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It is difficult to measure the transverse shear modulus of the fibrous
composites. Thus, theoretical investigations by means of analytical and numerical
techniques are paramount. In particular, they are important for the regime with
high-concentration of fibers. We apply general techniques to study the mechanical
properties of unidirectional fibers with a circular section embedded into the matrix
and organized into the hexagonal array. Our theoretical considerations are designed
to include two regimes, of low and high concentrations of inclusions. The former
regime is controlled by Hashin–Shtrikman lower bounds, while the latter is controlled
by square-root singularity. We derived the analytical formulae for the effective shear,
Young and bulk moduli in the form of the rational expressions valid up to O(f7) by
the method of functional equations. The obtained formulae contains elastic constants
of components in a symbolic form as well as the concentration f . The general scheme
based on the asymptotically equivalent transformations is developed to extend the
obtained analytical formulae to the critical concentration of touching fibers. A com-
parison with the numerical FEM is performed for all concentrations of inclusions.
Good agreement is achieved for all available concentrations.

Key words: effective elastic properties, hexagonal array, asymptotically equivalent
transformation.
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1. Introduction

Various theoretical methods were applied to study the macroscopic
mechanical properties of unidirectional fibrous composites when a section per-
pendicular to fibers forms the hexagonal (triangular) array of equal disks dis-
played in Fig.1. Flat 3D samples with different fiber orientation are usually used
to determine experimentally shear modulus. Experimental methods do not give
sufficiently accurate results for this type of composite. Fixture restrains cause
formation of additional shear deformations and stresses in the specimen. Numer-
ous tests must be carried out to determine the optimal angle of fiber orientation.
But not for all the materials such angles can be set. Alternative experimen-
tal methods were proposed in [1] but they also require advanced technological
methods. Thus, it is important to predict the effective shear modulus using math-
ematical models and simulations. One can divide the theoretical investigations
on two approaches based on analytical and numerical methods outlined in [2].
Problems for fibrous composites refer to the plane strain because it serves as
an 2D approximation of the 3D fibrous composites. Such an idealized model of
arrays of infinitely long, aligned cylinders in a matrix is physically relevant for
fiber-reinforced materials [3].

A numerical approach based on the integral equations and the series method
to computations of the effective properties of elastic media was presented in
[4, 5, 6, 7]. Integral equations for 2D doubly periodic composites first con-
structed in [4] are efficient for the numerical investigation of non-dilute compos-
ites when the inclusion interactions are taken into account. Another numerical
approach concerns applications to fibrous composites of finite element methods
[2, 8, 9, 10, 11]. The developed numerical methods yield an effective way to de-
termine the elastic properties of regular fibrous composites, in particular, of the
hexagonal array for numerically given shear moduli G1 and G, bulk moduli k1

and k of constituents and concentration f .
Optimally designed technologies are based on explicit dependencies of the

effective constants on five parameters G1, G, k1, k and f . Moreover, the limit
percolation regimes when G1

G is close to zero or to infinity and f tends to the
maximal packing fraction π√

12
, can be hardly investigated numerically. Analyti-

cal methods are applied to tackle the above many parametric problems. Reading
the titles and abstracts of many papers one can suggest that a wide diversity of
analytical formulae was found as the final solution. The problem has been “com-
pletely solved” or almost solved “in closed form”. However, an attempt to extract
from these papers an analytical formula leads to formulae valid up to O(f2).
In fact, all formulae are asymptotically equivalent to the same, lowest-order
approximation. Some authors put forward “explicit” procedures which include
hidden infinite order systems, integral equations (see the discussion in [12]) or
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absolutely divergent series. Below we outline the typical results originating from
various analytical approaches.

The dilute elastic composites were studied by solving exactly a simple, one–
inclusion problem [13, 14]. These formulae are asymptotically equivalent to the
Hashin–Shtrikman bounds (3.19) and (3.32) valid up to O(f2). This is a unique
pair of analytical formulae known in the theory of 2D macroscopically isotropic
elastic composites with a circular section of fibers.

Self-consistent methods (effective medium approximations, Mori–Tanaka
method, difference method, finite cluster method, reiterative homogenization
etc.) are frequently declared as “rigorous methods of micromechanics” [15] valid
also for high concentrations. However, it was explicitly demonstrated in [16] that
the self-consistent methods can give formulae for the effective conductivity only
to O(f2) for isotropic composites. The seeming improvement by self-consistent
methods actually yields results within the linear precision in f . It is usually based
on the asymptotic manipulations within O(f), followed typically by a declaration
of its universal validity.

It was shown in [16, 17] that the terms on f2 in the 2D effective constants
include conditionally convergent sums. This is the main feature ignored in appli-
cation of self-consistent methods. For instance, the results of [15] are question-
able since the effective conductivity is expressed through an absolutely divergent
series [15, the sum

∑Np

p=1 after (3.10) as Np → ∞]. For a finite number Np of ele-
ments in a cluster, Maxwell’s approach yields the effective conductivity of dilute
clusters [18], but not of a composite considered as a geometric limit of cluster
constructions.

Reasonably accurate numerical results obtained for the hexagonal array by
the self-consistent methods (except the percolation regime [19]), appear be-
cause of the following reasons. Wall [20] noted that the hexagonal array can
be approximated by a coated structure similar to the lubrication approxima-
tion [19, 21]. Moreover, the coated structure is nothing else but the famous
Hashin’s coated disks assemblage [22], which attains the bounds for macroscop-
ically isotropic composites. This geometric observation yields similar effective
elastic properties for moderate concentrations of both structures. The same ar-
guments explain why the effective elastic constants for the hexagonal array and
the corresponding Hashin–Shtrikman lower bounds are in close agreement with
the wide range of parameters G1, G, k1, k and f , namely with low contrasts or
not with high concentrations as in examples illustrated in Figs. 3–5.

Sometimes, the hexagonal array and its weakly perturbed variations are con-
sidered as a faithful representation for random composites1. However, accurate

1See methodologically wrong the “Schematic illustration of idealized fiber arrays and their
corresponding unit cells” in en.wikipedia.org/wiki/Representative_elementary_volume
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analytical formulae demonstrate the essential difference between regular and
random composites [19, 23, 24, 25]. The above papers show that the hexagonal
array is an exceptional geometrical structure. This statement becomes clear after
analysis of analytical formulae and figures generated in the present paper.

Few attempts to find the effective elastic properties of regular arrays were
based on the fundamental works [26], [4, 5] where the series method was applied
for the local elastic fields in doubly periodic composites 2. The complex potentials
were represented in the form of series in the Weierstrass elliptic functions with
coefficients satisfying an infinite system of linear algebraic equations. As in [27]
the truncation method was applied to the infinite system. The local elastic fields
were sufficiently well described in [26], [4, 5]. The effective elastic constants were
computed by averaging of the local fields by a method described in [5, Chapter 4]
for regular arrays. The same series method for the effective elastic constants for
the hexagonal array was reported in [28] where the numerical truncation method
for infinite systems was called “closed-form” (see discussion in [12]).

The next step was made in [17] where the method of functional equations
was developed for 2D elastic problems with circular inclusions. The method was
based on the conditionally convergent sums. Analytical formulae up to O(f4)
for arbitrary locations of disks were presented. However, the Supplement to [17]
contains a high order in f correct formulae for the local fields around the hexag-
onal array and simultaneously wrong formulae for the effective constants. The
error arisen because of surprising properties of the conditionally convergent se-
ries (3.21) taking into account the induced moment at infinity. It was proved in
[31, 18] that the induced moment vanishes for the local fields in a conductiv-
ity problem, if the conditionally convergent series are defined by the Eisenstein
summation (3.22). In the same time, computation of the effective constants by
the cluster extension of the Maxwell self-consistent approach via dipoles must
be defined by the symmetric summation (3.23) in order to get the zero induced
moment. An analogous situation takes place for 2D elastic problems [31, Sec.6]
when the induced moment at infinity is taken as zero.

It is worth noting that such a choice of summation can be arbitrary, but it
determines the computational method. One can define the conditionally conver-
gent series (3.21) at will but the corresponding corrections must be made in the
ultimate formulae for the local fields and the effective constants. In the present
paper, the symmetric summation (3.23) is used for computation of the effective
constants. This means that S2 = S

(1)
3 = 0 is taken in (3.21). In the same time,

we have to take S2 = π and S
(1)
3 = π

2 for computation of the local fields. This

2To the best of our knowledge only a single paper by Natanzon (1935) was published.
His results were developed by Filshtinsky, as early as 1964. The seminal paper [26] can be
considered as an extension of the method by Rayleigh [27, 29]. An independent extension as a
multipole method was discussed in [30].
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amazing change of the summation method is rigorously justified in [18, 31]. The
high order formulae from Supplement to [17] are corrected and presented here
explicitly in the form (3.24)-(3.25) and (3.33).

The present paper is devoted to development of the computational method
used in [17]. The modified averaging computational method applied to the local
stresses and deformations is presented in Section 3. The properly constructed
series are reduced to polynomials and rational functions depending on f . But it is
not a final solution of the problem. Furthermore, these functions are replaced by
asymptotically equivalent expressions. It is established that the special method
of summation suggested in the paper, brings accurate and compact formulae for
all concentrations.

The obtained analytical formulae are compared with the numerical FEM pre-
sented for different elastic composites in [9]. We also perform FEM computations
for the fibrous material specifically designed for applications composed of glass
fibers and resin matrix. In the computations we used the ANSYS package. Good
agreement is achieved for all available elastic parameters and concentrations.

2. Method of functional equations

Consider a fibrous composite with a section displayed in Fig. 1. The axis x3

is chosen to be parallel to the unidirectional fibers; the section perpendicular
to x3 forms the hexagonal array on the plane of variables x1 and x2 called the
isotropy plane. Let ω1 and ω2 be the fundamental pair of periods on the complex
plane C introduced for the hexagonal array as follows

(2.1) ω1 =
4

√

4

3
, ω2 =

4

√

4

3

(

1

2
+ i

√
3

2

)

.

Let Z denote the set of integer numbers. The points m1ω1 +m2ω2 (m1,m2 ∈ Z)
generate a doubly periodic hexagonal lattice. Introduce the zero-th cell

Q = Q(0,0) =

{

z = t1ω1 + it2ω2 ∈ C : −1

2
< t1, t2 <

1

2

}

.

The lattice Q consists of the cells Q(m1,m2) = Q(0,0) +m1 + im2. Without loss of
generality the area of Q is normalized to unity. Then, the concentration of disks
f is calculated by the formula

(2.2) f = πr2,

where r denotes the radius of inclusions.
It is assumed that fibers and matrix are occupied by isotropic elastic materials

described by the shear moduli G1 and G, Young’s moduli E1 and E, where the
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x2

x1

Fig. 1. Hexagonal array in the section perpendicular to the x3-axis. RVE (unit cell,
fundamental domain) bounded by dashed line is used for analytical investigations; double

RVE enclosed by solid line is used for numerical computations in Section 4.3.

subscript 1 denotes the elastic constants for inclusions. We also use the Poisson
ratio ν and Muskhelishvili’s constant κ = 3− 4ν for the plane strain [3], and the
transverse bulk modulus k = G

1−2ν = 2G
κ−1 .

Consider the transverse effective moduli Ge, Ee and νe in the isotropy plane;
the longitudinal effective constants GL, EL and νL. The transverse effective con-
stants are related by the equation Ee = 2Ge(1+νe). Every transversely isotropic
material is described by five independent elastic moduli [32]. However, the con-
sidered two-phase fibrous composite at the beginning has only four independent
entries G1, G, E1 and E. Hill [13] showed that transversely isotropic two-phase
fibrous composites are described by three independent elastic moduli since two
longitudinal effective moduli are expressed through others, namely,

EL = E1f + E(1 − f) + 4

(

ν1 − ν
1
k1

− 1
k

)2( f

k1
+

1 − f

k
− 1

ke

)

,(2.3)

νL = ν1f + ν(1 − f) − ν1 − ν
1
k1

− 1
k

(

f

k1
+

1 − f

k
− 1

ke

)

,(2.4)

where ke denotes the effective transverse bulk modulus. Relations between 2D
and 3D elastic moduli of fibrous composites are discussed in [9].

In the present paper, we deduce high order formulae in concentration for the
constants Ge and ke correcting the results from Supplement to [17]. First, we
consider a finite part of the hexagonal array with a finite number n of inclusions
on the infinite plane. Further, we pass to the limit n→ ∞.

Introduce the complex variable z = x1 + ix2 ∈ C where i denotes the imag-
inary unit. Consider non–overlapping disks Dk := {z ∈ C : |z − ak| < r}
(k = 1, 2, . . . , n) in the complex plane C. Here, ak denotes the complex coor-
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dinate of the k-th disk, r its radius. Let D := C∪{∞}\(⋃n
k=1Dk ∪ ∂Dk), where

∂Dk := {z ∈ C : |z − ak| = r}.
The component of the stress tensor can be determined by the Kolosov–

Muskhelishvili formulae [3]

σ11 + σ22 =

{

4Re ϕ′
k(z), z ∈ Dk,

4Re ϕ′
0(z), z ∈ D,

(2.5)

σ11 − σ22 + 2iσ12 =

{

−2[zϕ′′
k(z) + ψ′

k(z)], z ∈ Dk,

−2[zϕ′′
0(z) + ψ′

0(z)], z ∈ D,

where Re denotes the real part and the bar the complex conjugation.
Let

(2.6) σ∞ =

(

σ∞11 σ∞12
σ∞12 σ∞22

)

be the stress tensor applied at infinity. Following [3] let us introduce the constants

(2.7) B0 =
σ∞11 + σ∞22

4
, Γ0 =

σ∞22 − σ∞11 + 2iσ∞12
2

.

Then,

(2.8) ϕ0(z) = B0z + ϕ(z), ψ0(z) = Γ0z + ψ(z),

where ϕ(z) and ψ(z) are analytical in D and bounded at infinity. The functions
ϕk(z) and ψk(z) are analytical in Dk and twice differentiable in the closures of
the considered domains. The special attention is paid to two independent elastic
states, namely, the uniform shear stress

(2.9) σ∞11 = σ∞22 = 0, σ∞12 = σ∞21 = 1 ⇔ B0 = 0, Γ0 = i

and the uniform simple tension at infinity

(2.10) σ∞11 = σ∞22 = 2, σ∞12 = σ∞21 = 0 ⇔ B0 = 1, Γ0 = 0.

It is convenient to use the states (2.9) and (2.10) to estimate the effective shear
and bulk moduli, respectively [17].

The strain tensor components ǫ11, ǫ12, ǫ22 are determined by the formulae [3]

ǫ11 + ǫ22 =











κ1 − 1

G1
Reϕ′

k(z), z ∈ Dk,

κ− 1

G
Reϕ′

0(z), z ∈ D,

(2.11)

ǫ11 − ǫ22 + 2iǫ12 =











− 1

G1
[zϕ′′

k(z) + ψ′
k(z)], z ∈ Dk,

− 1

G
[zϕ′′

0(z) + ψ′
0(z)], z ∈ D.
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The perfect bonding at the matrix-inclusion interface yields the following condi-
tions [3]

ϕk(t) + tϕ′
k(t) + ψk(t) = ϕ0(t) + tϕ′

0(t) + ψ0(t),(2.12)
1

G1

[

κ1ϕk(t) − tϕ′
k(t) − ψk(t)

]

=
1

G

[

κϕ0(t) − tϕ′
0(t) − ψ0(t)

]

.(2.13)

The problem (2.12)–(2.13) is the classic boundary value problem of the plane
elasticity. This problem was solved by various methods discussed in [33]. Be-
low, we concentrate our attention on its analytical solution by the method of
functional equations outlined in [17].

Let z∗(k) = r2

z−ak
+ ak denote the inversion with respect to the circle ∂Dk.

Introduce the new unknown functions

Φk(z) = z∗(k)ϕ
′
k(z) + ψk(z), |z − ak| ≤ r,

analytic in Dk except at the point ak, where its principal part has the form
r2(z − ak)

−1ϕ′
k(ak).

The problem (2.12), (2.13) was reduced in [34] (see Eqs. (5.6.11) and (5.6.16)
in Chapter 5), [35] to the system of functional equations

(2.14)

(

G1

G
+ κ1

)

ϕk(z) =

(

G1

G
− 1

)

∑

m6=k

[

Φm(z∗(m)) − (z − am)ϕ′
m(am)

]

−
(

G1

G
− 1

)

ϕ′
k(ak)(z − ak) + p0, |z − ak| ≤ r, k = 1, 2, . . . , n,

(2.15)

(

κ
G1

G
+ 1

)

Φk(z) =

(

κ
G1

G
− κ1

)

∑

m6=k

ϕm(z∗(m))

+

(

G1

G
− 1

)

∑

m6=k

(

r2

z − ak
+ ak − r2

z − am
+ am

)

[(

Φm(z∗(m))
)′

− ϕ′
m(am)

]

+
G1

G
(1 + κ)iz + ω(z), |z − ak| ≤ r, k = 1, 2, . . . , n.

where

(2.16) ω(z) =
n

∑

k=1

r2qk
z − ak

+ q0,

q0 is a constant and

(2.17) qk = ϕ′
k(ak)

(

(κ−1)
G1

G
− (κ1 −1)

)

−ϕ′
k(ak)

(

G1

G
−1

)

, k = 1, 2, . . . , n.

The unknown functions ϕk(z) and Φk(z) (k = 1, 2, . . . , n) are related by 2n
equations (2.14)–(2.15).
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The complex potentials ϕk and ψk can be presented in the form of the power
series in r

(2.18) ϕk(z) =
∞

∑

s=1

ϕ
(s)
k (z)r2s, ψk(z) =

∞
∑

s=1

ψ
(s)
k (z)r2s.

The functions ϕ(s)
k and ψ(s)

k in each inclusion are presented by their Taylor series

(2.19) ϕ
(s)
k (z) =

∞
∑

p=1

α
(s)
k,p(z − ak)

p, ψ
(s)
k (z) =

∞
∑

p=1

β
(s)
k,p(z − ak)

p.

An iterative symbolic-numerical algorithm based on the functional Eqs. (2.14)–

(2.15) was developed in [17] to determine the coefficients α(s)
k,p and β

(s)
k,p with

a practically arbitrary precision. For convenience let us introduce the following
combinations of elastic constants

(2.20) γ1 =
G1
G − 1

κG1
G + 1

, γ2 =
κG1

G − κ1

G1
G + κ1

, γ3 =
1 − G1

G
κ−1
κ1−1

1 + 2G1
G

1
κ1−1

.

Selecting the terms with the same powers r2p, we arrive at the following
iterative scheme for Eqs. (2.14)–(2.15). Straight-forward computations give the
approximate formulae
(2.21) ϕ(z) = r2ϕ(1)(z) + r4ϕ(2)(z) + · · · ,
where

ϕ(1)(z) = Γ0γ1

n
∑

m=1

1

z−am
,

ϕ(2)(z) = 2
n

∑

k=1

[

B0γ1γ3

∑

m6=k

1

(am−ak)2
+Γ0γ

2
1

∑

m6=k

am−ak

(am−ak)3

]

1

z−am
.(2.22)

The third order approximation is written below in the case (2.9)

ϕ(3)(z) = −i
[

3γ2
1

n
∑

l=1

∑

m6=l

1

(al − am)4
(z − al)

−2(2.23)

+

(

4γ3
1

n
∑

l=1

∑

m6=l

∑

m1 6=m

al − am

(al − am)3
am − am1

(am − am1)
3
(z − al)

−1

+ 6γ2
1

n
∑

l=1

∑

m6=l

1

(al − am)4
(z − al)

−1

+ γ2
1γ3

n
∑

l=1

∑

m6=l

∑

m1 6=m

1

(al − am)2
1

(am − am1)
2
(z − al)

−1

− γ2
1γ3

n
∑

l=1

∑

m6=l

∑

m1 6=m

1

(al − am)2
1

(am − am1)
2
(z − al)

−1

)]

.
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In the case (2.10), the approximations for ϕ(z) are calculated by formulae

ϕ(1)(z) = 0, ϕ(2)(z) = 2γ1γ3

n
∑

l=1

∑

m6=l

1

(am − al)2
(z − al)

−1,

ϕ(3)(z) = 2γ1γ3

(

2γ1

n
∑

l=1

∑

m6=l

∑

m1 6=m

al − am

(al − am)3
1

(am − am1)
2
(z − al)

−1(2.24)

−
n

∑

l=1

∑

m6=l

1

(am − al)3
(z − al)

−2

)

.

The local elastic fields can be computed by the complex potentials approx-
imately obtained in the present section. The complex potentials of the double
periodic problems are obtained by means of the limit n → ∞ using the Eisen-
stein summation. Then, we arrive at the local fields in composites expressed in
terms of the Eisenstein and Natanzon functions [17].

3. Averaged fields in finite composites

In the present section, we modify the averaging computational scheme devel-
oped in [17]. It is based on the averaging operators applied to complex potentials,
not to the stress and deformation fields as in [17], that essentially simplifies the
symbolic-numerical computations and yields high order formulae for the effective
constants.

3.1. Averaged shear modulus

In the present subsection, we calculate the averaged shear modulus G(n)
e of

the considered finite composite. It is related to the effective shear modulus Ge for
macroscopically isotropic composites by the limit Ge = limn→∞G

(n)
e . In order to

calculate G(n)
e it is sufficient to consider the uniform shear stress (2.9). Introduce

the average over a sufficiently large domain Qn which contains the inclusions Dk

(3.1) 〈w〉n =
1

|Qn|

∫∫

Qn

w d2x,

where d2x = dx1dx2. One can take ∂Qn as a rectangle symmetric with re-
spect to coordinate axes or a parallelogram symmetric with respect to the origin
with sides parallel to the fundamental translation vectors expressed by the com-
plex numbers (2.1). The macroscopic shear modulus can be computed by means
of (3.1)

(3.2) G(n)
e =

〈σ12〉n
2〈ǫ12〉n

.
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Further, ∂Qn tends to the infinite point, as n→ ∞, and we arrive at the macro-
scopic shear moduli Ge = limn→∞G

(n)
e . The stress tensor components are cal-

culated by (2.5), and the deformation tensor components by (2.11).
Instead of direct computations according to the formula (3.2) in terms of

the complex potentials as it was done in [17] it is simpler to compute another
quantity

(3.3) Pn :=

〈

1

2
(σ11 − σ22) + iσ12

〉

n

.

and then to take its imaginary part to compute 〈σ12〉n. Using the definition of
the average (3.1) and formulae (2.5) we obtain

(3.4) Pn = − 1

|Qn|

{
∫∫

D

[

zϕ′′
0(z) +ψ′

0(z)
]

d2x +
n

∑

k=1

∫∫

Dk

[

zϕ′′
k(z) +ψ′

k(z)
]

d2x

}

,

where z = x1 + ix2. Green’s formula in complex form is used below

(3.5)
∫∫

D

∂w(z)

∂z
d2x =

1

2i

∫

∂D

w(t) dt.

The boundary of D can be decomposed as follows ∂Dn = ∂Qn − ∑n
k=1 ∂Dk

where ∂Qn and ∂Dk are positively oriented. The application of (3.5) to (3.4)
yields Pn = P ′

n + P ′′
n where

P ′
n = − 1

2i|Qn|

n
∑

k=1

∫

∂Dk

[

tϕ′
k(t) + ψk(t) − tϕ′

0(t) − ψ0(t)
]

dt,(3.6)

P ′′
n = − 1

2i|Qn|

∫

∂Qn

[

tϕ′
0(t) + ψ0(t)

]

dt.

Green’s formula (3.5) for w = z yields the area formula

(3.7)
1

2i

∫

∂Qn

t dt = |Qn|.

It follows from [17] that limn→∞ P ′′
n = i. Using the boundary condition (2.12)

we obtain

(3.8) P ′
n = − 1

2i|Qn|

n
∑

k=1

∫

∂Dk

[ϕ0(t) − ϕk(t)] dt = − 1

2i|Qn|

n
∑

k=1

∫

∂Dk

ϕ(t) dt.
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Here, we used equations
∫

∂Dk
ϕk(t)dt = 0 following from the Cauchy integral

theorem. Therefore,

(3.9) lim
n→∞

Pn = i+ iA ⇒ 1

2
〈σ12〉 = 1 + Re A,

where

(3.10) A = lim
n→∞

1

2|Qn|

n
∑

k=1

∫

∂Dk

ϕ(t) dt.

Similar manipulations can be performed for

Rn = R′
n +R′′

n =

〈

1

2
(ǫ11 − ǫ22) + iǫ12

〉

n

,(3.11)

where

(3.12) R′
n = − 1

|Qn|
1

G

∫∫

D

[

zϕ′′
0(z) + ψ′

0(z)
]

d2x

= − 1

2i|Qn|

n
∑

k=1

∫

∂Dk

[

1

G1

(

κ1tϕ′
k(t) + ψk(t)

)

− 1

G

(

κtϕ′
0(t) + ψ0(t)

)

]

dt

and

R′′
n = − 1

2i|Qn|G

∫

∂Qn

[

tϕ′
0(t) + ψ0(t)

]

dt.(3.13)

Using the boundary conditions (2.13) we get

(3.14) lim
n→∞

Rn =
1

G
(i− iκA) ⇒ 〈ǫ12〉 =

1

G
(1 − κ Re A).

Substituting (3.9), (3.14) into (3.2) and taking the limit as n tends to infinity
we obtain

(3.15)
Ge

G
=

1 + Re A
1 − κ Re A

.

The integral (3.10) and other limits can be calculated explicitly by using ap-
proximations of the function ϕ(z) obtained in [17] and described in the previous
section. Thus, the first order approximation (28) from [17] has the form

(3.16) ϕ(1)(z) = −ir2γ1

n
∑

m=1

1

z − am
,
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where γ1 has the form (2.20). For any fixed k by the residue theorem we obtain

(3.17)
∫

∂Dk

ϕ(1)(t) dt = 2πr2γ1.

In the first order approximation

(3.18) A ≃ fγ1 +O(f2),

where the concentration f = limn→∞ nπr2

|Qn| . Substitution of (3.18) into (3.2) yields

(3.19)
Ge

G
≃ 1 + γ1f

1 − γ1κf
+O(f2).

This expression coincides with the famous Hashin–Shtrikman lower bound for
G1 ≥ G, k1 ≥ k and the upper bound for G1 ≤ G, k1 ≤ k.

Beginning from the second order correction in f for a finite cluster the terms
computed in [17] contain the sums

(3.20) S2(n) =
n

∑

l=1

∑

m6=l

1

(am − al)2
, S

(1)
3 (n) =

n
∑

l=1

∑

m6=l

am − al

(am − al)3
.

In the limit n → ∞, these sums become conditionally convergent series which
for the hexagonal array takes the form

S2 = lim
n→∞

S2(n) =
∑

(m1,m2)∈Z2\(0,0)

1

(m1ω1 +m2ω2)2
,(3.21)

S
(1)
3 = lim

n→∞
S

(1)
3 (n) =

∑

(m1,m2)∈Z2\(0,0)

m1ω1 +m2ω2

(m1ω1 +m2ω2)3
.

where ωj are given by (2.1). Conditional convergence of (3.21) implies that the
result depends on the summation rule which can be determined by the shape ∂Qn

tending to infinity. The Eisenstein summation is based on the iterated sum when
Qn first is extended in the x1-direction to infinity and after in the x2-direction

(3.22)
∑(e)

(m1,m2)∈Z2
= lim

N→∞

N
∑

m2=−N

lim
M→∞

M
∑

m1=−M

.

The Eisenstein summation (3.22) leads to the values S2 = π [27] and S(1)
3 = π

2 [36].
Introduce the symmetric summation when ∂Qn is a rhombus with the vertices
±Nω1 ±Nω2

(3.23)
∑(sym)

(m1,m2)∈Z2
= lim

N→∞

N
∑

m1,m2=−N

.
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One can see that in this case by the definition S2 = S
(1)
3 = 0. It was shown in [18]

that the series S2 in 2D conductivity problems can be determined arbitrarily, but
the induced dipole moment at infinity has to be introduced to put in equilibrium
the total charge of the array. Two variants of such a choice were proposed. First,
to define S2 = π for the formalism (Rayleigh’s approach) to calculate the local
fields and the effective conductivity. The second method is based on the definition
S2 = 0 and on Maxwell’s self-consistent approach for the effective conductivity.

The same concerns the elasticity problem. The structure of the formula (3.15)
corresponds to Maxwell’s approach. Hence, the dipole moment will be taken
into account if we take by the definition S2 = S

(1)
3 = 0 [18, 31]. Application of

successive approximations to the functional Eqs. (2.14)–(2.15) yields the local
fields in symbolic form (see low order Eqs. (2.21)–(2.24)). The integral (3.10)
and the limit n→ ∞ are also computed symbolically by the use of the package
Mathematicar. The main computation scheme follows [17], but instead of (3.22)
the summation (3.23) is used. The result of computations up to O(f7) yields

(3.24)
Ge

G
≃ 1+γ1f+γ3

1(8.86965f5−19.0064f6)

1−κ[γ1f+γ3
1(8.86965f5−19.0064f6)]

,

where γ1 has the form (2.20). Below, the fraction (3.24) is expanded in f and
the value γ1 is substituted in order to obtain the explicit expression through the
given elastic parameters

(3.25)
Ge

G
≃ 1+f(κ+1)

G1
G −1

κG1
G +1

+f2κ(κ+1)

( G1
G −1

κG1
G +1

)2

+f3κ2(κ+1)

( G1
G −1

κG1
G +1

)3

+f4κ3

( G1
G −1

κG1
G +1

)4

−f
5(κ+1)(1−G1

G )3(π4κ4(1−G1
G )2+863.984(κG1

G +1)2)

π4(κG1
G +1)5

+
f6(κ+1)(1−G1

G )3

π5(κG1
G +1)6

[

306.02κ5

(

1−G1

G

)3

+5428.57κ

(

1−G1

G

)(

κ
G1

G
+1

)2

+5816.33

(

κ
G1

G
+1

)3]

+O(f7).

Typical dependences of Ge
G on f calculated with the above formulae are presented

in Fig. 2. First, one can see that Ge is close to the lower Hashin–Shtrikman
bound for moderate f . This explains Wall’s observations [20] discussed in In-
troduction. The fractions (3.24) up to O(f6) and up to O(f7) serve as higher
and lower bounds, respectively, for the polynomial approximation (3.25). Higher
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Fig. 2. The effective shear modulus Ge(f)/G for glass fibres and resin matrix when
G1 = 30.42, G = 1.087, ν1 = 0.2, ν = 0.38. The lower and upper Hashin–Shtrikman bounds
are shown with dashed lines; the polynomial (3.25) with solid line; (3.24) with dot-dashed

line; the truncated formula (3.24), i.e. Ge

G
=

1+γ1f+γ3

1
8.86965f5

1−κ(γ1f+γ3

1
8.86965f5)

with dotted line.

order terms in f show a similar unstable picture. A regularization method is
applied in Section 4 to study the high concentration regime.

3.2. Averaged bulk modulus

It is sufficient to take the particular external stresses (2.10) to calculate the
effective bulk modulus ke. Following Section 3.1 we calculate the averaged 2D
bulk modulus by formula [17]

(3.26) k(n)
e =

2 ReVn

ReWn
.

where Vn = 1
4〈σ11 + σ22〉n and Wn = 〈ǫ11 + ǫ22〉n are expressed in terms of the

complex potentials by formulae (2.5) and (2.11). Therefore,

(3.27) Vn =
1

|Qn|

[
∫∫

D

ϕ′
0(z) d

2x +

n
∑

l=1

∫∫

Dl

ϕ′
l(z) d

2x

]

and

(3.28) Wn =
1

|Qn|

[

κ− 1

G

∫∫

D

ϕ′
0(z) d

2x +
κ1 − 1

G1

n
∑

l=1

∫∫

Dl

ϕ′
l(z) d

2x

]

.

Green’s formula is used below in a complex form

(3.29)
∫∫

D

∂w(z)

∂z
d2x = − 1

2i

∫

∂D

w(t) dt.
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Using (2.8) and (2.10) we calculate

1

|Qn|

∫∫

D

ϕ′
0(z) d

2x =
1

|Qn|

∫∫

D

d2x +
1

|Qn|

∫∫

D

ϕ′(z) d2x.

The first integral tends to (1 − f) as n→ ∞. The second integral becomes

1

|Qn|

∫∫

D

ϕ′(z) d2x = − 1

2i|Qn|

∫

∂Qn

ϕ′(t) dt+
n

∑

l=1

1

2i|Qn|

∫

∂Dl

ϕ′(t) dt.

It follows from [17] that limn→∞ 1
2i|Qn|

∫

∂Qn
ϕ′(t) dt = 0. Consider the two limits

(3.30) B = lim
n→∞

1

2i|Qn|

n
∑

l=1

∫

∂Dl

ϕ(t) dt, C = − lim
n→∞

1

2i|Qn|

n
∑

l=1

∫

∂Dl

ϕl(t) dt.

Then, the limit of (3.26) as n tends to infinity can be written in the form

(3.31)
ke

k
=

1 − f +B + C

1 − f +B + k
k1
C
.

Computations similar to Section 3.1 can be performed for the effective bulk
modulus ke. The first-order approximation

(3.32)
ke

k
=

1 + (γ2 − 1)f

1 +
(

k
k1
γ2 − 1

)

f
+O(f2)

coincides with the lower Hashin–Shtrikman bound for the bulk modulus when
G1 ≥ G, k1 ≥ k and with the upper bound when G1 ≤ G, k1 ≤ k.

The next iterations are performed with the symbolic-numerical computations
by the use of the package Mathematicar. Ultimately, asymptotically equivalent
polynomial form of (3.31) becomes

(3.33)
ke

k
=

2G

κ− 1

1 + f((1−κ)G1+(1−κ1)G)
(κ1−1)G+2G1

− 0.1508f7(G−G1)((κ−1)G1+(1−κ1)G)2

(κG1+G)((κ1−1)G+2G1)2

1 + 2f((1−κ)G1+(κ1−1)G)
(κ−1)((κ1−1)G+2G1) + 0.3017f7(G−G1)((κ−1)G1+(1−κ1)G)2

(κ−1)(κG1+G)((κ1−1)G+2G1)2

.

4. Asymptotic method

In the previous section the effective constants are presented in the form of
polynomials (3.25) for the shear modulus and (3.33) for the bulk modulus. In
our study of the elastic properties we are going to dwell on the intuition devel-
oped for the high-contrast conductivity problem [37]. The following strategy was
advanced.
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Consider first the case of a perfect, ideally-conducting inclusions. We ought
to necessarily consider the percolation regime of f → fc. Our strategy dictates
to take into account the effect of singularity explicitly. It could be accomplished
through formulation of the corresponding critical form ansatz. As soon as the
non-perfection of the real conductors is taken into account, the contrast pa-
rameter decreases and the singularity starts moving to the positive nonphysical
region. For high-contrast situations the critical form ansatz could be preserved
with the true threshold being replaced with the effective threshold, dependent
on a contrast parameter. For small-contrast composites one should be concerned
only with a faithful description of the physical region of concentrations which is
now very weakly affected by the singularity. Correspondingly, the ansatz should
be corrected with the Padé approximations, till to the point of a complete neglect
of the singularity.

In application to the elasticity problem we are going to follow the similar
strategy. Mind that analytical and asymptotic formulae show more details and
trends than numerical results computed for special cases.

4.1. Glass-resin composite

Consider fibrous composite material composed of glass fibers and resin matrix
with the mechanical properties

(4.1) E′ = 3GPa, ν ′ = 0.38 and E′
1 = 73GPa, ν ′1 = 0.2,

where E′ and E′
1 are 3D elastic moduli. For 3D moduli the following relations

hold (prime denotes 3D coefficients) [38, 9]

K ′ =
E′

3(1 − 2ν ′)
, G′ =

E′

2(1 + ν ′)
.

Note that for the plane strain, k = K ′ +G′/3 , E = E′

1−ν′2 , ν = ν′

1−ν′ , while the
parameter κ = 3 − 4ν ′.

Thus, the corresponding bulk modulus for the matrix k = 4.53 GPa, and
for the inclusions k1 = 50.69 GPa. The other 2D elastic moduli thus can be
calculated as well, ν = 0.61, ν1 = 0.25, E = 3.51 GPa, E1 = 76.0 GPa. Since G =
G′, then for the matrix G = 1.09 GPa, and for the inclusions G1 = 30.42 GPa.

For the transverse 2D Young modulus we arrive to the formula E =
2G(1 + ν) = 2G

(

1 + k−G
k+G

)

= 4kG
G+k . The last formula is important, since an

analogous formula could be applied for the effective 2D properties for the plane
strain problem, such as transverse effective 2D Young modulus E2D

e , or just Ee.
It can be also expressed explicitly in the form [38]

(4.2) Ee =
4keGe

ke +Ge
.
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Formula (4.2) can be exploited as a source of asymptotic expansion as f → 0,

Ee ≃ 3.50645 + 5.2117f + 4.74747f2 + 4.43907f3 + 4.1165f4(4.3)

+ 19.8424f5 − 2.67275f6 + · · · ,

derived from the rigorously obtained expansions near f = 0 for the two other
moduli,

(4.4)

Ge ≃ 1.087 + 1.71497f + 1.6147f2 + 1.5203f3

+ 1.43141f4 + 7.5039f5 + · · ·
ke ≃ 4.52917 + 5.00711f + 4.4641f2 + 3.97998f3 + 3.54836f4

+ 3.16355f5 + 2.82047f6 + 2.61741f7 + · · · .

LetG1 tends to ∞ and ν1 = ν = 1. This material case with the incompressible
matrix and inclusions is expected to serve as an elastic analog of the viscous
suspension. The effective viscosity of a suspension of perfectly rigid particles in an
incompressible fluid with viscosity under creeping flow conditions, is equivalent
to the effective modulus Ge for the material conditions just stated [39]. There is
a singularity in the effective shear modulus as f → fc = π√

12
≈ 0.9069.

Since we are interested in high-contrast cases, close to the ideal case, one can
first solve the corresponding ideal/critical problem and then simply modify pa-
rameters of the solution to move away to non-critical situations. The conductiv-
ity problem is rigorously analogous to the one-component (anti-plane) elasticity
problem [39], so that all results concerning effective conductivity of high-contrast
composites can be applied qualitatively to the effective shear modulus Ge. In this
case the contrast parameter is given as follows,

(4.5) ̺ =
G1 −G

G1 +G
.

In our particular case ̺ = 0.931. Consider now the simplest possible dependence
of the effective threshold leading to the correct value of fc as ̺→ 1 and

f∗c (̺) =
fc

̺
,

where f∗c = 0.974. Such a dependence is motivated by the celebrated Clausius-
Mossotti approximation (CMA) [16, 39], which also includes a singular behavior
at f∗c (̺). Moving singularity to the non-physical values of f allows to preserve
the form typical for a critical regime for all values of ̺ but also suppresses the
original singularity at f = fc [40].

Using the analogy with the problem of effective conductivity, the effective
shear (bulk) modulus is expected to diverge as a power-law in the vicinity of



Elastic properties of a fiber-reinforced composite. . . 225

the singularity [40]

(4.6) Ge ∼ (f∗c − f)−S as f → f∗c .

Here the super-elasticity index S is positive, and S = 1
2 [39]. The next order term

in (4.6) is usually assumed to be a constant. By analogy to the conductivity
problem [19] one can consider the following additive ansatz for the effective
modulus in the vicinity of f∗c ,

(4.7) Gn
e (f) ≃

n
∑

k=0

Ak(f
∗
c − f)

k−1
2 , n = 0, 1 . . . N,

where the unknown amplitudes Ak have to be calculated from the series at
small f .

From the asymptotic equivalence with (3.25) (or (3.33)), we obtain the se-
quence of additive approximants [41, 19], rapidly converging to the following
expressions

(4.8)

Gad
e (f) = −0.655188(1 − 1.02657f) + 3.08259

√

1 − 1.02657f

+
5.11336√

1 − 1.02657f
− 6.45376,

kad
e (f) = −0.425381(1 − 1.02637f) + 3.59137

√

1 − 1.02637f

+
12.4975√

1 − 1.02637f
− 11.1343.

While the following expression follows for the effective 2D Young modulus

(4.9) Ead
e (f) =

4Gad
e (f)kad

e (f)

kad
e (f) +Gad

e (f)
.

As f = 0 this expression produces the 2D Young modulus of the matrix, and as
f → f∗c the effective modulus (4.9) diverges as a square-root.

It is feasible to modify the standard technique for critical index calculation to
incorporate a known value of the index as well as additive corrections (4.8). Such
an approach guarantees always positive effective moduli for all concentrations.
The critical index S can be estimated also from a standard representation for
the derivative

(4.10) Ba(f) = ∂f log(Ge(f)) ≃ S

f∗c − f
as f → f∗c ,

thus defining the critical index S as the residue in the corresponding single
pole [42]. Outside of the immediate vicinity of the critical point a diagonal Padé
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approximant is assumed. In addition to the residue estimation one can determine
Ge for arbitrary f , but in such an approach the correct form of the corrections
to scaling terms is missed.

Let us consider the additively corrected Ba(f), when the “single-pole” ap-
proximation is complemented with correction to scaling terms,

(4.11) Ba(f) = ∂f log(G(f)) ≃ S

f∗c − f
+

n
∑

k=1

Bk(f
∗
c − f)

k−2
2 ,

where the critical index is going to be fixed to the correct value S = 1/2 [39]. The
complete expression for the effective shear modulus can be written as quadrature,

(4.12) Ge(f) = exp

(

f
∫

0

Ba(F ) dF

)

,

and resulting after integration formulae must respect asymptotically the Hashin–
Shtrikman lower bound. In principle, explicit formula can be found from (4.12)
in arbitrary order, since the integration in (4.12) could be performed explicitly.
For convenience introduce

Ge,0(f) =
1

√

1 − f
fc

∗

.

As the result, for all k ≥ 1 one can find the following recursion,

(4.13) Ge,k(f) = Ge,k−1(f) exp

(

2Bk((fc
∗)k/2 − (fc

∗ − f)k/2)

k

)

.

For example, when normalized to unity,

(4.14)

Ge,1(f) =
e2B1(

√
fc

∗−
√

fc
∗−f)

√

1 − f
fc

∗

,

Ge,2(f) =
e2B1(

√
fc

∗−
√

fc
∗−f)+B2f

√

1 − f
fc

∗

,

Ge,3(f) =
e2B1(

√
fc

∗−
√

fc
∗−f)+ 2

3
B3((fc

∗)3/2−(fc
∗−f)3/2)+B2f

√

1 − f
fc

∗

.

To complete the procedure one has to find Bk explicitly from the asymptotic
equivalence with the weak-coupling expansion. In the case when the effective
threshold f∗c (ρ) is known, the problem has a unique solution, as it is reduced to
the linear system.
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For the parameters of interest, the lowest order approximants for the effective
shear modulus corresponding to n = 1, 2, 3, 4, are shown below,
(4.15)

Ge,1(f) =
8.53385e−2.10111

√
0.974114−f

√
0.974114 − f

,

Ge,2(f) =
0.903861e0.17365

√
0.974114−f+1.15239f

√
0.974114 − f

,

Ge,3(f) =
291.858e−1.50229(0.974114−f)3/2−4.21655

√
0.974114−f−3.29576f

√
0.974114 − f

,

Ge,4(f) =
0.00013981e(f(−6.06539

√
0.974114−f−1.91689f+11.6424)+9.06361

√
0.974114−f)

√
0.974114 − f

.

One can find directly that these expressions are asymptotically equivalent
to (3.25). The higher order approximants become progressively closer to the
lower bound and are not discussed further.

In Fig. 3, the effective shear modulus of the inclusions embedded into the
matrix is compared with the FEM numerical results for different theoretical
formulae, The approximant Ge,1 is in very good agreement with FEM results.
The approximants Ge,2 and Ge,4 do not satisfy the Hashin–Shtrikman bounds.

0.2 0.4 0.6 0.8

f

5

10

15

Ge

Fig. 3. The effective shear modulus Ge(f)/G for rigid inclusions embedded into the matrix.
The lower and upper Hashin–Shtrikman bounds are shown with dashed lines. The results for
Ge,1 are shown with solid line. They are compared with Ge,3 (dotted) and Gad

e shown with
dot-dashed line. The numerical FEM results are displayed as dots.

The different approximants ke,i(f) can be written explicitly along similar
lines. The expressions for ke are different since the polynomial (3.33) is also
different,
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(4.16)

ke,1(f) =
14.179e−1.16936

√
0.974306−f

√
0.974306−f ,

ke,2(f) =
10.4005e0.15904f−0.855393

√
0.974306−f

√
0.974306−f ,

ke,3(f) =
11.1093e−0.0171372(0.974306−f)3/2−0.905484

√
0.974306−f+0.108294f

√
0.974306−f ,

ke,4 =
1.15803e(f(−1.15841

√
0.974306−f−0.297736f+2.42898)+1.3685

√
0.974306−f)

√
0.974306−f ,

ke,5 = 0.0237431

×e
(f(f(0.259284

√
0.974306−f−1.57739)−4.18987

√
0.974306−f+7.41609)+5.3066

√
0.974306−f)

√
0.974306−f .

The effective bulk modulus of the inclusions embedded into the matrix obtained
from different theoretical formulae is compared in Fig. 4 with the Hashin–
Shtrikman upper and lower bounds. There is a clear convergence withing the
sequence of approximants (4.16) to the approximant ke,5.
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40
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Fig. 4. The effective 2D bulk modulus ke(f) for rigid inclusions embedded into the matrix.
The lower and upper Hashin-Shtrikman bounds are shown with dashed lines. The results for

ke,5 are shown with dotted line. They are compared with ke,4 (solid) and kad
e shown with

dot-dashed line.

The effective Young modulus for these approximants is calculated by formulae

(4.17) Ee,j =
4Ge,j(f)ke,j(f)

ke,j(f) +Ge,j(f)
, j = 1, 3, 5 . . . .
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In Fig. 5, the effective Young modulus of the inclusions embedded into the matrix
is reconstructed from various approximations for Ge and ke. Different theoretical
formulae are presented. Formulae for upper and lower bounds are derived from
the corresponding bounds for the shear and bulk moduli. Again we observe
a good agreement of Ee,1 and Ee,5 with FEM data. Note that after extracting the
square-root singularity, one can simply enforce the asymptotic equivalence to the
lower Hashin–Shtrikman bound by means of the diagonal Padé approximants.
Realization of this strategy gives results very close to additive approximants.
Alternatively, one can obtain low-order approximants directly from the expansion
(4.3) and conditioning on square-root singularity. There is a reasonably good
agreement of such calculated approximants with FEM data.

Fig. 5. Dependencies of Ee on concentration are constructed and illustrated based on
various approximants for Ge and ke. Formulas for upper and lower bounds are both shown
with dashed lines. The results for Ee,1 are shown with solid line. They are compared with

Ee,5 (dotted) and Ead
e shown with dot-dashed line.

We studied also the material cases 2 and 4 considered in [9]. The mate-
rial case 4 corresponds to the high-contrast composite with the parameters
G1/G = 135. We again found our formulae in a good agreement with FEM re-
sults for all the effective moduli.

The material case 4 considered in [9], corresponds to the model composite
with lower contrast, with the parameters G1/G = 6.75. The formulae similar to
the material case 3 work well for ke and Ee. But for the effective shear modulus
Ge there are indications that the multiplicative Padé corrections become impor-
tant, in line with our expectations based on the analogy with the conductivity
problem [37]. We found that the series for Ge obtained in the paper, are suffi-



230 T. Czaplinski et al.

ciently long to successfully correct the approximant Ge,1. The detail results will
be presented elsewhere.

4.2. Glass-epoxy composite [9]

Consider for methodical purposes also the material case 3 from [9], corre-
sponding to the model glass-epoxy composite [9]. We employ the FEM results
from this paper to additionally verify our theoretical constructs. The following
2D elastic moduli are assumed:

ν = 0.54, ν1 = 0.25, G = 1, G1 = 22.5.

The following asymptotic expansion emerges as f → 0,

Ee ≃ 3.07692 + 4.39506f + 3.98192f2 + 3.67368f3 + 3.36674f4(4.18)

+ 13.8024f5 − 1.41033f6 + · · · ,

derived from the rigorously obtained expansions at small f for the two other
moduli,

(4.19)

Ge ≃ 1 + 1.51081f + 1.40465f2 + 1.30594f3

+ 1.21417f4 + 5.65355f5 + · · ·
ke ≃ 3.33333 + 3.8456f + 3.41276f2 + 3.02864f3

+ 2.68775f4 + 2.38524f5 + 2.11677f6 + · · · .

We apply below the same method as in Section 4.1 to obtain analytical expres-
sions for the effective 2D moduli. For the parameters of interest, the lowest order
approximants for the effective shear modulus corresponding to n = 1, 2, 3, are
shown below,

(4.20)

Ge,1(f) =
7.32162e−2.00399

√
0.991262−f

√
0.991262 − f

,

Ge,2(f) =
1.06814e0.970939f−0.0706191

√
0.991262−f

√
0.991262 − f

,

Ge,3(f) =
145.478e−1.2448(0.991262−f)3/2−3.7724

√
0.991262−f−2.74713f

√
0.991262 − f

.

In Fig. 6, the effective shear modulus of the composite with inclusions embedded
into the matrix is compared with the FEM numerical results. The approximant
Ge,1 is in good agreement with FEM results. The approximant Ge,2 does not
satisfy the Hashin–Shtrikman bounds.
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Fig. 6. The results for Ge,1 are shown with solid line. They are compared with the
numerical FEM results, displayed as dots.

The approximants ke,i(f) can be written explicitly along similar lines,

(4.21)

ke,1(f) =
12.0225e−1.29286

√
0.991262−f

√
0.991262 − f

,

ke,2(f) =
7.51144e0.237251f−0.820434

√
0.991262−f

√
0.991262 − f

,

ke,3(f) =
12.2664e−0.124235(0.991262−f)3/2−1.18988

√
0.991262−f−0.133821f

√
0.991262 − f

.

Already the low-order approximant ke,2(f) does agree with FEM data (see
Fig. 7), as well as with the Hashin–Shtrikman bounds.

The effective Young modulus for these approximants is calculated by the
formula

(4.22) Ee,2 =
4Ge,1(f)ke,2(f)

ke,2(f) +Ge,1(f)
.

In Fig. 8, the effective Young modulus of the composite with inclusions embedded
into the matrix is compared with FEM data. Again we observe a good agreement
of the derived formula for Ee,2 with FEM data.

Alternatively, one can obtain low-order approximants directly from the ex-
pansion (4.18) for Ee and condition on square-root singularity. We find the fol-
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Fig. 7. The results for ke,2(f)/ke,2(0) are shown with dotted line. They are compared with
FEM data.

Fig. 8. The results for Ee,2(f)/Ee,2(0) are shown with dashed line. They are compared with
FEM results shown with dots.

lowing approximants for the effective 2D Young modulus,

(4.23)

Ee,1(f) =
19.1322e−1.83989

√
0.991262−f

√
0.991262 − f

,

Ee,3(f) =
247.006e−1.0731(0.991262−f)3/2−3.34545

√
0.991262−f−2.3587f

√
0.991262 − f

.
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Fig. 9. The results for νe =
ke,2−Ge,1

ke,2+Ge,1
, are shown with dotted line. FEM numerical data are

also shown with dots.

One can also reconstruct the effective Poisson ratio νe = ke−Ge
ke+Ge

. In our par-

ticular case νe =
ke,2−Ge,1

ke,2+Ge,1
, as shown in Fig. 9. We conclude that our theoretical

considerations lead to the formulae valid for all concentrations, in good over-
all agreement with numerical FEM data for the glass-epoxy model composite
from [9].

4.3. FEM

In the present subsection, some pertaining information on the finite element
method (FEM) is presented. We consider circular in cross-section fibers arranged
in the hexagonal array (Fig.1). The length in the x3-direction is finite and is taken
as 1

2ω1 = 1
4√12

. Therefore, instead of the 2D periodicity cell Q of unit area we
consider a 3D representative element Q. Moreover, the double RVE enclosed by
a solid rectangle is considered for computations (Fig. 1). The effective material
properties combine averaged stresses and the averaged strains over Q

〈σij〉 = Cijkl〈ǫkl〉, 〈σij〉 =

∫

Q

σij dx1 dx2 dx3, 〈ǫij〉 =

∫

Q

ǫij dx1 dx2 dx3,

where Cijkl denotes the effective elastic constants. Introduce the designations
σ1 = σ11, σ2 = σ22, σ3 = σ33, σ4 = σ23, σ5 = σ13, σ6 = σ12. The strains ǫij are
ordered in the same way. Then, Hooke’s law for transversely isotropic materials



234 T. Czaplinski et al.

can be written in a matrix form [32]

















〈σ1〉
〈σ2〉
〈σ3〉
〈σ4〉
〈σ5〉
〈σ6〉

















=

















C11 C12 C13 0 0 0
C11 C13 0 0 0

C33 0 0 0
sym C44 0 0

C44 0
C11−C12

2

































〈ǫ1〉
〈ǫ2〉
〈ǫ3〉
〈ǫ4〉
〈ǫ5〉
〈ǫ6〉

















.

The linear displacement boundary conditions ui = ǫ
(0)
ij xj are used on ∂Q, where

the constants ǫ(0)ij are chosen in six different ways as follows. In order to determine
the values for the first column of the stiffness matrix Cijkl we take the boundary
conditions which force the ǫ11 strain equal to 1. The remaining strain tensor
components are equal to zero. This is equivalent to set the averaged strains

(4.24) 〈ǫ1〉 = 1, 〈ǫ2〉 = 〈ǫ3〉 = 〈ǫ4〉 = 〈ǫ5〉 = 〈ǫ6〉 = 0.

Solving this problem, we can find the stresses and the first column of the stiff-
ness matrix. Its components denoted by Ci1 are equal to the average stresses
〈σi1〉 in the periodicity cell at the given unit strains. Further application of the
same procedure yields the components of the stiffness matrix. The ith column is
determined from the conditions 〈ǫi〉 = 1 and 〈ǫj〉 = 0 for j 6= i (i, j = 1, 2, . . . , 6).

The effective elastic constants are determined by the computed components
of the stiffness matrix

EL = C11 −
2C2

12

C11 + C13
, Ee =

(C11(C11 + C13) − 2C2
12)(C11 − C13)

C2
11 − C2

12

,(4.25)

Ge = C44, GL =
C11 − C12

2
, νe =

C12

C22 + C23
, νL =

C11C13 − C2
12

C2
11 − 2C2

12

.(4.26)

This procedure is used to calculate effective properties of composite yarn by
FEM using the finite element code ANSYS v17.0. The representative unit cell
is modeled with relative dimensions. It means that the diameter of fiber is fixed
or constant and overall dimensions of a unit cell is calculated in order to achieve
the assumed fraction of reinforcement. The FE model consists of 296310 solid
186 elements and 1229966 nodes. The next step is the averaging by components
of stresses and strain over the volume of double RVE. This procedure is imple-
mented in the ANSYS package with the help of APDL (Ansys Parametric Design
Language) and performed automatically. The homogenization procedure is used
to determine the effective properties for the numerical data (4.1). The results of
computations are shown by dots in Figs. 3 and 5.
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5. Discussion and conclusion

The 2D elastic problem considered in the paper is classical in the theory
of composites. It is difficult to measure effective elastic properties of the fibrous
composites and the challenge still remains to perform more reliable experimental
works. Thus, theoretical investigations by analytical and numerical techniques
are paramount. In particular, they are important for the regime with a high-
concentration of fibers. Numerical approaches based on the integral equations
and the series method to computations of the effective properties of elastic media
are described in Introduction.

Various analytical formulae have been obtained by means of the self-con-
sistent methods. It was rigorously demonstrated in [16] that any self-consistent
method without using the additional geometrical assumptions can give formulae
for the effective conductivity valid only to O(f2) for isotropic composites.

It was shown in [17] that the terms on f2 in the 2D effective elastic constants
include conditionally convergent sums (3.24). The Eisenstein summation (3.22)
was applied to these sums and the local elastic fields were described in a ana-
lytical form. It turns out to be surprisingly that the effective elastic constants
must be calculated by the symmetric summation (3.23). Therefore, the analyti-
cal formulae for the hexagonal array from Supplement to [17] are wrong. In the
present paper, we correct them and express the effective constants in the form
of rational and polynomial functions (3.24), (3.25) and (3.33). In these formulae,
the dependence on the elastic parameters of components G1, G, κ1, κ and on
the concentration f is explicitly presented.

This is in contradistinction to [28]. Here, in [28], the term “closed form expres-
sions” means really a solution to an infinite system of linear algebraic equations.
To finalize one has to implement a purely numerical procedure. Our results can
be compared with [28] in the following way. Let the constants G1, G, κ1 and κ be
fixed. For such parameters let us numerically solve an infinite system described
in [28] by the truncation method3. The obtained constants have to coincide with
the numerical values of the coefficients in f from (3.25) after substitution of the
numerical data.

Therefore, despite the numerous precedent claims of “closed form solutions”
(criticized in [12]) we assert that we deduce new approximate analytical formulae
(3.24), (3.25) and (3.33) for the effective elastic constants of the hexagonal array.
These formulae are written up to O(f7). It is interesting that the effective shear
modulusGe does not depend on κ1, i.e., on the Poisson coefficient of inclusions ν1,
up to O(f7). This approximation can be increased up to O(f15) as it was done
for holes alike [43]. We can see that the terms beginning from f7 depend on κ1.

3This system coincides with the system from [26] and [4].
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In the present paper, we choose not to compute higher order terms since
they do not impact the effective constants, at least up to moderate concentra-
tions (f about 0.5). Moreover, higher order terms do not resolve the problem of
high concentrations as shown in Fig. 2. The problem of the percolation regime
f → fc is studied by conditioning the analytics on the square singularity for
rigid fibers as f → fc. Simultaneously the polynomial approximation near f = 0
is considered. Using asymptotically equivalent transformations we find compact
analytical expressions for the effective moduli for all concentrations in Section 4.

The obtained results show that the hexagonal array is an exceptional struc-
ture having effective properties closed to extremal, see figures from Secection 3.
Indeed, Wall [20] observed that the hexagonal array can be approximated by
a coated structure, the celebrated Hashin coated disks assemblage. This explains
why various self-consistent corrections closely resemble (3.19) and (3.32) up to
moderate concentrations. Such a correction is not justified and do not hold for
random composites [24, 25].

Our theoretical considerations are designed to include two regimes, of low and
high concentrations of inclusions. The former regime is controlled by approxi-
mations (3.24), (3.25) and (3.33), while the latter is controlled by singularity.
In realistic situations the singularity gets blunted through application of the
specially extended analytical technique. Our theoretical considerations are de-
signed to match the two regimes, and derive formulae valid for all concentrations.
A comparison with the numerical FEM is good overall.

The recent paper [17] contains a general method and, unfortunately, its wrong
symbolic-numerical realization in application to the hexagonal array presented in
Supplement to [17]. This point is clarified in two paragraphs on the top of p. 210.
The new correct formulae (3.24), (3.25) and (3.33) are presented. These new
formulae and their interpretation by means of asymptotic regularization can be
considered as the main motivation for writing this paper. Only one analytical
result, the lower Hashin-Shtrikman bound, was known for the effective properties
of the hexagonal array. All the previous analytical results were variations of
this formula by asymptotically equivalent transformations up to O(f2). Other
results were devoted to numerical study of the problem by the method of series,
by integral equations and by FEM. In the paper, we present new analytical
approximate formulae and examples of their asymptotic regularization for high
concentrations, and successfully compare them to some new and “old” FEM
computations.
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