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The problem of biomagnetic fluid flow and heat transfer in the three-
dimensional unsteady stretching/shrinking sheet is examined. Our model is the ver-
sion of biomagnetic fluid dynamics (BFD) which is consistent with the principles
of ferrohydrodynamics (FHD). Our main contribution is the study of the three di-
mensional time dependent BFD flow which has not been considered yet to our best
knowledge. The physical problem is described by a coupled, nonlinear system of ordi-
nary differential equations subject to appropriate boundary conditions. The solution
is obtained numerically by applying an effcient numerical technique based on the
fnite difference method. Computations are performed for a wide range of the govern-
ing parameters such as ferromagnetic interaction parameter, unsteadiness parameter,
stretching parameter and other involved parameters. The effect of these parameters
on the velocity and temperature fields are examined. We observed that for the decel-
erated flow, the velocity profile overlap with the increasing unsteadiness parameter
and we also found that the skin friction coefficient is decreased for a shrinking sheet
whereas, opposite behavior is shown for the stretching sheet. We also monitored
the rate of the heat transfer coefficient with the ferromagnetic interaction param-
eter and showed opposite behavior for stretching and shrinking sheets. Our results
are also compared for specific values of the parameters with others documented in
literature.
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Notation

(x, y, z) Cartesian coordinates, m,
(u, v, w) velocity components in the x, y, z direction, m,
(ξ, ζ, η) non-dimensional coordinates,
p fluid pressure, kg/m · s2,
−→
M magnetization, A/m,
H magnetic field intensity, A/m,
B magnetic induction, A/m,
Bs saturation magnetic induction, A/m,
Ms saturation magnetization, A/m,
T fluid temperature inside the boundary layer, K,
Tc fluid temperature far away from sheet, K,
Tw temperature of the sheet, K,
P1, P3, P5 dimensionless pressure,
(f ′, g′) dimensionless velocity components in the x and y directions,
(θ1, θ3, θ5) dimensionless temperature,
ρ density of fluid, kg/m3,
µ dynamic viscosity, kg/(m · s),
ν kinematic viscosity, m2/s,
µ0 magnetic permeability, kg · m/(A2 · s2),
A unsteadiness parameter
Cp Specific heat constant pressure, J/(kg · K,
k thermal conductivity, J/(m · s · K),
a dimensionless constant,
λ stretching parameter,
Pr Prandtl number
λa viscous dissipation parameter,
ε dimensionless Curie temperature,
β ferromagnetic interaction parameter,
δ dimensionless distance,
ϕ dissipation function.

1. Introduction

When the human body is moving to the various environments, such as trav-
elling or any hard working then the body is accelerated or decelerated with time
and space. The flow behavior of blood and the temperature are also changed
in time. Generally speaking, capillaries carry the blood through skin and mus-
cles and arteries carry the blood away from the heart whereas veins carry the
blood towards the heart. Also it is known that, muscles, arteries and veins are
stretched continuously and as a first approximation we could consider muscles
as a stretching/shrinking surfaces and arteries or veins as a stretching/shrinking
cylinders. So, one could consider, blood flow applicable to stretching/shrinking
surfaces. In such situations the blood flow of artery is unsteady and heat trans-
fer is occurring from a surface of tissues, skin or body by sweating or con-
ducting. The most common example of biomagnetic fluid existing in a living
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creature is blood. Since the body always moves in various positions all the time,
the unsteady state condition analysis is of significant importance for the flow
problem.

The influence of the magnetic field on biofluid flow has been extensively
investigated for bioengineering and medical applications [1–3], particularly for
controlling blood flow for surgery, cancer treatment, drug targeting etc. The
mathematical model for a ferrofluid flow (FHD) over a stretching sheet was
used by Andersson and Valnes [4] and found that the flow has significantly
affected in the presence of a magnetic dipole. Yesmeen et al. [5] investigated
the flow and heat transfer of ferrofluid over a stretched surface and reported
that the velocity profile decreases due to the increment of the magnetic number.
Zeeshan et al. [6] studied ferrofluid flow over a stretching sheet and investigated
the effect of a magnetic dipole on the flow behavior. Majeed et al. [7] studied the
unsteady ferromagnetic flow over a stretching sheet with prescribed heat flux.
Zeeshan et al. [8] analyzed the boundary layer heat transport flow of multiphase
magnetic fluid with solid impurities suspended homogeneously past a stretching
sheet under the impact of circular magnetic field. Majeed et al. [9] studied the
influence of chemical reaction and heat transfer analysis of Maxwell saturated
Ferrofluid flow over a stretching sheet under the influence of a magnetic dipole
with Soret and suction effects. Bhatti et al. [10] reported the entropy generation
on electro kinetically modulated peristaltic propulsion on magnetized nanofluid
flow through a microchannel with joule heating.

Many authors have investigated the blood flow and heat transfer under the
action of external magnetic field. Haik et al. [11] first introduced the mathemati-
cal model of BFD. This model is based on the principles of FHD [12]. Further, an
extended BFD mathematical model was developed by Tzirtzilakis [13] based
on both principles of FHD and MHD.

The magnetic field strength H which is generated by a magnetic dipole, is
affecting the fluid flow and the significant magnetization M is attained when
the magnetic field is sufficiently strong to saturate the biomagnetic fluid. There
are various magnetization equations describing M . Andersson and Valnes [4]
considered a magnetization equation varying linearly with temperature whereas,
Tzirtzilakis and Kafoussias [14] considered a nonlinear magnetization equa-
tion. Haik et al. [33] studied the variation of blood viscosity in a human body
under the action of a high static magnetic field. For their model they used a mag-
netization equation which was not temperature dependent.

Furthermore, mathematical models have been developed for blood flow and
many authors like Eldesoky [15] assumed blood as a Newtonian fluid. More-
over, Eldesoky [15] studied the MHD blood flow of an unsteady parallel plate
in the presence of a heat source. Misra and Sinha [16] studied the MHD flow of
blood in a capillary with lumen being porous and wall permeable. Tzirtzilakis
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and Kafoussias [17] investigated the magnetic fluid (FHD) flow over a three
dimensional stretching sheet.

Singh and Rathee [18] studied the blood flow through an artery in the
presence of the magnetic field with variable blood viscosity. Under the periodic
body movement, the MHD pulsatile flow was presented by Das and Saha [19].
Dulal and Ananda [20] investigated the blood flow through an artery in the
presence of the magnetic field. Unsteady MHD blood flow through a parallel
plate was studied by Ali et al. [21].

Initially, most of the researchers studied steady flows over a stretching sheet.
However, the interest of the unsteady flow over a shrinking sheet has considerably
increased among researchers. Bachok et al. [22] and Fang et al. [23] studied the
unsteady fluid flow over a stretching/shrinking sheet and they emphasized the
deviation in flow behaviors for an unsteady shrinking sheet compared with those
observed for an unsteady stretching sheet. Bhatti and Rashidi [24] described
the combined effect of thermos-diffusion and thermal radiation on Williamson
nanofluid over a porous stretching sheet. Further, Bhatti and Rashidi [25]
reported the entropy generation with nonlinear thermal radiation in the MHD
boundary layer flow over a permeable shrinking/stretching sheet. Bhatti et al.
[26] analyzed the flow over a permeable shrinking sheet under the influence of
MHD. Dandapat et al. [27] analyzed the problems of heat transfer due to a per-
meable stretching wall in the presence of transverse magnetic field. Nikodijevic

et al. [28] presented a parametric method for the unsteady two-dimensional MHD
boundary-layer on a body for which temperature varies with time. Majeed et
al. [29] examined the boundary layer flow of a nanofluid due to a magnetic
dipole over a stretching surface with the velocity slip condition. Mishra et al.
[30] analyzed mass and heat transfer over an electrically conducting viscoelastic
fluid over a stretching surface in the presence of the transverse magnetic field.
Sheikoleslami and Bhatti [31] studied the forced convective heat transfer
in a porous semi-annulus in the presence of a uniform magnetic field. Hassan

et al. [32] analyzed the nanoparticle shapes behavior on ferrofluid flow and heat
transfer over a rotating disk with the presence of the oscillating magnetic field.

In the present paper we study the BFD flow and heat transfer of blood along
a stretching/shrinking three dimensional sheet. For the mathematical formula-
tion we adopt the version of BFD which is consistent with the FHD principles.
The transformed similarity equations are solved numerically using a finite dif-
ferent scheme with central differencing. The influence of the physical controlling
parameter on velocity and temperature profiles is elucidated through the graphs.
Also, we computed the missing slopes. The hope is that the present analysis will
be used in bio-medical and bio-engineering applications. Furthermore, compari-
son of the numerical findings is performed within some limitations with existing
results.
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2. Problem formulation and basic equations

We consider an unsteady three dimensional incompressible, viscous, laminar
biomagnetic fluid past a stretching/shrinking sheet whose flow direction in the
coordinate system is taking place in the (x, y, z) plane with velocities U(x, t) =
Uw(x, t), V (y, t) = Vw(y, t) and w(z, t) = 0 whereas, z is perpendicular to the
(x, y) plane (Fig. 1). Assume that the fluid occupies the upper half planez ≥
0. The flow field is subject to the presence of a magnetic field generated by
a magnetic wire which is located below the sheet at a distanced. The temperature
of the sheet Tw is kept fixed and Tc is the temperature far away from the sheet,
with Tw < Tc.

Stretching sheet Shrinking sheet

Fig. 1. Geometry of the model.

The governing equations of the unsteady three-dimensional flow of viscous
incompressible biomagnetic fluid and heat transfer equations under the influence
of magnetic field are [11, 13, 17, 37]:

Continuity equation:

(2.1)
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0.
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Momentum equation:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂p

∂x
+ ν

∂2u

∂z2
,(2.2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂p

∂y
+

1

ρ
µ0M

∂H

∂y
+ ν

∂2v

∂z2
,(2.3)

∂w

∂t
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+

1

ρ
µ0M

∂H

∂z
+ ν

∂2w

∂z2
.(2.4)

Energy equation:

(2.5) ρCp

(

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z

)

+ µ0T
∂M

∂T

(

v
∂H

∂y
+ w

∂H

∂z

)

= k

(

∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

)

+ µϕ,

where ϕ is the dissipation function and is given by the expression mentioned in
Tzirtzilakis and Kafoussias [17]

(2.6) ϕ = 2

[(

∂u

∂x

)2

+

(

∂v

∂y

)2

+

(

∂w

∂z

)2]

+

[(

∂v

∂z

)2

+

(

∂u

∂z

)2]

.

The initial and boundary conditions for the velocity, temperature and pres-
sure are:

t < 0 : u(x, y, z) = 0, v(x, y, z) = 0, w(x, y, z) = 0 for any x, y, z,

t ≤ 0 : u = uw(x, t) = λax(1 − αt)−1, v = vw(y, t) = λay(1 − αt)−1,(2.7)

w = 0, T = Tw at z = 0,

u→ 0, v → 0, T → Tc, p+
1

2
ρq2 = p∞ = const as z → ∞.(2.8)

Here q = (u, v, w) are the velocity of the fluid in x, y and z axis, respectively.
t is the time, a is positive constants, p, ρ, µ, ν, α, λ, µ0, Cp, k, M are the
pressure, density, dynamic viscosity, kinematic viscosity, unsteadiness parameter,
stretching parameter, magnetic permeability, specific heat at constant pressure,
thermal conductivity and magnetization, respectively. Note that for λ > 0 the
sheet is stretching whereas for λ < 0 the sheet is shrinking.

The terms µ0M
∂H
∂y and µ0M

∂H
∂z in (2.3) and (2.4), respectively, represent

the magnetic force in yand z directions which is known as Kelvin forces and the
term µ0T

∂M
∂T

(

v ∂H
∂y + w ∂H

∂z

)

in (2.5) represents the Joule heating and the thermal
power per unit volume.
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The magnetic wire is located below the sheet at a distance dwhich generates
the magnetic field whose components are [17]:

Hy(y, z) = − γ

2π

z + d

y2 + (z + d)2
and Hz(y, z) =

γ

2π

y

y2 + (z + d)2
.

Therefore, the magnitude ‖H‖ = H of the magnetic field is given by

(2.9) H(x, y, z) = H(y, z) = [H2
y +H2

z ]1/2 =
γ

2π

1
√

y2 + (z + d)2

The flow behavior of the biofluid is affected by the magnetic field which is de-
scribed by the magnetization M. In this analysis, we consider that the magne-
tization varies with the magnetic field intensity H and temperature T and also
we use the magnetization equation proposed by Tzirtzilakis and Kafoussias

[17] and Matsuki et al. [34]

(2.10) M = KH(Tc − T ).

3. Similarity solution for momentum and heat transfer equations

We introduce the following non-dimensional variables as Hafidzuddin et al.
[40] and Tzirtzilakis and Kafoussias [17]



















ξ(x) =
√

a
ν(1−αt) x,

ζ(y) =
√

a
ν(1−αt) y,

η(z) =
√

a
ν(1−αt) z,

(3.1)

u =
ax

1 − αt
f ′(η), v =

ay

1 − αt
g′(η), w = −

√

aν

1 − αt
(f(η) + g(η)).(3.2)

where primes denote derivatives with respect to η. The continuity equation
(2.1) is satisfied using the similarity variables (3.2). The dimensionless pres-
sure P (ξ, ζ, η) and temperature θ(ξ, ζ, η)of the magnetic fluid are given by the
following expressions:

P (ξ, ζ, η) =
p
aµ

1−αt

= P1(η) + ξP2(η) + ξ2P3(η) + ζP4(η) + ζ2P5(η),(3.3)

θ(ξ, ζ, η) =
Tc − T

Tc − Tw
= θ1(η) + ξθ2(η) + ξ2θ3(η) + ζθ4(η) + ζ2θ5(η).(3.4)

The dimensionless form of the equation (2.9) is

(3.5) H(ζ, η) =
γ

2π

√

a

ν(1 − αt)

[

1

η + δ
− 1

2

ζ2

(η + δ)3

]

,
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where δ is the dimensionless distance of the dipole from the ξ-axis δ=d
√

a
ν(1−αt)

we also have

(3.6)
∂H

∂ζ
= − γ

2π

a

ν(1 − αt)

ζ

(η + δ)3

and

(3.7)
∂H

∂η
=

γ

2π

a

ν(1 − αt)

[

− 1

(η + δ)2
+

3

2

ζ2

(η + δ)4

]

.

By substituting equation (2.10) and all the above expressions (3.1)–(3.7) into
the momentum equations (2.2)–(2.4) and energy equation (2.5), and equating the
coefficients of equal power of ξ, ξ2, ζ, ζ2, we get the following system of equations:

f ′′′ + (f + g)f ′′ − f ′2 − 2P3 −A(f ′ +
η

2
f ′′) = 0,(3.8)

g′′′ + (f + g)g′′ − g′2 − 2P5 −A(g′ +
η

2
g′′) − βθ1

(η + δ)4
= 0,(3.9)

P ′

1 + f ′′ + g′′ + (f + g)(f ′ + g′) +
βθ1

(η + δ)3
(3.10)

− A

2
[(f + g) + η(f ′ + g′)] = 0,

P ′

3 +
βθ3

(η + δ)3
= 0,(3.11)

P ′

5 +
βθ5

(η + δ)3
− 2βθ5

(η + δ)5
= 0,(3.12)

θ′′1 + Pr

[

(f + g) − 1

2
Aη

]

θ′1 + 2(θ3 + θ5)(3.13)

− δ2βλa(ε− θ1)

(η + δ)3
(f + g) − 4δ2λa(f

′2 + g′2 + f ′g′) = 0,

θ′′3 + Pr

[

(f + g) − 1

2
Aη

]

θ′3 − Pr(A+ 2f ′)θ3(3.14)

+
δ2βλa

(η + δ)3
(f + g)θ3 − δ2λaf

′′2 = 0,

θ′′5 + Pr

[

(f + g) − 1

2
Aη

]

θ′5 − Pr(A+ 2g′)θ5(3.15)

+ δ2βλa

[(

g′

(η + δ)4
+ 2

f + g

(η + δ)5

)

(ε− θ1) +
f + g

(η + δ)3
θ5

]

− δ2λag
′′2 = 0.



M. G. Murtaza, E. E. Tzirtzilakis, M. Ferdows 169

Also, the boundary conditions (2.7) and (2.8) become

f ′ = λ, g′ = λ, θ1 = 1, θ3 = θ5 = 0, f = g = 0 at η =,(3.16)

f ′ → 0, g′ → 0, P1 → P∞, P3 = P5 = 0 as η → ∞(3.17)

The dimensionless parameters are:

Pr =
µcp
k

Prandtl number,

λa =
µ3

ρ2k(Tc − Tw)d2
viscous dissipation parameter,

ε =
Tc

Tc − Tw
dimensionless Curie temperature,

β =
γ2

4π2

Kµ0(Tc − Tw)ρ

µ2
ferromagnetic interaction parameter,

δ = d

√

a

ν(1 − αt)
dimensionless distance,

A =
α

a
dimensionless unsteadiness parameter.

For the present work, when (A > 0) we have the case of the accelerated flow
whereas for (A < 0) we have the decelerated flow.

4. Numerical method

The essential features of the numerical technique used in the present paper are
the following: (i) it is based on the common finite difference method with central
differencing (ii) on a tridiagonal matrix manipulation and (iii) on an iterative
procedure. This methodology was developed by Kafoussias and Williams [35].
The equations (3.8)–(3.9) are highly nonlinear. So, firstly we consider the first
momentum equation and reduce it to a second order linear differential equation
by considering

F (x) = f ′(η), F ′(x) = f ′′(η), F ′′(x) = f ′′′(η).

Now we rewrite Eq. (3.8) as follows

⇒ F ′′(x) + (f + g)F ′(x) − f ′F (x) − 2P3 −A

(

F (x) +
η

2
F ′(x)

)

= 0

⇒ F ′′(x) +

(

(f + g) − η

2
A

)

F ′(x) − (f ′ +A)F (x) − 2P3 = 0,
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which is of the form

(4.1) P (x)F ′′(x) +Q(x)F ′(x) +R(x)F (x) = S(x),

where

P (x) = 1, Q(x) = f + g − η

2
A, R(x) = −(f ′ +A), S(x) = 2P3.

In an analogous manner all equations of the system can be reduced in this
form of equation (4.1) except for equations (3.10)–(3.12) which are already the
first order differential equations. This method is presented with more details in
Kafoussias and Williams [35] and used in the studies of Tzirtzilakis and
Kafoussias [14, 17], and Murtaza et al. [37].

To start the solution procedure we first have to set initial guesses for f ′(η),
g′(η), θ1(η), θ3(η), θ5(η) between η = 0 and η = η∞(η∞ → ∞) which should
obviously satisfy the boundary conditions (3.16) and (3.17). For the present
problem we insert the following initial guesses:

f ′(η) = g′(η) =

(

λ− η

η∞

)

, θ1(η) =

(

1 − η

η∞

)

,

θ3(η) = θ5 = 0.5

(

η

η∞

)(

1 − η

η∞

)

.

By integration of f ′(η) we determine the value of f(η). Hereafter we assume
that f , g, P3, P5, θ1 are known and calculate new estimations for f ′(η), f ′new(η)
and g′(η), g′new(η). These values are used for new inputs, the profiles are up-
dated and so on. Finally, the solution is achieved iteratively until the criterion
of convergence is satisfied.

After f ′(η) is obtained the solution of the energy equation (3.13) with bound-
ary conditions (3.16) and (3.17) is solved by using the same algorithm, but with-
out iteration now as far as Eq. (3.13) is linear. Equation (3.13) is

θ′′1 + Pr

[

(f + g) − 1

2
Aη

]

θ′1 + 2(θ3 + θ5)

− δ2βλa(ε− θ1)

(η + δ)3
(f + g) − 4δ2λa(f

′2 + g′2 + f ′g′) = 0,

which can be written as

θ′′1 + Pr

[

(f + g) − 1

2
Aη

]

θ′1 +
δ2βλa

(η + δ)3
(f + g)θ1

= −2(θ3 + θ5) +
δ2βλaε

(η + δ)3
(f + g) + 4δ2λa(f

′2 + g′2 + f ′g′).
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By setting y(η) = θ1(η) is again a second-order linear differential equation of the
form

P (x)F ′′(x) +Q(x)F ′(x) +R(x)F (x) = S(x),

where

P (x) = 1, Q(x) = Pr

[

(f + g) − 1

2
Aη

]

, R(x) =
δ2βλa

(η + δ)3
(f + g),

S(x) = −2(θ3 + θ5) +
δ2βλaε

(η + δ)3
(f + g) + 4δ2λa(f

′2 + g′2 + f ′g′).

Considering f , f ′, g, g′, θ3, θ5 known, we obtain a new approximation θ1new

for θ1 and this process continues until a convergence is attained up to a small
quantity ε and finally we obtain θ1.

In this problem we use the discretization step ∆η = 0.01 and by trial and
error we consider the value of η∞ = 6, and the convergence criterion ε = 10−4

defined as

ε = max
i=1,N

(∣

∣

∣

∣

fold(i) − fnew(i)

fold(i)

∣

∣

∣

∣

)

.

5. Results and discussions

In this paper, the unsteady biomagnetic fluid flow along a three dimensional
stretching/shrinking sheet under the action of a magnetic field has been investi-
gated numerically. The governing parameters such as unsteadiness parameter A,
stretching parameter λ, Prandtle number Pr, and ferromagnetic interaction pa-
rameter β have a significant impact on flow and heat transfer. As far as the values
of the magnetic parameters are concerned, there have been extended discussions
in various studies for the possible case scenarios corresponding to plausible phys-
ical problems [13, 14, 36–39]. Especially the biomagnetic interaction parameter β
can take a quite large range of values depending on the magnetic field gradient.
So, for the fluid which is considered to be blood we have that:

ρ = 1050 kg/m3, µ = 3.2 × 10−3 kg · m−1s−1 [39],

Cp = 14.65 J · kg−1 · K−1, k = 2.2 × 10−3 J · m−1s−1K−1 [36],

and hence

Pr =
µCp

k
= 21,

for a human body temperature [38] Tw = 37◦C, whereas the body Curie tem-
perature is Tc = 41◦C, hence the dimensionless temperature is ε = 78.5.
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The ferromagnetic number β, is defined as

β =
I2

4π2

Kµ0(Tc − Tw)ρ

µ2
=
MsBsρd

2

µ2
,

where Ms = KH(0, 0)(Tc −Tw), Bs = µ0H(0, 0), H(0, 0) are the magnetization,
the magnetic field induction and the magnetic field strength intensity at the wall,
respectively.

For the magnetic field 1T to 10T, the blood has reached magnetization of
40 Am−1 [13]. The ferromagnetic interaction parameter is calculated from the
above relation and the corresponding range is from β = 1× 103 to 1× 105. Note
that β = 0.0 corresponds to the hydrodynamic flow.

In order to verify the accuracy of the present method, the values of skin
frictions (f ′′(0), g′′(0)) compared with the results of Hafizuddin et al. [40] and
Devi et al. [41], for β = 0 and f ′(0) = 1, g′(0) = 0.5. The comparison indicates
excellent agreement with previous data.

Table 1. The value of skin friction coefficients f ′′(0), g′′(0) varying with

unsteadiness parameter.

Devi et al [41] Hafizuddin et al. [40] Present results

A −f ′′(0) −g′′(0) −f ′′(0) −g′′(0) −f ′′(0) −g′′(0)

−1.0 0.7912 0.2956 0.7912 0.2956 0.79127 0.29566

−0.75 0.8673 0.3384 0.8673 0.3384 0.86731 0.33839

−0.5 0.9430 0.3809 0.9430 0.3809 0.94301 0.38092

0.25 1.0183 0.4232 1.0183 0.4232 1.01833 0.42325

0.0 1.0931 0.4652 1.0931 0.4652 1.09323 0.46533

0.25 1.1674 0.5059 1.1674 0.5059 1.16753 0.50706

0.5 1.2407 0.5480 1.2407 0.5480 1.24074 0.54806

0.75 1.3122 0.5878 1.3122 0.5878 1.31217 0.58784

1.0 1.3814 0.6261 1.3814 0.6261 1.38132 0.62604

Figures 2–4 show the effect of the unsteadiness parameter on velocity and
temperature profiles in the reducing mode (A<0) and accelerated mode (A>0).

In Fig. 2, we observe the velocity profiles for the variation of the unsteadiness
parameter for the stretching/shrinking sheet, respectively. For the decelerated
flow (A < 0), the fluid velocity increases with the increment of the unsteadiness
parameter A and this behavior happens approximately near the wall within the
region (η < 1.2) whereas, far away from the wall this behavior is reversed. On
the other hand, for the accelerated flow (A > 0), the velocity is decreased with
the increment of the unsteadiness parameter A in the whole region.

Figure 3 shows the velocity profile g′(η) for y axis. It is evident from the
plots that for the decelerated flow (A < 0), the velocity decreases with the in-
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Fig. 2. The velocity profile for f ′(η) for different values of unsteadiness parameter A.

Fig. 3. The velocity profile for g′(η) for different values of unsteadiness parameter A.

crement of the unsteadiness parameter near the wall and the opposite behavior
is observed away from the boundary, for η>1.25.
For the accelerated flow, the increment of the unsteadiness parameter results
in the decrement of the boundary layer thickness in the whole region. Figure 4
presents the velocity profile −(f(η) + g(η)) for the z axis. We observe that for
A < 0, the velocity is found to decrease with the increment of the unsteadi-
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Fig. 4. The velocity profile for −(f(η)+g(η)) for different values of unsteadiness parameter A.

Fig. 5. The temperature profile θ1(η) for different values of unsteadiness parameter A.

ness parameter. For the accelerated flow the boundary layer thickness decreases
monotonically with the increment of the unsteadiness parameter A.

Figure 5 demonstrates the temperature profiles θ1(η), for various values of
the unsteadiness parameter for the decelerated flow. The temperature profile
θ1(η) is increased with the increment of the unsteadiness parameter.
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Fig. 6. The velocity profile for f ′(η) for different values of unsteadiness parameter A with
stretching/shrinking sheet.

Fig. 7. The velocity profile for g′(η) for different values of unsteadiness parameter A with
stretching/shrinking sheet.

Figures 6–13 show the combine impact of the stretching and shrinking sheet
for various parameters. In Fig. 6 we see that for a stretching sheet, the velocity
profile decreases with the increment of the unsteadiness parameter but this result
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Fig. 8. The velocity profile for −(f(η) + g(η)) for different values of unsteadiness parameter
A with stretching/shrinking sheet.

Fig. 9. The temperature profile θ1(η)for different values of unsteadiness parameter A with
stretching/shrinking sheet.

is reversed for the shrinking sheet. Hence, we conclude that for the stretching
sheet, the increment of the unsteadiness parameter results in resistance of the
flow, i.e., reduction of the momentum boundary layer thickness.
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Fig. 10. The velocity profile f ′(η) of stretching/shrinking sheet with different ferromagnetic
parameter β.

Fig. 11. The velocity profile for g′(η) of stretching/shrinking sheet with different
ferromagnetic parameter β.

From Fig. 7, we observe that increasing the unsteadiness parameter results in
increment of the velocity profile g′(η) for both stretching and shrinking cases. On
the other hand, Fig. 8 shows that the increasing of the unsteadiness parameter
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Fig. 12. The velocity profile −(f(η) + g(η)) for different values of ferromagnetic parameter β
with stretching/shrinking sheet.

Fig. 13. The temperature profile θ1(η)for different values of ferromagnetic parameter βwith
stretching/shrinking sheet.

results in decrement of the distribution of the velocity profile −(f(η) + g(η))
for the shrinking case whereas, the opposite occurs for the stretching case. The
temperature profile θ1(η) is pictured in Fig. 9. We observe that increment of
the unsteadiness parameter results in increment of the temperature profile for
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Fig. 14. Skin friction coefficient −f ′′(0) with λ for different values of A.

Fig. 15. Skin friction coefficient −g′′(0)with λ for different values of A.

both stretching and shrinking cases. In all cases the effect of the unsteadiness
parameter is more effective in a shrinking sheet than the stretching one.

Figures 10–12 exhibit the impact of the magnetic field on velocity profiles
for stretching and shrinking cases, respectively. We observe that for a stretch-
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Fig. 16. Skin friction coefficien −g′′(0) with A for different values of β.

Fig. 17. Skin friction coefficien −g′′(0) with λ for different values of β.

ing sheet, f ′(η) and g′(η) exhibit the reverse behavior as the magnetic field is
increased. From Fig. 10 it is observed that f ′(η) is greater than that of the
corresponding hydrodynamic case and it is increased with the increment of the
magnetic parameter for the stretching case. The opposite is happening for the
shrinking case. The behavior of g′(η) is pictured in Fig. 11. The distribution
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of g′(η) is reduced with the increment of the magnetic parameter for shrinking
and stretching sheet as well. The opposite is observed for the distributions of
−(f(η) + g(η)) pictured in Fig. 12. This happens because the Kelvin force acts
on the sheet towards the y and z axes.

Figure 13 depicts the impact of the magnetic field on temperature profiles for
stretching/shrinking cases, respectively. From this figure it is apparent that the
temperature profiles are increased in both stretching and shrinking cases with
the increment of the magnetic field parameter. The reason of this behavior is
that the increment in the magnetic field results in the reduction of the boundary
layer thickness and enhances the thermal conductivity of the fluid in the stretch-
ing/shrinking sheet. This effect is more intense for the shrinking case compared
to the one of the stretching case.

Figures 14 and 15 depict the skin friction coefficients (f ′′(0), g′′(0)) with re-
spect to the parameter λ for various values of A. It is noted that as the unsteadi-
ness parameter A is increased, the velocity gradients near the wall are decreased
for the shrinking sheet whereas they are increased for the stretching one.

Fig. 18. Local Nusselt number −θ′

1(0) with λfor different values of ferromagnetic
parameter β.

Figures 16–17 depict the skin friction coefficient (-g′′(0)) with respect to the
unsteadiness parameter A and the shrinking/stretching parameter λ for different
values of the ferromagnetic parameter β. It is observed that the skin friction
coefficient increases with the increment of the magnetic parameter β. Finally,
Fig. 18 shows that the wall temperature gradient is increased with the increment
of the ferromagnetic field parameter β in the shrinking region whereas it is
reduced in the stretching region.



182 M. G. Murtaza, E. E. Tzirtzilakis, M. Ferdows

6. Conclusions

In this work, the three dimensional biomagnetic fluid flow past the unsteady
stretching/shrinking sheet has been investigated numerically. The results indi-
cate the following:

For accelerated flow, the velocity profile f ′(η)decreases with the increment
of the unsteadiness parameter over a stretching sheet and the opposite behavior
is shown for the shrinking sheet. On the other hand, the velocity profile g′(η) is
decreased for both stretching and shrinking sheets (Fig. 7) with the increment
of the unsteadiness parameter.

For decelerated flow, we observed that all the flow profile has a cross flow,
i.e., near the wall initially the flow motion is decreased and far away from the
wall is increased and the reverse is true.

For the effect of the magnetic parameter, the velocity profilef ′(η) is increased
with the increment of the magnetic number in the stretching sheet but this
observation is reversed for the shrinking sheet. On the other hand, the velocity
profiles g′(η) and −(f(η)+g(η)) are decreased with the increment of the magnetic
number in both stretching and shrinking sheets.

The thermal boundary layer thickness is increased in both stretching and
shrinking sheets with the increment of the unsteady parameter and magnetic
number. Note that the profile is higher in the shrinking sheet than that of the
stretching one.

The skin friction coefficient is decreased/increased with the increment of the
unsteady parameter for the shrinking/stretching sheet, respectively. Also skin
friction is increased with the increment of the ferromagnetic number β in both
sheets.

The wall temperature gradient is increased/decreased with the increase of
the unsteady parameter for the shrinking/stretching sheet, respectively.

This study is intended to constitute an initial inside for all kinds of applica-
tions that deal with blood flow aiming to control the flow rate and rate of heat
transfer such as magnetic drug targeting or/and magnetic hyperthermia.
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