ2 at the two end points, according to Remark
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4, which are 1 and 4 for λ = 1 and 2, respectively. They have an infimum point: at

σ̄2 = 1 for λ = 1 and at σ̄2 = 0.25 for λ = 2, following (5.7). The H/V ratio tends

to zero when σ̄2 approaching 1 (for the case λ = 1) and 0.25 (for the case λ = 2).

5.2 The Varga material

For the Varga material, the strain-energy function takes the form [12]:

W (λ1, λ2) = 2µ(λ1 + λ2 +
1

λ1λ2

− 3) (5.9)

Consider λ3 = 1 and denote λ1 = λ, from (2.8), (2.9) and (5.9) we have:

α = 2µ
λ3

1 + λ2
, γ = 2µ

1

λ(1 + λ2)
, β = 2µ

λ

1 + λ2
, γ∗ = 2µ

1

λ(1 + λ2)
− σ2 (5.10)

From (3.2) and (5.10) it follows:
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−3

−2

−1

0

1

2

3

4

λ

σ̄
2

Incompressible Varga material

0.1
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Figure 3: Some contours of the H/V-ratio in the possible space of λ and σ̄2 (shaded)
for the Varga material with λ3 = 1.

20



δ1 =
1

λ4
, δ2 =

1

λ2
, δ3 =

2− λ(1 + λ2)σ̄2

2λ4
(5.11)

From (3.11) and (5.10), the coefficients a0 and a1 of the H/V ratio equation (3.10)

are:

a1 = −(λ4 + λ3σ̄2 − 2λ2 + λσ̄2 − 2), a0 = −
[
λ(1 + λ2)σ̄2 − 2

2

]2
(5.12)

According to Proposition 1 and Theorem 1 (i), if δ3 ̸= 0, i. e. [2− λ(1+ λ2)σ̄2] ̸= 0,

then a Rayleigh wave exists if only if (following from (3.13) and (5.10)):

(2− λσ̄2)(λ
3σ̄2 + 6λ2 + λσ̄2 − 2) > 0 (5.13)

and the H/V ratio of the Rayleigh wave is calculated by the formula (4.1) in which

a1 is given by (5.12)1, R and D are calculated by (4.2) and (5.12). If δ3 = 0, i. e.:

λ(1 + λ2)σ̄2 − 2 = 0 (5.14)

then a Rayleigh wave can propagate in the half-space if only if (originating form

(3.15) and (5.10)):

λ >
√
2 (5.15)

and from (4.3) the H/V ratio of the Rayleigh wave is given by:

wr := κ2 = −1

2
+

1

2

√
4λ4 − 8λ2 + 1, λ >

√
2 (5.16)

When σ̄2 = 0, from (5.10), (5.12) and (4.2) we have:

δ3 =
1

λ4
> 0, a0 = −1, a1 = 2 + 2λ2 − λ4 (5.17)
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therefore by Proposition 1 and Theorem 1 (i), a Rayleigh wave is possible if only if

λ > 1/
√
3 (following from (5.13) with σ̄2 = 0) and the H/V ratio is given by (4.1)

in which a1 is given by (5.17)3 and:

R =
43

54
+
1

3
λ2−1

6
λ4, D = −(λ2−3)(λ2+1)(4λ8−16λ6+5λ4+22λ2+29)/108 (5.18)

Unlike the neo-Hookean material, the H/V ratio depends on λ for the case σ̄2 = 0.

Figure 3 shows some contour lines of the squared H/V ratio in the possible

domain of λ and σ̄2 defined by condition given in (5.13). When (λ, σ̄2) approaching

the boundary of this domain, the squared H/V ratio tends to λ2, according to

Remark 4. The thick continuous curve is expressed by Eq. (5.14) with 0 < λ ≤
√
2.

The H/V ratio goes to zero when (λ, σ̄2) approaching this curve.

The left (right) figure in Fig. 4 shows the dependence of the H/V ratio on λ

(σ̄2) with two fixed values of σ̄2 = 0; 1 (of λ = 1; 2) that is calculated by the exact

formula (4.1) (along with (4.2). In the left figure 4, for σ̄2 = 0, the cut-off value of

λ is 0.5773 determined by (5.13), for the case σ̄2 = 1, the range of λ is (0.4836, 2).

In the right figure 4, the range of σ̄2 is (−2, 2) for λ = 1 and (−11/5, 1) for λ = 2

and at the end points, the squared H/V ratio approaches λ2. On both figures, there

is a point (marked by circles) with σ̄2 = 1 and λ = 1 at which the Rayleigh waves

do not exist. This point belongs to the thick curve shown in Fig. 3.
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Figure 4: The squared H/V ratio computed by exact formula as a function of λ
(left) and σ̄2 (right) with λ3 = 1 for incompressible Varga material.

5.3 The m=1/2 material

For the m = 1/2 material, the strain-energy function is of the form [12]:

W (λ1, λ2) = 8µ(λ
1/2
1 + λ

1/2
2 +

1

λ
1/2
1 λ

1/2
2

− 3) (5.19)

Consider λ3 = 1 and denote λ1 = λ, from (2.8), (2.9) and (5.19) we have:

α =
4µλ4

√
λ(λ+ 1)(λ2 + 1)

, γ =
4µ√

λ(λ+ 1)(λ2 + 1)
,

β =
µ(−λ4 + 2λ3 + 2λ2 + 2λ− 1)√

λ(λ+ 1)(λ2 + 1)
, γ∗ = γ − σ2 (5.20)

From (3.2) and (5.22) it follows:

δ1 =
1

λ4
, δ2 = −1

4
+

1

2λ
+

1

2λ2
+

1

2λ3
− 1

4λ4

)
, δ3 =

4−
√
λ(λ+ 1)(λ2 + 1)σ̄2

4λ4
(5.21)

From (3.11) and (5.22), the coefficients of the H/V ratio equation (3.10) are:

a1 = (1 + λ)(1 + λ2)(1−
√
λσ̄2/2) +

1− 3λ4

2
,

a0 = −

(√
λ(1 + λ)(1 + λ2)σ̄2

4
− 1

)2 (5.22)
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According to Proposition 1 and Theorem 1 (i), if δ3 ̸= 0, i. e. [4−
√
λ(λ+ 1)(λ2 +

1)σ̄2] ̸= 0, then a Rayleigh wave exists if only if (following from (3.13) and (5.21)):

8(λ2 − 4λ+ 2) + 8
√
λ(λ− 1)σ̄2 + λ(λ2 + 1)σ̄2

2 < 0 (5.23)

and the H/V ratio of the Rayleigh wave is calculated by the formula (4.1) in which

a1 is given by (5.22)1, R and D are calculated by (4.2) and (5.22).

In case σ̄2 = 0, the equation of H/V ratio becomes

w3 + w2 + (
3

2
+ λ+ λ2 + λ3 − 3

2
λ4)w − 1 = 0 (5.24)

and its solution depends on the principal stresses λ, unlike the case of Neo-Hookean’s

material.

Fig. 5 shows some contour lines of squared H/V ratio in the domain of λ and

σ̄2 in which the Rayleigh surface waves exist. Unlike the Neo-Hookean and Varga

materials, this domain is bounded in λ. The picture of contour lines in this material

is similar to that of Varga material. The thick continuous curve shows the set of

points at which H/V ratio is not defined. In this case, λ < 1.3756, and H/V ratio

approaches to zero around this curve.

Fig. 6 shows the dependence of squared H/V ratio on λ (and σ̄2) using the exact,

(4.1) and (5.6). In the left figure, for σ̄2 = 0, Rayleigh waves exist in 2 −
√
2 <

λ < 2 +
√
2. For σ̄2 = 1, λ varies from 0.4896 to 1.7734. The range of σ̄2 on the

right figure is (−2, 2) and (2
5
(−

√
2 − 2

√
3), 2

5
(−

√
2 + 2

√
3)) for λ equals 1 and 2

respectively.
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Figure 5: Some contours of different values of squared H/V-ratio in space of λ and
σ̄2 for incompressible m = 1/2 material with λ3 = 1.
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Figure 6: The squared H/V ratio computed by exact formula as a function of λ
(left) and σ̄2 (right) with λ3 = 1 for incompressible m = 1/2 material.

6 Conclusions

In this paper, the exact H/V ratio formulas have been derived by solving analyti-

cally the H/V ratio equations. These formulas are valid for a general strain-energy
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function. Several particular strain-energy functions are employed to specify these

formulas. Some numerical examples are carried out to examine the dependance

of the H/V ratio on the pre-stress. Since the H/V ratio is a convenient tool for

nondestructively evaluating pre-stresses of structures before and during loading, the

obtained formulas will be significant in practical applications.

Acknowledgments

The work was supported by the Vietnam National Foundation for Science and Tech-

nology Development (NAFOSTED) under grant no 107.02-2017.08.

References

[1] M. Hirao, H. Fukuoka, K. Hori, Acoustoelastic effect of Rayleigh surface wave

in isotropic material, Journal of Applied Mechanics, 48, 119-124, 1981.

[2] P.P. Delsanto, A.V. Clark, Rayleigh wave propagation in deformed orthotropic

materials, Journal of the Acoustical Society of America, 81, 4, 952-960, 1987.

[3] M. Dyquennoy, M. Ouaftouh, M. Ourak, Ultrasonic evaluation of stresses in

orthotropic materials using Rayleigh waves, NDT & E International, 32, 189-

199, 1999.

[4] M. Dyquennoy, D. Devos, M. Ouaftouh, Ultrasonic evaluation of residual

stresses in flat glass tempering: Comparing experimental investigation and nu-

26



merical modeling, Journal of the Acoustical Society of America, 119, 6, 3773-

3781, 2006.

[5] F.G. Makhort, O.I. Gushcha, A.A. Chernoochenko, Theory of acoustoelasticity

of Rayleigh surface waves, International Applied Mechanics, 26, 346-350, 1990.

[6] M. Junge, J. Qu, L.J. Jacobs, Relationship between Rayleigh wave polarization

and state of stress, Ultrasonics, 44, 233-237, 2006.

[7] P.G. Malischewsky, F. Scherbaum, Love’s formula and H/V-ratio (ellipticity)

of Rayleigh waves, Wave Motion, 40, 57-67, 2004.

[8] L.M. Munirova, T.B. Yanovskaya, Spectral ratio of the horizontal and vertical

Rayleigh wave components and its application to some problems of seismology,

Izvestiia Physics of the Solid Earth C/C of Fizika Zemli-Rossiiskaia Akademiia

Nauk, 37, 9, 709-716, 2001.

[9] F. Scherbaum, K.G. Hinzen, M. Ohmberger, Determination of shallow shear

wave velocity profiles in the Cologue Germany area using ambient vibration,

Geophysical Journal International, 152, 597-612, 2003.

[10] P.G. Malischewsky, F. Wuttke, A. Ziegert, The use of surface acoustic waves

for non-destructive testing, Schriftenreihe Werkstoffwissenschaffen, 17, 135-140,

2002 (in German).

27



[11] D.M. Barnett, J. Lothe, Free surface (Rayleigh) waves in anisotropic elastic

half-spaces: the surface impedance method, Proceedings of the Royal Society of

London A: Mathematical, Physical and Engineering Sciences, 402, No. 1822,

135-152, 1985.

[12] M.A. Dowaikh, R.W. Ogden, On surface waves and deformations in a pre-

stressed incompressible elastic solid, IMA Journal of Applied Mathematics ,

44, 261-384, 1990.

[13] P.C. Vinh, On formulas for the velocity of Rayleigh waves in pre-strained in-

compressible elastic solids, Journal of Applied Mechanics, 77, 2, 021006, 2010.

[14] R.W. Ogden, Non-Linear Elastic Deformations, Ellis Horwood, Chichester,

1984.

[15] P.C. Vinh, Explicit secular equatins of Rayleigh waves in a non-homogeneous

orthotropic elastic medium under the influence of gravity, Wave Motion, 46,

427-434, 2009.

[16] P.C. Vinh, V.T.N. Anh, N.T.K. Linh, On a technique for deriving the explicit

secular equation of Rayleigh waves in an orthotropic half-space coated by an

orthotropic layer, Waves in Random and Complex Media, 26, 176-188, 2016.

[17] W.H. Cowles, J.E. Thompson, Algebra, Van Nostrand, New York, 1947.

28



[18] P.C.Vinh, R.W. Ogden, Formulas for the Rayleigh wave speed in orthotropic

elastic solids, Archives of Mechanics, 56, 3, 247-265, 2004.

29


