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 IN THIS PAPER, BASED ON THE ORIGINAL ARGUMENTATION of Reynolds and Maxwell, with 

consideration of previous experiences of the authors in the nano and micro-flows area, a 

general form of boundary forces, that consist of contributions from the friction and the 

mobility components: mrV fff  , has been extended to common effects of the bulk and 

surface motion. Hence, adopting Reynolds’ reasoning to a porous media as a whole, we 

reexamine the Poiseuille-Knudsen-Reynolds equation in terms of the sum of three 

contributions: the bulk pressure driven flow, and two mobility surface forces, mainly a 

Knudsen surface slip driven flow and a Reynolds surface thermally driven flow. The main 

motivation of our work is to find the nondimensional contribution of the Navier slip number 

and the Reynolds thermal transpiration number in materials with the high volumetric surface 

density. 
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1. Introduction 

 

THE BASIC GOAL OF BOTH EXPERIMENTAL AND NUMERICAL MICRO-MECHANICS is to find a 

main (even fundamental) difference between the macro-scale and micro/nano-scale. Recently, 

CELATA et al. [1], COLIN [2] KARNIADAKIS et al. [3] have described in the literature this 

difference as scaling effects. Only by careful study of the differences between macro-systems 

and micro/nano systems can be identified a basic feature of nanotechnology and its unusual 

possibilities and high-performance. However, effects that are not important in macro-scale, 

became crucial phenomena when the dimensions of a system decrease. When speaking about 

dimensions we usually mean the hydraulic diameter of a canal which in micro-systems varies 

from 2 m  to 300 m . But a more universal, and also more practical parameter, is the 

volumetric surface density: “ va    wall surface/volume”, which in micro-systems attains  

5000a v    
32 m/m  and in nano-systems varies between 300a20 v   32 m/km  

KARNIADAKIS et al. [3].  
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In the literature, the primary and frequently stated physical postulate of nanomechanics 

is that  va   is a leading factor of the scaling effects for porous media, where bulk flow 

resistance, surface flow resistance and surface mobility forces are combined. It means when  

va   the surface properties of solid and contacting fluid becomes dominate over well-

known classical properties of fluids in bulk; for instance, when  500a v   32 m/m  then 

viscosity of a fluid can be omitted from consideration and only the surface effects gives an 

important contributions to the flow resistance.  

In the literature one can find yet another scaling effect parameter. It is the slip length; 

 /sl  , being the dimensionless surface viscosity   , where   fluid internal viscosity. 

Frequently, it has been assumed that the scaling effect becomes dominate when the slip length 

becomes comparable with a radius of a micro-tube; 2/~ dls  MORINI et al. [4]. Of course, it 

is obviously true but only in a particular situation when slip resistance dominate in a micro-

flow.  

In the present paper we propose to replace the parameter sl   by the already averaged 

equations for the bulk flow resistance and the surface mobility forces.  The particularity of sl  

coming from the fact that the Navier surface viscosity    describes only a small part of the vis 

impressa traction boundary force  Vf . Generally, the surface force Vf  is composed of the 

friction and mobility components, mrV fff   . The friction force can be considered as the 

Navier slip force  sv  which has only limited importance. In other words, adopting Reynolds 

reasoning to porous media as a whole, we reexamine the Poiseuille-Knudsen-Reynolds 

equation in terms of the sum of three contributions: the bulk pressure driven flow, and two 

mobility surface forces, mainly: a Knudsen surface slip driven flow and a Reynolds surface 

thermally driven flow. 

There are two fundamental and universal integral characteristics related to pressure 

derived flows of a fluid through any canal, independent of its size and length. The first one, 

describes the mass flow rate derived by a unit drop of pressure;  pmc  /   ]kg/ sP a[ . The 

second one is the no dimensional flow resistance measured by the so-called friction factor. It 

is connected with the frictional pressure loss observed for unit mass flow rate  1=m  kg/s 

during a fluid flow. The friction factor f  is defined as a dimensionless wall stress  w  

observed during flow of an  unitm e.g.: 1
2

SP )/(  mw Uf  . Now, the main question, 

which is stated in the contemporary literature, is: Is the friction factor  dependent on the scale 

effect, or, mathematically speaking is f   a function of  the slip length  /sl  ?  

Aa answer on this question has been developed in Sections 2 & 3 where concepts of 

flow resistance are divided between internal and external friction. In Section 4 the OSBORNE 

REYNOLDS discovery [5,6] of thermal transpiration has been considered. Unfortunately, he 

had his own explanation of thermal transpiration and, contrary to MAXWELL [7], his own line 

of reasoning. He asserts that a primary reason of thermal transpiration in the bulk motion is 

not the second gradient of temperature along the axis of a capillary, but the axial gradient of 

acceleration, that when it acts close to the wall surface can prompt the enhancement (increase) 

of the normal velocity slip.   It is also connected with higher value of the slip length νμ=ls /  

, but sort of   ν   decreases due to mobility effect. 

The main motivation of our work is to find the no dimensional contribution of Navier 

slip number and Reynolds thermal transpiration number in materials with the high va  

volumetric surface density. 
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2. Concept of the flow resistance 

 

The friction factor is undoubtedly one of the most important engineering parameters, 

especially for the design of microdevices of MEMS (Micro-Electro-Mechanical-Systems) and 

NEMS (Nano-Electro-Mechanical-Systems). In order to define it we need an experimentally 

given a drop of pressure Lppdxdp outin /)(/  , where outin pp   is pressure the drop by 

flow through distance L . Therefore, it consists only of some integral information about the 

fluid resistance. Furthermore, a primary aim of experimental efforts to separate the effects of 

a skin (surface) resistance and internal flow resistance do not have rationale basis [4, 8-11]. 

On the other hands, comprehensive experimental data is necessary to calibration and 

comparison with mathematical models. The present section aims is to develop state-of-the-art 

of gases flow with respect to coupled effects of internal and external friction of fluid.      

Let us recall that our continuum modeling of gas flow usually deals with the so-called 

slip regime  1.0001.0  Kn [12]. This flow regime is correctly described by the classical 

MAXWELL [7] slip model which is based on an assumption that shear viscous stresses are 

described correctly by a constant viscosity and the Navier dimensionless slip length is not a 

constant constitutive quantity and follows linearly from the Knudsen number; 

ffKnNa /)2(  , whereas the momentum accommodation coefficient is constant: 

constf  . But if the dimension of the canal is decreased significantly then Kn  increases its 

value, removing the characteristic picture of gas flow into the transition regime:  Kn . 

However, it is not a state of gas rarefaction since the pressure is standard (atmospheric) and 

the gas is dense.  

Such a case, for instance, was considered in an experiment by MAURER et al. [13] with 

inlet pressure inp  at the similar level like atmospheric condition, namely: 0.26-5 bar Helium; 

0.14-3.5 Nitrogen. The authors obtained high Knudsen numbers (0.06< Kn <0.8 Helium; 

0.002< Kn <0.59 Nitrogen) owing to the application of a small micro canal (1.14 m  deep 

and 200 m  wide) covered by an atomically flat silicon wafer. This case precisely 

demonstrate the scaling effect, which means that the bulk properties of the flow are less 

important and we can keep the viscosity of fluid as a constant. The extension of the Knudsen 

number from slip to transition regime due to decrease of diameter of the micro canal should 

take into account analogical extension of the Navier-Stokes model.  Therefore, this can be 

done the  the Maxwell slip law into more complex description which take cognisance of non-

linear relation between velocity slip and the Knudsen number [14-17] or which take 

cognisance of second order boundary conditions [18,19]. 

However, when the average pressure of gas decreases and attains a value identified as a 

vacuum (1-10 torr), then even for normal macro tubes, the Knudsen numbers are high and 

indicate of a rarefaction state. But it is a case when the scaling effect is not present and can be 

omitted from the mathematical modeling. According to the kinetic theory of gases [20] the 

rarefaction state needs some change in the modeling of the stress tensor – usually it is 

obtained by the changing of expressions of on the shear stress by taking a second order 

Chapman-Cowling approximation, without any changing of the no-slip boundary conditions.  

From the numerical modeling point of view, the most complex case can be found in the 

MEMS and NEMS divides, where both the rarefaction and the scaling effect are present 

simultaneously. This case is also challenging for experimental mechanics [2, 21-23]. It 

appears that there is some traditional treatment of these both effects in terms of the Knudsen 

number – therefore, sometimes we have a problem with showing the separate of influences of 
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the rarefaction and the scaling effects. Thus, in the paper we describe rarefaction effects in 

terms of the Knudsen number, and the scaling effects in terms of other numbers, for instance, 

the Navier number. 
 

2.1. Internal friction of fluid lamina 
 

The subject of flow resistance, from time of the appearance of NEWTON’s Principia, 

was perhaps studied as a composition of two kinds of friction. The first kind of friction has 

been related to an internal attrition of fluid laminas and therefore was regarded to be the 

internal friction of a fluid substance [24]. The laws of internal friction, proposed by NEWTON 

[24], and today known as “Newtonian fluid”, suppose that the force of internal resistivity is 

proportional (linear) to the velocity gradient normal to the direction of the motion of the fluid. 

A coefficient of proportionality was called by Stokes “viscosity” since it was derived from the 

Latin word “viscoum”, denotes the property of lamina gluing [25,26]. Yet another associated 

word “viscid”  has been used for this mode of internal friction. Thus, nowadays the word 

“inviscid” is often used to imply that a fluid is not viscous. 

But the first, more primary mode of internal friction between laminas is connected with 

the phenomenon of stickiness described as an internal power of the adhering two neighboring 

lamina of a fluid and possessing properties of cohesion, or in other words, as a tangential 

force necessary to separate contiguous lamina of that fluid. This phenomena weakly depends 

on flow velocity and a flow velocity gradient was proposed by Count Rumford in 1796 [27], 

and has been described mathematically as pressure frictional relaxation, proposed by Poisson 

[28] and by Natanson [29]. Different concepts of fluid resistance which undergoing of the 

laminar flow causes different hypothetical velocity profiles as was presented in Fig.1. The 

phenomenon of viscosity predominates when the motion is laminar or turbulent. However, a 

third mode of motion, called the non-Newtonian form of internal friction, is connected with 

the irregular motions of molecules, called sinusoidal or tumultuous motion. This mode of 

internal friction mainly depends on the square of the velocity  gradient. Finally, the internal 

friction of fluids, expressed mathematically by the tensor of flux of frictional resistance, 

should consider three different contributions:   

 

(2.1)                                            2

210 2)( ddIr aaa       .                                                       

 

The first part  is pressure dependent friction, the second one is the Newtonian friction 

part proportional to the shear rate  d   and the final part is flow resistance dependent on the 

energy of shear rate. This nonlinear expression cannot be further considered within the frame 

of the Navier-Stokes equation, therefore PRANDTL in 1904 [30] has proposed the following 

approximated nonlinear formula with respect to the invariance of  d , but tensorially linear 

with respect to d : 

 

 (2.2)                                dr ddddd

d










 d21

0 III)II,I()III,II,I(2
III

)(
aa

a 
    .                          

Here  T
reer  jiij ,  zyxji ,,,    is a symmetric tensor of frictional resistance, 

210 ,, aaa   are, respectively, constitutive coefficients of stickiness, viscosity and tumultanness, 

jiij eeI   is Gibbs’ identity tensor,  d ½ jiijd eevv  )grad(grad T  is a symmetric 

part of the velocity gradient called the Euler rate of deformation – the component xrd  of 

this tensor is traditionally called the “shear rate” when the circumferentially symmetrical flow 

at a pipe or tube is considered. The first, second and third invariant of  d  are denoted as  
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ddd III,II,I , respectively. Different hypothetical velocity profiles accounting different 

concepts of fluid resistance undergoing of the laminar flow has been collected in Fig.1. 

 

 

 
 

                  FIG.1 Different hypothetical velocity profiles accounting for different concepts of 

resistance.  

 

 

Similarly, flows of fluids in tubes are mainly represented only by one component of the 

resistance tensor: xr  called the shear stress. Especially important is its’ value of  xr  on the 

solid boundary of the tube; then, according to Young’s assumption, it is called the “wall 

stress” and is denoted as )( Rrxrw  . For a one dimensional flow within a pipe, the 

constitutive formula (2.2) on the pipe wall reduces to: 

 

  (2.3)                               xrxr

xr

w ddaa
d

a










 ||2

||
21

0  ;  xrd ½ 
Rr

drdu


/    ,                 

 

where a main component of the velocity along the pipe axis is  xtru ev ),( .  A special form 

of wall stress which takes into account a turbulent viscosity coefficient has been proposed by 

PRANDTL [30]:  

 

(2.4)                                     xrxrw ddl ||2 2

Pr     .                                                            

 

In this model the wall stress is depends explicitly on the distance of the layer from the 

surface, designated as y , since an internal scaling parameter proposed by Prandtl, nowadays 

called the length of mixing, possesses a following form: yl 4.0Pr   [31]. More concise 

proposal, which do not possess any geometrical parameters in the constitutive relations, has 

been proposed by von Kàrmàn as follows:  
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(2.5)                                        

1

2

2

Ka 4.0












y

u

y

u
l      ,                                                               

where second order derivatives on the boundary appear – this approach directly leads to the 

rational modeling of turbulence by co-called high order gradients  models. Yet a more correct 

formula for length of turbulent mixing has been proposed by Novoshilov and implemented by 

KARCZ and BADUR  as [32]:  

                                      

(2.6)                                         

1

2

2
3

No 4.0












y

u

y

u
l




   ,                                                           

which can be simply extended into 3D case [32]. An explicit second order model of the wall 

stress can be obtained by Chapman-Enskog expansions and Burnett type approximations in 

the kinetic theory of gases [20]. Then, according to DEISSLER’s approximation of a wall 

action [18], the second order expression for the wall stress is [3,33]: 

 

(2.7)                                      
2

22

21
2 y

uKn
A

y

u
KnAw









    .                                                     

Unfortunately, equation (2.7)  can be considered only in neighborhood of wall, therefore 

for the whole domain of fluid  should be found new equivalent definition of which take into 

account second order model of the stresses. Well known MAXWELL [7]  proposal of second 

order definition of r  has been developed as the high order thermal gradient resistance tensor 

in the form:  

 

(2.8)                              IgggIdr d )div()gradgrad(
2

1
I

3

2
2 2

T

1    ,                   

where gradg   is a gradient of temperature and  21,  are the constitutive constants 

which can be called the internal transpiration coefficients. Additional flow resistance can also 

be governed by:  

 (2.9)                                         )2(32I
3

2
2 dIdr d    ,                                                   

where  daad  )gradgrad(2/1 T

)2(  is the acceleration of deformation diade or by the 

double order resistively governed by the internal scale length  Tol   [34]: 

  

 (2.10)                                      Iddr dIlap)1(
3

2
)lap(2 2

To

2

To ll    ,                                          

                              

where the laplacean operator is denoted: )grad(div)lap(  . An interesting proposition for the 

rebuilding of the definition of the resistance tensor can be found in the paper by DONGARI et 

al. [35]. They introduced a model process dedicated to modeling of the enhanced flow of 

rarified gases as well as the Knudsen paradox. By defining an additional “diffusion velocity” 

)]grad[ln( Du  the authors have obtained the extended resistance tensor  

 (2.11)                               IuvuvvuIdr d )()(
2

1
I

3

2
2     ,                     

where the coefficients are:  2 ,  3/2 . In comparison with Maxwell’s model (2.8), 

which is a second order thermal transpiration one, the above model can be considered as a 

first order internal thermal transpiration. One has to notice that the model, with diffusion 
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velocity (2.11), leads to excellent agreement with the MAURER et al [13] experiments without 

involving any slip model.   

Yet another higher order gradient model of internal resistance, based on a notion of the 

“internal scale parameter” k , which plays a similar role as the mixing length in (2.4) can be 

[32]:  

 (2.12)                         

 )(gradgrad)(
2

1

)]grad()grad([
2

1

2
1

vjvj

vjvjIr














kk

kk








                       

where  
1,  are phenomenological constants and turbulent mass flux is also determined by 

the gradient of 2/1)(k ; )]grad(grad[ 2/12/1

1 kk  j . An evolution equation for the 

parameter k  [it has the same physical dimension as the turbulent kinetic energy] should be 

postulated separately using the Reynolds “discriminant equation”. Additional complementary 

rational models of turbulent resistance are discussed by KARCZ and BADUR [36]. 

 
 

2.2. Viscosity of rarified gases 

       
Finally, in the literature there is also a most simple method of modeling of flow 

enhanced resistance by making the viscosity a variable quantity [33,37,38]. This approach 

assumes a strong decreasing (even 20 times) of viscosity coefficient near a wall: 

)/()1(

0   Ce

  where C,  are phenomenological constants and   /y   - 

dimensionless distance from the wall. The slip boundary conditions are simplified for the 

case, which owing to the radical friction reduction near the wall such models.  This radical 

friction reduction near the wall are omitting complex numerical integration in very thin 

boundary layer, which was presented in works [17,34]. But the variable viscosity coefficient 

is alternative resolution to introduce the slip boundary conditions. BESKOK and 

KARNIADAKIS have proposed a Bosanquet-type expression for the viscosity [15]:  

(2.13)                                
Kn

e






1

1
0    ,         2.2  .                                                     

 

The purpose it is to extend the slip model with dimensionless slip length [3]: 

 

(2.14)                                  
Knb

Kn

f

f
Na






1

2
  ,   1b    ,                                                     

from the slip flow regime to the transition and free molecular regime as well.  

 
 

2.3. Fluid surface friction 

     
The second important mode of flow resistance was discovered by D’ALEMBERT in 1752 

[39]  - it is the external friction of fluid through the solid boundary of a surrounding canal. In 

the opinion of D’ALEMBERT this mode of resistance is more important than the Newton one 

coming from internal friction of fluid lamina.  

D’ALEMBERT hypothesis concerning the laws of external friction was mathematically 

expressed by COULOMB in 1801 [40] as a sum of three vectors:  
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  (2.15)                                      ss

s

vv
v

f 









 ||

||
21

0 


   ,                                                    

 

and means that a surface (skin) friction force  f   appearing between a contacting fluid and 

solid materials is some additive function of powers of the slip [relative] velocity  

wallfluids vvv  . These are the adherence, slip and kinetic parts. Precisely, due to assumed 

isotropy of friction, the direction of the vector of friction force and the adherence part vector 

are parallel to themselves and identical with the direction of the slip velocity. In the case of 

patterned roughness of a wall, in general, the isotropic coefficients  210 ,,    become the 

symmetric friction tensors which possess dimensions of matrix equal 2x2 [41].  

From the historical point of view, the skin (surface) friction force (2.4) is connected 

with the problem of resistance in elastic fluids (see: first velocity profile in Fig. 1). According 

to Euler, by elastic fluid we are understood to mean such fluids as air and other gases where 

internal resistance is to be omitted, therefore, in the elastic fluid any resistance can appear 

only between solid and fluid materials. Analyzing air resistance, researchers such as Galileo, 

Marriotte, Picard and Cassini [42] had assumed that resistance is proportional to the square of 

the velocity, in that time called the vis viva. But, finally, Huygens, ca 1670, had deduced the 

law that the air resistance is proportional to the square of fluid velocity. It appears that third 

part in (2.15), historically, was firstly taken into account by researchers. In his celebrated 

monograph D’ALEMBERT  [39] discussed, but separately, three contributions to the skin 

friction. It was De Saint-Venant in 1887 [43], who has interpreted a kinetic part of a skin 

friction as a force which depining the “skin eddies” from the fluid-solid contacting layer.  

First time, the adherence part, was considered analytically by DUHEM in 1903 [44] who 

discussed required values of the coefficient 0 . The second coefficient of linear skin friction 

 1  had been used by many researchers before Navier, but it was indeed due to Navier’s 

unique efforts that the two mechanisms of resistance – the internal one (governed by viscosity 

 ) and the external one (governed by surface viscosity  ) – had appeared in one concise  

mathematical model (see: profile b on Fig. 1). Let us note that in the time of Navier, it was 

difficult to measure an internal fluid viscosity  , since the work of NAVIER in 1827 [45], in 

the end, had simplified his analytical solution, removing  ,  and giving a formulae for mass 

flow rate in  a pipe only in terms of external viscosity  . His first constitutive expression for 

the coefficient     between water and glass had been based on Gérad’s experiments  and 

originally reads : “  3333.0 ” [45].    

For one-dimensional pipe flow the friction force acts only along the pipe axis: e.i. 

xf ef  , and  this main component is equal:  

 

(2.16)                                       ss

s

uu
u

f 









 ||

||
21

0 


   ,                                                    

 

where  su    is the main component of  xswallfluids u evvv  . In the literature only one 

linear   1  (or slip) coefficient has been employed numerically and experimentally 

determined. In practice, the ratio  sl / , called the slip length has been evaluated and 

measured in variety of experiments (see [21]). It should be highlighted that HELMHOLTZ and 

PIOTROWSKI, in 1860, had defined a ratio sl / , as the slip length, which is called the 

Navier number and should be defined following the formula:  
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(2.17)                                                                
d

l
Na s   ,               

 where d  is a characteristic dimension of channel [16,34,46,47]. The importance of 

dimensionless slip length (Navier number) Na  is considered in the next section. 
 

 

3. No dimensional friction numbers 

 

 Traditionally, the most important of dimensionless numbers in fluid dynamics is 

considered for the momentum governing equations. The balance of momentum is underwent 

of a sort of purely mathematical analysis in a co-called dimensionless form. A fundamental 

and widely-known dimensionless number related to viscosity and insertion force is the 

Reynolds number:  

(3.1)                                                            
A

dm
Re n

  , 

which also can be understood as a dimensionless mass flow rate  m , where nd  is the 

hydraulic diameter and A is the cross section of the channel. Since for many flows viscosity 

   weakly depends on the temperature and pressure, and since  outin mm   , the Reynolds 

number can be interpreted as an integral (total) flow parameter. One should remember that in 

the above definition the mass flow rate is defined via the normal component of velocity 

nv nv , which ordinary is less than the velocity length nvc  || v . For open canals, where  

m  cannot be determined, Re  usually means dimensionless inflow velocity u  [16,47].         

 To answer to the question stated in the introduction the STANTON and PANNELL 

contribution to resistant force should now be presented. STANTON and PANNELL [48], making 

measurements of water flow within a capillary pipe, have proposed a change of the paradigm 

in the approach to the description of flow characteristics. They have the courage to describe 

the results of measurements in a quite new way – they broke away from the celebrated  

pressure-discharge characteristics “ mp  ”, deciding to presents their own results as a 

diagram “Dimensionless Wall Stress – Dimensionless Mass Flow Rate”. Dimensionless wall 

stress, referred to as the Stanton-Pannell friction factor, has been defined as the wall stress 

divided by the vis viva of the flow:  )/( 2
SP Uf w  . Dimensionless mass flow rate was 

defined as the Reynolds number following the equation (3.1). In the considered cases the 

“ Ref SP ” characteristics of the analytical solutions of the one-dimensional Navier-Stokes 

equation can be identified by following equation [16]:  

(3.2)                             




















solution slip
)41(

8

)/41(

4

 solution slip-no
84

2SP

NaRedlUd

ReUd

U
f

s

w











      . 

 In contemporary literature, instead of “vis viva”, we use “kinetic energy” which is two-

time greater in quantity, and such obtained dimensionless wall stress is called the Fanning 

friction factor : SPF 2 ff  . Frequently, according to Darcy, we apply four time grater 

coefficient, called the Darcy friction factor  SPFD 84 fff   [4,16], it leads to well known 

expression: Ref /64D  .    
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 In the laminar regime, the classical no-slip Hagen-Poiseuille solution Ref /64D   and 

the slip Helmholtz-Piotrowski solution )41(/64D NaRef   are plotted. In the turbulent 

regime for smooth pipes: and the no-slip Blasius solution 25.0
D 316.0  Ref  is plotted as 

continuous lines. Some experimental results [22] for flow of gas within a peek-coated, fused-

silica microchannal is also shown. The friction factor is reduced due to slip at the walls as 

)41/(1/ slip-no-SPslip-SP Naff  [49]. One crucial element of Ref D  universality is the 

appearance of single critical point exactly at the same level of viscosity and inertia forces 

proportion. It should be mentioned, that this point appears also on the  “ pm   diagram, and 

thus in the classical literature by Du Buat, Prony, Darcy, Eytelwein there exists some 

qualitative information about “transition” from a quiet form of flow into a loud one. Finally 

Reynolds in the case of pipe founded a critical number for the laminar-turbulence 

transmission as: 2300cr Re .       

 Furthermore, for uniquely expressing a critical point on a plane of  Ref D  two 

coordinates are needed. The second critical coordinate has been discovered by STANTON and 

PANNELL [48] as follows: 

(3.3)                


 dU
Re cr    is constant ~ 2300     

cr|
2

3

dx

dpd
StPa




    is constant ~ 0.004  .         

 The Stanton-Pannell number depends only on a drop of pressure and it can give a 

comfortable information about of type of flow yet in a moment of an experiment design. This 

number is connected with another dimensionless factor called the Poiseuille number  

RefPo  D  to be: 

(3.4)                                                2
D )(

2

1

2

1
RefRePoStPa  .                                                 

From equation (3.2) follows that  the critical Darcy friction factor always  is : 32.0D f .  

 Enhancement of the Poiseuille number due to slip is )41/(1/ NaPoPo slipnoslip  . This 

result is consistent with [22] where for square channel they have obtained: 

)88.71/(9.56D KnRef  . It should be highlighted that, due to the fact that phenomenon of 

the laminas-to-turbulent transition do not occurs simultaneously in the whole channel, in 

practice, we are speaking on a “transition zone” or of the “transition regime” [1,2], what has 

been evidenced in Fig.2.  

 

 
FIG. 2.  No dimensional characteristic the Stanton-Pannell number StPa  and Reynolds 

number Re  including scale effect by Navier number Na  [16]. 
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 In Fig.2. wall stress  w  [treated as surface friction force per unit area] is replacement 

by means an analytical solution to the measurable fall of pressure  dxdp / . Thus, practically, 

the Darcy friction factor Df , has the same information what keep the Stanton-Pannell’s 

number: StPa . Dependence of the Stanton-Pannell number StPa  on Navier number Na  and 

Reynolds number Re  give the answer that friction is also dependent on the scale effect. Fig.2 

is obtained on the basis both MORINI et al. and CELATA et al. measurements [1,4,22] and 

analytical consideration [16]. 

 STANTON and PANNELL were the first experimentalists who believed in a theoretical 

anticipation of different profiles of fluid velocity within a pipe cross section, therefore they 

tried to measure two kinds of velocities – the first, the classical da Vinci mass velocity, 

measured by weight the total discharge of a fluid passing through a pipe section in a given 

time. The second one is the maximum velocity at the axis of the pipe, estimated by measuring 

the pressure difference between that in a small Pitot tube located in the axis of the pipe facing 

the current and that in a small hole in the wall of the pipe. As we know from a basic 

consideration, this pressure difference is  ½ 2
maxu  and from this relation the maximum 

velocity [speed] can be calculated. Everyone were strongly astonish looking on a plot of a 

velocity ratio  maxSP / uU  has been made for different falls of pressure, expressed by a 

logarithm of dimensionless [Reynolds] number. Prior studies available in the literature, have 

no pay attention on the question of the Stanton-Pannell critical number during laminar to 

turbulent transition [1], but should be stated that nanochanels notion of Reynolds number and 

Stanton-Pannell number is meaningless and should be replaced by the Navier number. 

Additionally, a role of Navier number leas on expressing flow enhancement [16,50,51]. 

 

 
 

4. Maxwell kinetic theory within a boundary layer 

 

 

The discussed here MAXWELL’s paper,  entitled  “On stresses in rarified gases arising 

from inequalities of temperature” [7], possesses two distinct parts, based on  two strongly 

independent motivations. The first part of the paper, called here as “March 1878”, is 

motivated in an attempt to explains CROOKES’ discovery of the rotation of “windmill” in a 

partially evacuated radiometer [52]. MAXWELL put a basic hypothesis that, in CROOKES’ 

experiments, since the pressure is very low,  the new stresses are growing due to a second 

gradient of temperature in rarified gas. These stresses can be capable to producing rapid 

motion in a radiometer windmill. In other words, in gaseous medium where there is only 

linear distribution of temperature there are no additional thermal stresses. A problem of 

boundary conditions in this first part of paper [from March 1878]  is does not considered. 

But, in that time, MAXWELL is conscious that this kind of thermal stresses calculated for 

a hot solid sphere of uniform temperature, immersed in the colder gas cannot of itself give rise 

to any force tending to move the sphere in one direction rather than in another. In the 

framework of his model of stresses the sphere placed within the finite portion of gas is already 

in equilibrium. How, then, we would to account for the observed by TYNDALL fact that an 

additional force act between solid bodes immersed in rarified gases [53]. This kind of motion, 

nowadays called thermophoresis is connected with small solid particles, typically spherical, 

suspended in a fluid  within which an externally imposed linear temperature difference 

[constant temperature gradient] induces a force that move the sphere from the hotter to the 

colder places, that is, the particle moves against the temperature gradient [54]. 
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In order to explain this, even in March 1878, Maxwell turns his attention not to his own 

model of thermal stresses but to slip phenomena discovered in liquids by HELMHOLTZ and 

PIOTROWSKI [55] and KUNDT and WARBURG [56] in rarified gases. The mechanical slip 

phenomenon is related with the finite value of the Navier external viscosity and appears as a 

sliding of a fluid in the contact with the surface of a solid. Maxwell  precisely underlines a 

difficulty of mathematical treatment, since the gas close to the solid surface is probably in 

quite different “state of condensation” – what means that quite different model is needed for 

describing the phenomena of sliding – one example of this extraordinary situation, discovered 

by KUNDT and WARBURG [56], is a fact that the velocity of sliding of the gas over the 

surface, induced by given tangential viscous stresses, varies inversely as the pressure. 

In the first part (March, 1878) of his celebrated paper MAXWEL [7], does not attempt to 

take into account the effect of  this mechanical sliding motion, because the main goal of his 

paper is devoted to  invention of a thermal stress model in the bulk – consideration of a 

kinetic relation close to the solid surface will be “completely destroying the simplicity of our 

first solution of the problem”.     

 
       4.1. Maxwell’s model of the thermal transpiration in the bulk 

Let us now, very shortly recapitulate the MAXWEL results concerning an additional 

stress related to “inequalities of temperature”. This stresses can appears only then the field of 

temperature is nonlinear. Maxwell has proposed the following constitutive formula [7]:  

 

(4.1)                       IgggIdIp d )div()gradgrad(
2

1
I

3

2
2 2

T

1   p  ,               

 

where  ,  T
peep  jiijp  is bulk flux of momentum, the temperature gradient is denoted 

as: gradg   and  
21,  are the constitutive constants which can be called the bulk thermal 

transpiration coefficients.  

After substitution of the above equation to the balance of momentum and after using 

few tensorial identities: jiij eegg  ,grad grad T   , }Igradlap{
2

1
div dvd   we obtain 

an equation of  fluid motion that takes into account the above defined unconventional bulk 

thermal transpiration contribution  to the momentum transport  :  

                                                                     

(4.2)         bggvv d   )(divgrad lapIgrad
3

1
 lap grad 21p .                      

 

If  Maxwell’s constitutive constants  
1  and  2  vanishing to zero, the model of fluid under 

consideration becomes  an identical with the Stokes model of viscous compressible fluid. 

Further taking the following identities: lapdiv g    and  )lap(grad)lap(gradlap  g  

we write (4.2) to be:  

  

(4.3)                   bvv d   )(lap)grad(Igrad
3

1
 lap grad 21p    .              

 

According to the non-equilibrium kinetic treatment, MAXWELL was  able to estimate the value 

of the thermal transpirations constants  to be [7]:  
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 (4.4)                                                 
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
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These are really very small quantities that depend on viscosity  , density of the gas  , and 

its’ temperature   . Let us note in the making of more concise calculations with the Maxwell 

fundamental equation, which considers also its nonlinear components, one can obtain the 

expression for the stress tensor in thermal transpiration  phenomena which depends 

additionally on a linear distribution of temperature [57]: 

 

(4.5)            ggIgggIdIp d  32

T

1 )div()gradgrad(
2

1
I

3

2
2 p               

 

In turn, using this expression for the fluid stress tensor, from the Stokes boundary condition : 

 

(4.6)                        0)(divs   npfnI Vs  , 

 

where the Young-Laplace surface tension is ss Ip  , the surface Gibss identity is defined to 

be: nnII s  and n  is the unit normal vector on the boundary surface and   is the 

Stokes normal surface pressure, due to assumption that in the boundary the layer the usual 

spherical pressure tensor changes into an ellipsoidal pressure tensor, and it follows that we 

would obtain a boundary relation of this same sort. Surface divergence sdiv   is defined  as a 

right contraction of surface gradient: ss I)grad()(grad  .  

But, it should be noted from the very beginning, that a boundary condition where the 

coefficient  3   and the first gradient of temperature g  appears, is fundamentally quite 

different from original  Maxwell’s example since  g   appears within the mobility force mf   

which  physically sugests another phenomena. It is also a historical truth that the presence of 

g  in the boundary layer was first postulated by REYNOLDS [5,6] and later proven by 

MAXWELL [7].  

 

 
            4.2. Maxwell’s model of thermal transpiration within a slip layer 

 

Let us now consider the second part of Maxwell’s paper, known as “Appendix May 

1879” [few months before Maxwell death]. His direct reason for writing this appendix was the 

important Reynolds’ discovery of thermal transpiration. Maxwell, having been a reviewer of 

REYNOLDS seminal paper [5] has an occasion to study all Reynolds’ eight laws of thermal 

transpiration, though early as a manuscript, before its’ formal publication. The thing of great 

novelty was Reynolds’ proposal for the modeling of thermal transpiration i.e. the motion of 

gas form the colder to hotter ends, through a capillary thin porous plate of which the sides 

undergo different temperatures. Reynolds was able to predict the transport of momentum as 

one-dimensional steady-state momentum drift between the hot and cold reservoirs, situated at 

opposite ends of the porous plate, with the resulting constant local temperature gradient at 

each point of the fluid being in an isobaric state. 
As it happens that these conditions are quite in opposition to the Maxwell bulk model of 

stresses eq.(4.1) – here there is only a linear distribution of temperature, the only approach is 

to turn to boundary slip phenomena, where must be postulated a boundary force that depends 
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on a thermal gradient. This concept, proposed early in REYNOLDS’ manuscript [5], is a subject 

of MAXWELL’s celebrated appendix [7].  

Maxwell assumes, having Reynolds’ solution in hand, that the kinetic theory of gases 

close to a solid surface should be reformulated and the governing equations, should take on 

the conditions which must be satisfied at the surface of solid body. Unfortunately, his solid 

body surface is absolutely rigid in a stress-free state; its molecules are absolutely fixed which 

means that the surface temperature is nearly absolute zero. The difference in the contact of 

two gasses, for instance, hydrogen and  
2CO   with the same glass surface is only in a number 

of absorbed and reflected gas molecules. Maxwell prefers to treat the surface as some-thing 

intermediate between a perfectly reflecting and a perfectly absorbing surface. Therefore, an 

experimentally verified portion  f  describes the absorption of all the incident molecules, and 

the portion f1  describes the perfect reflection all molecules incident upon it. 

Finally, Maxwell obtains the following boundary conditions. Let us suppose that the 

surface is a plane  zy,  and that the gas flowing on that side of it for which  x  is positive. Let  

sv  be a main surface component of velocity in the main  y  direction, then the slip-velocity 

formula is given by the following expression: 

 

(4.7)                       0
4

3

2

3 2









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Gvs




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


     ,                                             

 

where G  is the Helmholtz-Piotrowski slip length,   - internal viscosity coefficient,    - gas 

density,   - absolute temperature. To bring to fruition the process of reconstruction of the 

Maxwell slip boundary condition (4.7), let this boundary condition, be treated as a Stokes 

force condition (4.6). Thus, the elements of (4.7) have a representation:  

 

       ▪  the fluid wall stress   

(4.8)                  nIgggIdInp d })div()gradgrad(
2

1
I

3

2
2{ 2

T

1   p ,                                                                                                                                         

    ▪▪  the  surface friction force :    

 

(4.9)                 )( wallr vvf     ,                                                                                       

 

    ▪▪▪ the surface mobility force: 

 

 (4.10)                 grad smm cf    .                                                                                     

 

The thermo-mobility coefficient  mc  should be stated,  based on Maxwell’s formula 

(4.7), as a coefficient which is independent on the property of the solid  surface: 

 

(4.11)                                                            





4

3
mc      .                                                   

 

Next, using the definition  / Gls ,  after dividing the balance (4.6) by    we obtain a 

generalization of the Maxwell slip boundary layer (4.7) as:  
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In analogy, the ratios   /11 sl ,   /22 sl  can be called thermal transpiration slip 

coefficients. From the above, we conclude that  /sl  cannot be treated as only one 

characteristic of the Navier-Stokes layer, but undoubtedly it is a main characteristic of the 

external viscosity.  

Finally, if one introduces, following Maxwell, a directional derivative  “ dsd / ”, 

directed along some main flow direction  “ t ” with the cosines given by nml ,,  then the 

condition  (4.7)  can be expressed in the original form [7]: 

 

 (4.13)                 0grad)()])(()1([ s2
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This equation is called the “Maxwell slip boundary layer equation”. Let us note that in 

each component of this equation, the very special role the gradient of temperature plays – it is 

a completely external surface effect which is not connected with a form of stress tensor, for 

instance with eq.(4.5). This means that the motion of gas close  to a solid surface, in general is 

governed by two kinds of forces. The first is a mechanical friction force, connected with the 

external viscosity and the second one is a temperature gradient which urges gas particles 

closer to the surface, from colder to hotter parts of the surface. Therefore the coefficient of 

thermal mobility mc   [see: eq (4.11)] is independent of mechanical layer properties and 

should be experimentally verified. There are numerous modern references in the literature 

notifying about the proper experiments. The impressive electrokinetic properties predicted for 

a carbon nano-tube channels have not yet been measured by careful experiment [8,58,59]. 

In particular case, when the rigid cold particle is immersed into a gas being  in a rest  

0v , putting the linearity of temperature distribution ( 0grad g ), from eq.(4.12),  we 

obtain the thermal velocity  of  a particle:  

 

(4.14)                                             



sgradm
wall

c
 vU   .                                                    

 

The velocity  U  is nowadays called the thermophoretic velocity [60]. It characterize the 

motion of nano-particles that follows from the surface gradient of temperature.   

            
             4.3. Maxwell’s closure for the Navier number  

 

It is important that owing to apparatus of the Kinetic Theory, Maxwell was able to find 

an explicit formula for the length  of slipping [7]: 

 

 (4.15)                               l
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where l   means the Meyer relation on the mean-free path of a gas molecule and                                                

f    being the fraction absorbed. When  2/1f  or the surface acts as if it were half perfectly 
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reflecting and half perfectly absorbent then we got  lls 2 . If it were wholly absorbent, 

lls 3/2 . In practice the slip length depends on a kind of surface and gas – for instance from 

KUNDT and WARBURG experimental data [56] it follows that for air on a glass surface in 

17oC: pls /8  and for hydrogen on glass: pls /15   where the pressure is given in dynes 

per square centimeter.  

In contemporary literature the coefficient of a partial absorption  f  is called “tangential 

momentum accommodation coefficient” (TMAC). This coefficient is not dependent with heat 

flow, it account for the average tangential to a surface momentum exchange between the fluid 

molecules and the solid molecules. Its value should be evaluated experimentally, but it is 

known that it vary from zero (for secular reflection) up to unity (for complete or diffuse 

accommodation) [8,60]. 

Unfortunately, the second coefficient of the Maxwell model, i.e. the coefficient of 

thermal mobility mc , essential for the thermal transpiration, was omitted from any literature 

discussion. Indeed, it is defined by eq. (4.11), since it is a combination of the bulk and of the 

surface properties, exactly the Navier external viscosity   . Notice that it is quite opposite 

situation then in the Reynolds boundary layer model, where REYNOLDS gives much more 

correct definition of the thermal mobility coefficient and no so deep definition of the slip 

length [5,6,61].  

 

4.4. Implementation of a model of a boundary layer with thermal mobility  
 

The consistency of field equation of fluid in the bulk and within the layer boundary has 

been started by REYNOLDS in work [6], and this consistency has still developed by many type 

of research [62-70]. Despite the fact that investigation into thermal transpiration began long 

time ago [see: 62,66,67] many questions continue to be unanswered. This is connected with a 

special feature of thermal transpiration, that is very sensitive to the kind of solid material and 

the kind of rarified gas. The thermal mobility force expressed as the equation (4.10) [7] and as 

well proposals by REYNOLDS [6] is, in general, sensitive to the properties of both gas and 

solid surfaces and depends on two thermal momentum accommodation coefficients 43 , ff . 

However, having a complete experimental dataset, for instance the works of different authors 

ROJAS-CÁRDENAS et al [68] PIKARNNOP et al., [23] enables the development of a consistent 

closure to the mc  coefficient within the framework of continuum modelling. The new 

benchmark experiment [68] which has applied an original method for thermal transpiration 

induced mass flow rate measurements, conducted via measuring in situ the pressure evolution 

in real time at both ends of the tube using two high-speed response pressure gauges. A long, 

circular cross-section, glass (borosilicate), microtube (d=490  m; L=3.053 cm.) is connected 

beetwen two reservoirs: cold (no 1, environmental temperature) and hot (no 2, Co802  , 

heated by an internal heater) (Fig. 3) with the volume of the two reservoirs 81.0/ CH VV  and 

for numerical simulations 85.141  CVV  cm3 was selected. Before experiment begins, the 

pressure inside the both reservoirs is regulated by means of a vacuum system and stays 

between 13.3 and 1330 Pa for helium.  

After the opening of the isolation valve the flow induced by thermal transpiration is simple 

– the pressures in both reservoirs are equal and flow from cold to hot areas is derived only by 

the wall mobility force (4.10), which depends on the mc  value between glass and helium and 

the wall temperature gradient. Since the volume of the reservoirs under consideration are 

finite, therefore gas molecules migrates from cold to hot reservoirs. As the results of 

migration the pressure in the cold areas decreases and at the hot areas increases.  
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FIG. 3 Scheme of helium flow cold (1) to hot (2) reservoir [68]. 

 

Considerations the previous literature according to [16,17,34,47,50], and keeping in mind 

the value of the thermal accommodation coefficient proposed in the literature [61,69], there 

has been made a calibration of the mc  value. Drawing from the ROJAS-CÁRDENAS et al. data 

[68] and EWART et al.’s considerations [70], this coefficient has been found to have the 

following form:  
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Here the main unknown is the Navier slip viscosity   that can be also be defined by slip 

length (BADUR et al, 2015). It was assumed that the numerical value of mc  has been 

calculated using the definition of the Helmholtz-Piotrowski slip length:  / Gls , and 

helium-glass slip length 00016.0sl  cm. In equation (4.16) the temperature along the micro-

pipe was taken according to linear distribution.  

For the unsteady state flow analysis the CFD solver Fluent application was employed. This 

finite volume based code permits one to solve the three-dimensional fluid and heat flow 

problems involving turbulent structures and chemical reactions. However, it also allows for 

the addition of user defined subroutines programmed in C++ for problems that fall outside the 

capability of the standard version of the code. For the implemented thermal transpiration and 

slip velocity condition at the wall, the numerical results agree very well with the experimental 

data for the pressure plots in Fig.4.  

The mode of gas motion, driven by the difference of pressure CH ppp  , is similar to 

Poiseuille’s flow with a velocity profile quite opposite to that of the flow induced by (4.10) – 

which at the central axis takes a maximum and is zero on the wall surface. Now, there is a 

characteristic time max
t  where the thermal transpiration forces achieve maximal value and 

therefore the mass flow rate is attained (Fig. 4b). After that the Poiseuille flow governed by a 

difference of pressure (Fig. 4a) is included, which, after time leads finally, after time eq
t , to an 

equilibrated state when the pressure difference arrives at its maximum and the resulting mass 

flow rate is zero. In the case of the ROJAS-CÁRDENAS et al. benchmark experiment [68], the 

following values from numerical simulations were obtained: 5.11
max

t  [s] and 121
eq

t  [s], 

respectively. 

Also, during numerical simulations [61], it has been observed that the pressure variations 

inside both reservoirs are not perfectly mirror-symmetric with respect to the initial pressure 

axis, since the volumes of the two reservoirs differ (the hot is smaller) and, consequentially, 

the pressure variation, in time, within the reservoirs is different – the increase in the hot 

reservoir is 199.72 Pa and decrease in the cold reservoir is 193.98 Pa (Figs. 3 and 4).  
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FIG. 4. Results of unstationary thermal transpiration modeling of the benchmark experiment [68] with 

the thermal transpiration mobility force (4.10) and (4.16) closure for the thermal momentum 

accommodation coefficient: a) plot of pressure change in the hot and cold reservoirs; b) the plot of 

mass flow rate with two characteristic times: of maximum flow rate and zero flow rate, c) equilibrium 

velocity profile . From ZIÓŁKOWSKI and BADUR [61]. 

 

After implementation of the mobility force (4.10) into a commercial code, the benchmark 

experiment [68] has been performed for basic data corresponding to helium. For the 

numerical simulation it utilizes the following data: initial pressure 25.1960  inpp  [Pa], 

cold temperature 20C  [oC], hot temperature 80H [oC] (with linear distribution along 

the micro-pipe), referential viscosity 51096.1  x  [Pas], individual gas constant 2077
~
R  

[J/kgK], and the ratio of specific heats 667.1 .  

Pressure values are in agreement when compared with the experiment [68]. It is easy to 

numerically prove that at the final equilibrium zero-flow state (after 121 seconds) there is a 

connection between the Poiseuille flow in the centre of channel and counter thermal 

transpiration flow on the surface [61]. Hence based on the presented model and implemented 

experiment a concept of Reynolds transpiration number can be proposed as follows:  

 

(4.17)                                              
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5. The mystery of second order boundary conditions 

 

DEISSLER [62], on the basis of kinetic theory, has proposed a slip velocity equation 

where the second and higher derivatives of gas velocities take part [62]. It can be shortly 

written as [3]:  
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The term argued that a higher order of the Kn and higher order derivatives of velocity must be 

used in the slip equations. But on the other hand, well known kinetic theory models of fluid 

stress presented in work [71], do not included any contribution of a second velocity gradient – 

probably Reynolds non-explicit contribution via the gradient of acceleration  )2(d  is consistent 

with physical interpretation. In other words, the part of wall stresses governed by coefficient  

2A   in (5.1) do not have any sense from the point of view of 3D modeling.   

In general, the consistency of the field equation within the bulk and on its boundary for 

weakly-nonlocal continua with higher gradient is not completely solved. There are no 
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appropriate scientific tools for standing the mathematically concise system of equations. The 

one known and recognized method is the so-called “Green Transformation”, which using 

extended definition of divergence, can find the true interrelation between the bulk and the 

boundary equations. For instance, where a continuum contains the time derivative of the rate 

of deformation  d   and its  gradient  dgrad , it is simply to show, using two cycles of  the 

Green  transformation  that the balance of momentum takes the Skiba-Pearson form: 
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where the additional dependence is described by the Rayleygh-like dissipation function  

)grad,( dd    which fulfill, from the definition, the perpetuum mobile principles.  

Explaining the problem of second order derivative of velocity, recently, FRIED and 

GURTIN [72] assuming only the gradient of d : )grad( d  , have defined the hyper-viscous 

stress triade 
kjiijkG eeeG   : 
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with two additional internal viscous friction coefficients  21 , . Then they have obtained the 

following momentum balance in the bulk : 

 

(5.4)                                             0)divdiv()(  Gpbv                                                  

 

and not one but two boundary conditions coming from making the Green transformation two-

time [68]:  

(5.5)                                    
nGnm

nGnGnnGnpp b

)(

)(I)(div)div(

n

sn




                                    

 

These are nothing else as an extension of the classical Cauchy definition of traction  

force pnp n . The first traction force is working on a field of velocity [like the classical 

Umov flux of mechanical energy] and the second fraction vector  nm , new in the context of 

viscous fluid, will be working on the normal derivative of velocity n/v . Therefore, FRIED 

and GURTIN postulate the following slip and adherence condition [72]:  

 

(5.6)                      n)( pvv  wallA             (generalized slip condition)                                                       

 

(5.7)                   n
nn
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
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a      (generalized adherence condition)                    

 

Here  sl/  ;  aa l/1    are the external friction coefficient, and external adherence 

friction coefficient. sl  and  al  are the slip length and the adherence length. This model of 

boundary layer is fully consistent with its bulk model of the second order fluid, and cover the  

Deissler one eq.(5.1).   
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     6.  Poiseuille, Knudsen and Reynolds components of the filtration velocity 

  

A peculiar difficulty in the modeling of flow in porous media often arises often if we are 

forced to apply the so-called “non-Darcy equation”. Or we try to develop some extension of 

the Darcy equation like, for instance, the Brinkmann-Darcy-Forchheimer equation [73].  

Moreover, trying to develop a model from which can describe the Klinkenberg effect, e.i. 

different permeability of a porous media for different gases, one takes into account the 

velocity slip and temperature jump [74-76].   

 But also the state of the phenomenological level of modeling is far from clear due to 

the lack of the accumulation of the knowledge of several separate fields of application. In our 

opinion, there is no exchange of information and ideas between the various fields involved 

with flow in porous media, therefore the Darcy equation is always given ex cathedra. 

Treating a nano-pipe as equivalent to a single porous domain and looking for common 

effects of the bulk and surface motion, one can be considered following momentum flux 

integral in any cross section of a porous media oriented by tangential component of unit 

vector  tann :  

 

 (6.1)                    

C

C 0)()( tan

sec

tan ddA Vnorssss
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In the above v  and ss v  are the bulk and the surface momentum density vectors,   and 

s  are the gas density in the bulk and on the boundary. Next, T
peep  jiijp  and 

T

ss pp   are the bulk and the surface flux of momentum. Let us define the total momentum 

influx to be :  

 

 (6.2)                           

C

CdvdAv sss

tionbulk

tan

sec

tan vv M     ,                                                        

 

this consists of a contribution from the bulk velocity and from the slip velocity as well. 

Hence 
tionbulk

dAv

sec

tanv  is a contribution from the bulk velocity and  
C

Cdvsss tanv  is a 

contribution from the surface (slip) velocity. Using arguments similar to one similar of 

principles of homogenization, we assume an existence of a resultant viscosity, say  rv , which 

is parallel to the vector of total momentum:  

 

(6.3)                        rmvM    .                                                                                                  

 

And is located somewhere in the geometrical center of a velocity profile. In many cases, 

independent of the shape of the cross section the bulk profile of velocity is nearly flat and 

ending with value of tansv  - the magnitude of slip velocity. In the above, in accordance with 

traditional Reynolds notation, m  denotes resultant flux of mass. Now, remembering that the 

boundary force  ...]grad[)( s  smmrV c  vvfff  is a composition of friction forces 

and mobility forces, we can reorganize the integral (6.1), expressing explicitly the thermal 

mobility part  ssmc  grad  and  the slip friction part  ssIv :  
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 (6.4)              ....)(grad][
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Since the cross section of porous media is quite arbitrary that a known procedure of 

homogenization can be  applied, than eq.(6.4) leads to 3D resultant equation [74]: 
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(6.6)                        
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Here, single surface pressure  sp  does not appear, nor does the surface temperature s , 

since after homogenization their role takes the capillarity pressure  P   and the capillarity 

temperature T . Also, the two-dimensional surface gradient, due to homogenization, becomes 

the three-dimensional gradient )grad( . Finally the Poiseuille-Knudsen-Reynolds equations 

possess a form [74]:  

 

(6.8)                        
T

T

P

PP
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gradgrad
)( DDBv 
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     ,                                                 

 

where  
rv     is the resultant filtration velocity,    is a gas viscosity, B  is the permeability 

tensor,  KD   - the Knudsen accommodation diffusion tensor and  D  is the thermal 

transpiration coefficient tensor. The sign of  D  is indeed negative, which means that gas has 

tendency to flow toward the hotter side of a porous body.  

 

It is useful here to recall, that rarefied gas flow through a porous media in non-isothermal 

conditions is mathematically described by the so-called “Dusty-Gas-Model” (DGM) [77], 

which is appropriate approximation of kinetic theory of gases to the slip-flow regime. In 

contrast to the DGM model, we have shown that, the continuous model (6.8) is also obeying 

the slip-flow regime. The model (6.8) insists on a combination of an effective viscous 

Poiseuille bulk flow, a Knudsen surface slip driven flow and a Reynolds surface thermally 

driven flow. This phenomenological model is based on the previously averaged equations for 

the bulk flow resistance and the surface mobility forces.    

 

 7. Conclusion  

 

Despite the fact that the investigation of slip flow and thermal transpiration started 

long ago, many questions remain unresolved. This is connected with a special feature of 

thermal transpiration, which is very sensitive to the kind of solid material and the kind of 

rarified gas. Thermal mobility force   sgradmm cf ,  proposed by REYNOLDS and 

MAXWELL [on the ground of kinetic theory ] is, in general sensitive, both to the  properties of 

gas and solid surfaces and depends on two thermal momentum accommodation coefficients  

43 , ff  proposed by REYNOLDS [5]. However, thermal mobility force can also be developer 
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within the framework of continuum modeling with consistent closure to the mc  . Coefficient 

mc  should be based on complete experimental data. 

 

The rising interest in the Knudsen pump and the accommodation pump is connected with the 

problem of the temperature dependence of both the friction      and thermal mobility  nc  

coefficients. Quite new devices with increase impact of slip conditions and thermal mobility, 

mainly: wet combustion chamber using oxy-combustion and water cooling by thermal 

transpiration; a spray-ejector condenser or gas turbine blade. The research on combustion 

chamber with thermal transpiration can be described more accurately taking into account 

surface friction force and surface mobility force [78].  Naturally, in this connection, it is of 

interest to consider effective boundary conditions for a real irregular surface with nano-

patterns [79,80]. Then the friction force becomes non-parallel to a vector of slip velocity and 

the thermal mobility force is not parallel to a surface gradient of temperature. This kind of 

anisotropy needs deeper experimental set-up [81].   

 

The model of thermal mobility force, revalorized here and numerically proven, can be, in our 

opinion, also extended to the so-called, second order continuum model but only if we 

simultaneously redefine the stress tensor adding the hyper-stress (5.3) and supplement a 

boundary condition to the form of  eq.(5.5).  

 

At least, the result of joint action of the both surface Navier slip and Maxwell thermal 

mobility may be predicted by measuring of gas mass flow rate in porous materials.  If pores 

become larger then 2-5 time of the free length of rarified gas then  an additional bulk 

contribution of viscous flow (Poiseuille’s type) is visible and the mass flow rate is summary 

effect of two surface and one bulk contributions. Thus, as we have shown in §6, the resultant 

flow velocity of filtration is governed by Poiseuille-Knudsen-Reynolds equation (6.8) – it is 

an analogy to Maxwell’s equation for a long cylindrical pore. Equation (6.8) may help at least 

to decrease the number of experimental attempts to find the proper composition of 

experimental set up [74].   
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