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In this paper, based on the original argumentation of Reynolds and Maxwell,
with consideration of previous experiences of the authors in the nano- and micro-flows
area, a general form of boundary forces, that consist of contributions from the friction
and the mobility components: f∂V = fr + fm, has been extended to common effects
of the bulk and surface motion. Hence, adopting Reynolds’ reasoning to a porous
media as a whole, we reexamine the Poiseuille–Knudsen–Reynolds equation in terms
of the sum of three contributions: the bulk pressure-driven flow, and two mobility
surface forces, namely the Knudsen surface slip-driven flow and the Reynolds surface
thermally-driven flow. The main motivation of our work is to find the dimension-
less contribution of the Navier slip number and the Reynolds thermal transpiration
number in materials with high volumetric surface density.
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1. Introduction

The basic goal of both experimental and numerical micro-mecha-
nics is to identify a main (even fundamental) difference between the macro-scale
and the micro/nano-scale. Recently, Celata et al. [1], Colin [2], Karniadakis
et al. [3] have described in the literature this difference as scaling effects. Only
by careful study of the differences between macro-systems and micro/nano sys-
tems, can a basic feature of nanotechnology and its unusual possibilities and
high-performance be identified. However, effects that are not important in macro-
scale, become crucial phenomena when the characteristic dimensions of a system
decrease. When speaking about dimensions we usually mean the hydraulic diam-
eter of a canal which in micro-systems varies from 2 µm to 300 µm. But a more
universal, and also more practical parameter, is the volumetric surface density:
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“av =wall surface/volume”, which in micro-systems attains av = 5000 m2/m3 and
in nano-systems varies between 20 < av < 300 km2/m3 Karniadakis et al. [3].

In the literature, the primary and frequently stated physical postulate of
nanomechanics is that av is a leading factor of the scaling effects for porous
media, where bulk flow resistance, surface flow resistance and surface mobility
forces are combined. It means that when av → ∞ the surface properties of solid
and contacting fluid becomes dominant over well-known classical properties of
fluids in bulk; for instance, when av > 50 km2/m3 then viscosity of a fluid
can be omitted from consideration and only the surface effects give important
contributions to the flow resistance.

In the literature another scaling effect parameter could be found yet. It is
the slip length ls = µ/ν, related to surface viscosity, where µ is the fluid internal
viscosity. Frequently, it has been assumed that the scaling effect dominates when
the slip length becomes comparable with a radius of a micro-tube; ls ∼ d/2
Morini et al. [4]. Of course, it is obviously true but only in a particular situation
when the slip resistance dominates in a micro-flow.

In the present paper we propose to replace the parameter ls by the already
averaged equations for the bulk flow resistance and the surface mobility forces.
The uniqueness of ls comes from the fact that the Navier surface viscosity ν de-
scribes only a small part of the vis impressa traction boundary force f∂V . Gener-
ally, the surface force f∂V is composed of the friction and mobility components,
f∂V = fr + fm. The friction force can be considered as the Navier slip force νvs

which has only limited importance. In other words, adopting Reynolds’ reason-
ing to porous media as a whole, we reexamine the Poiseuille–Knudsen–Reynolds
equation in terms of the sum of three contributions: the bulk pressure-driven
flow, and two mobility surface forces, mainly: the Knudsen surface slip-driven
flow and the Reynolds surface thermally-driven flow.

There are two fundamental and universal integral characteristics related to
pressure derived flows of a fluid through any canal, independent of its size and
length. The first one describes the mass flow rate derived by a unit drop of pres-
sure; c = ṁ/∆p [kg/sPa]. The second one is the dimensionless flow resistance
measured by the so-called friction factor. It is connected with the frictional pres-
sure loss observed for a unit mass flow rate ṁ = 1 kg/s during a fluid flow. The
friction factor fSP is defined as the dimensionless wall stress τw observed during
flow of fluid ṁ = 1 kg/s and is denoted as fSP = τw/(ρu

2)ṁ=1. Now, the main
question, which is stated in the contemporary literature, is: does the friction
factor depend on the scale effect, or, mathematically speaking is fSP a function
of the slip length ls = µ/ν?

An answer to this question has been developed in Sections 2 and 3, where
concepts of flow resistance are divided between internal and external friction.
In Section 4 the Reynolds discovery [5, 6] of thermal transpiration has been
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considered. Unfortunately, he had his own explanation of thermal transpiration
and, contrary to Maxwell [7], his own line of reasoning. Reynolds asserts that
the primary reason for thermal transpiration in the bulk motion is not the second
gradient of temperature along the axis of a capillary, but the axial gradient of ac-
celeration. When it acts close to the wall surface it can prompt the enhancement
(increase) of the normal velocity slip. It is also connected with a higher value of
the slip length ls = µ/ν, but ν rather decreases due to the mobility effect.

The main motivation of our work is to find the dimensionless contribution of
the Navier slip number (Na) and Reynolds thermal transpiration number (Ret)
in materials with the high av volumetric surface density.

2. Concept of the flow resistance

The friction factor is undoubtedly one of the most important engineering
parameters, especially for the design of micro-devices of MEMS (Micro-Electro-
Mechanical-Systems) and NEMS (Nano-Electro-Mechanical-Systems). In order
to define it we need an experimentally given drop of pressure dp/dx =
(pin − pout)/L, where pin − pout is the pressure drop by flow through a distance
L. Therefore, it brings only some integral information about the fluid resistance.
Furthermore, a primary aim of experimental efforts to separate the effects of
skin (surface) resistance and internal flow resistance does not have a rational ba-
sis [4, 8–11]. On the other hand, comprehensive experimental data is necessary
for calibration and comparison with mathematical models. The objective of this
section is the development of state-of-the-art of gas flow with respect to coupled
effects of internal and external friction of fluid.

Let us recall that our continuum modeling of gas flow usually deals with the
so-called slip regime 0.001 < Kn < 0.1 [12]. This flow regime is correctly de-
scribed by the classical Maxwell [7] slip model. It is based on an assumption
that shear viscous stresses are described correctly by a constant viscosity and
the Navier dimensionless slip length is not a constant constitutive quantity, and
follows linearly from the Knudsen number, Na = Kn(2 − f)/f , whereas, the
momentum accommodation coefficient is constant: f = const. But if the charac-
teristic dimension of the canal is decreased significantly, then Kn increases its
value, removing the characteristic picture of gas flow into the transition regime.
However, it is not a state of gas rarefaction since the pressure is standard (at-
mospheric) and the gas is dense.

Such a case, for instance, was considered in an experiment by Maurer et al.

[13] with the inlet pressure pin approximating atmospheric conditions, namely:
0.26–5 bar for Helium; 0.14–3.5 for Nitrogen. The authors obtained high Knudsen
numbers (0.06 < Kn < 0.8 Helium; 0.002 < Kn < 0.59 Nitrogen) owing to the
application of a small micro canal (1.14 µm deep and 200 µm wide) covered
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by an atomically flat silicon wafer. This case precisely demonstrates the scaling
effect, which means that the bulk properties of the flow are less important and
we can keep the viscosity of fluid as constant. The extension of the Knudsen
number from the slip to the transition regime due to decrease of the diameter of
the micro canal should take into account an analogical extension of the Navier–
Stokes model. Therefore, this can be done by enhancement of the Maxwell slip
law into a more complex description which takes into account the non-linear
relation between velocity slip and the Knudsen number [14–17] the second-order
boundary conditions [18, 19].

However, when the average pressure of gas decreases and attains a value iden-
tified as a vacuum (1–10 torr), then, even for normal macro tubes, the Knudsen
numbers are high and indicative of a rarefaction state. But it is a case when the
scaling effect is not present and can be omitted from the mathematical mod-
eling. According to the kinetic theory of gases [20] the rarefaction state needs
some change in the modeling of the stress tensor. Usually it is obtained by chang-
ing expressions on the shear stress by taking a second-order Chapman–Cowling
approximation, without changing of the no-slip boundary conditions.

From the numerical modeling point of view, the most complex case can be
found in the MEMS and NEMS divides, where both the rarefaction and the
scaling effect are present simultaneously. This case is also challenging for experi-
mental mechanics [2, 21–23]. It appears that there is some traditional treatment
of both these effects in terms of the Knudsen number. Therefore, sometimes
we have a problem with exposing separate influences of the rarefaction and the
scaling effects. Thus, in the paper we describe rarefaction effects in terms of the
Knudsen number, and the scaling effects in terms of other numbers, for instance,
the Navier number.

2.1. Internal friction of fluid lamina

The subject of flow resistance, since the time of the appearance of Newton’s
Principia, was perhaps studied as a composition of two kinds of friction. The
first kind of friction was related to internal attrition of fluid laminas and there-
fore was regarded to be the internal friction of a fluid substance [24]. The laws
of internal friction, proposed by Newton [24], and today known as “Newtonian
fluid”, assume that the force of internal resistivity is proportional (linear) to the
velocity gradient normal to the direction of the motion of the fluid. The coeffi-
cient of proportionality, named by Stokes, “viscosity” since it was derived from
the Latin word “viscoum”, and denotes the property of lamina gluing [25, 26].
Yet another associated word “viscid ” has been used for this mode of internal
friction. Thus, todays the word “inviscid ” is often used to imply that a fluid is
not viscous.
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But the first, more primary mode of internal friction between laminas is
connected with the phenomenon of stickiness described as an internal power of
the adhering of two neighboring lamina of a fluid and possessing properties of
cohesion, or in other words, as a tangential force necessary to separate contiguous
lamina of that fluid. This phenomenon weakly depends on flow velocity and a flow
velocity gradient was proposed by Count Rumford in 1796 [27], and was described
mathematically as pressure frictional relaxation, proposed by Poisson [28] and
by Natanson [29]. Different concepts of fluid resistance, in laminar flow, causes
different hypothetical velocity profiles as presented in Fig. 1. The phenomenon
of viscosity predominates when the motion is laminar (not turbulent). However,
a third mode of motion, called the non-Newtonian form of internal friction,
is connected with the irregular motions of molecules, and is called sinusoidal
or tumultuous motion. This mode of internal friction mainly depends on the
square of the velocity gradient. Finally, the internal friction of fluids, expressed
mathematically by the tensor of flux of frictional resistance, should consider three
different contributions:

(2.1) r = a0(̟)I + 2a1d + a2d
2.

The first part is pressure-dependent friction, the second is the Newtonian
friction component proportional to the shear rate d and the final part is flow-
resistance dependent on the energy of shear rate. This nonlinear expression can-
not be further considered within the framework of the Navier–Stokes equation,
therefore Prandtl in 1904 [30] proposed the following approximated nonlinear
formula with respect to the invariance of d, but tensorially linear with respect
to d:

(2.2) r =

(

a0(̟)

IIId
+ 2a1(Id, IId, IIId) + a2(Id, IId)IIId

)

d.

Here r = τijei ⊗ ej = rT , i, j = x, y, z is a symmetric tensor of frictional
resistance, a0, a1, a2 are, respectively, constitutive coefficients of stickiness, vis-
cosity and tumultuousness, I = δijei ⊗ ej is Gibbs’ identity tensor (Eq. (2.1)),
d = 1

2(gradv+gradTv) = dijei ⊗ej is a symmetric part of the velocity gradient
called the Euler rate of deformation – the component dxr = γ̇ of this tensor is
traditionally called the shear rate when the circumferentially symmetrical flow
in a pipe or tube is considered. The first, second and third invariants of d are
denoted as Id, IId, IIId, respectively.

Different hypothetical velocity profiles accounting for different concepts of
fluid resistance undergoing laminar flow are collected in Fig. 1.

Similarly, flows of fluids in tubes are mainly represented only by one compo-
nent of the resistance tensor: τxr called the shear stress. Especially important is
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Fig. 1. Different hypothetical velocity profiles accounting for different concepts of resistance,
where: u – main component of the velocity, us – main component of the slip velocity, umax –

the maximal value of u at the axis of the pipe.

the value of τxr on the solid boundary of the tube; then, according to Young’s
assumption, it is called the wall stress and is denoted as τw = τxr(r = R). For
one dimensional flow within a pipe, the constitutive formula (2.2) on the pipe
wall reduces to:

(2.3) τw =

(

a0

|dxr|
+ 2a1 + a2|dxr|

)

dxr; dxr =
1

2
du/dr|r=R,

where the main component of the velocity along the pipe axis is v = u(r, t)ex.
A special form of wall stress, which takes into account a turbulent viscosity

coefficient, has been proposed by Prandtl [30]:

(2.4) τw = (2µ+ ρl2Pr|dxr|)dxr.

In this model the wall stress depends explicitly on the distance of the layer
from the surface, designated as y, since an internal scaling parameter proposed
by Prandtl, today called the length of mixing, possesses the following form:
lPr = 0.4y [31].

A more concise proposal, which does not possess any geometrical quantities
in the constitutive relations, has been proposed by von Kàrmàn:

(2.5) lKa = 0.4
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where the second-order derivatives on the boundary appear. This approach di-
rectly leads to the rational modeling of turbulence by co-called high-order gra-
dient models. Yet a more correct formula for the length of turbulent mixing has
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been proposed by Novoshilov and implemented by Karcz and Badur [32]:

(2.6) lNo = 0.4
µ

ρ
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,

which can be simply extended into the 3D case [32].
An explicit second-order model of the wall stress can be obtained by Chap-

man–Enskog expansions and Burnett type approximations in the kinetic theory
of gases [20]. Then, according to Deissler’s [18] approximation of a wall action,
the second-order expression for the wall stress is [3, 33]:

(2.7) τw = A1Kn
∂u

∂y
+A2

Kn2

2

∂2u

∂y2
.

Unfortunately, Eq. (2.7) can be considered only in the neighborhood of a wall.
Therefore for the whole domain of fluid, a new equivalent definition of r which
takes into account the second-order model of stresses should be incorporated.

A well-known Maxwell [7] proposal for the second-order definition of r has
been developed, as the high-order thermal gradient resistance tensor, in the form:

(2.8) r = −2µd +
2

3
µIdI + β1

1

2
(gradg + gradTg) + β2(divg) I,

where g = grad θ is the gradient of temperature and β1, β2 are the constitutive
constants which can be called the internal transpiration coefficients. Additional
flow resistance can also be governed by:

(2.9) r = −2µd +
2

3
µIdI + 2β3d(2),

where d(2) = 1
2(grada + gradTa) 6= ḋ is the acceleration of deformation dyad

(deformation tensor) proposed by Reynolds [34] or by the “double-order resis-
tively” governed by the internal scale length lTo [32]:

(2.10) r = −2µ(d + l2Tolapd) +
2

3
µ(1 + l2Tolap) IdI,

where the Laplacian operator is: lap( · ) = div grad( · ).
An interesting proposition for rebuilding the definition of the resistance tensor

can be found in the paper by Dongari et al. [35]. They introduced a model
process dedicated to modeling of the enhanced flow of rarefied gases as well
as the Knudsen paradox. By defining an additional “diffusion velocity” u =
−D grad[ln(ρ

√
θ)] the authors obtained the extended resistance tensor:

(2.11) r = −2µd +
2

3
µIdI + β

1

2
(u ⊗ v + v ⊗ u) + γ(v · u) I,
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where the coefficients are: β = 2ρ, γ = −2/3ρ. In comparison with Maxwell’s
model (2.8), which is a second-order thermal transpiration one, the above model
can be considered as a first- order internal thermal transpiration. One has to
notice that the model, with diffusion velocity (2.11), leads to excellent agreement
with the Maurer et al. [13] experiments without involving any slip model.

Yet another higher-order gradient model of internal resistance, based on a no-
tion of the “internal scale parameter” k playing a similar role as the mixing length
in (2.4), can be [32]:

r = α

{

ρ

2
kI +

1

2
α1k[grad(ρj + ρv) + gradT (ρj + ρv)]

}

(2.12)

+
1

2
ρ[(j + v) ⊗ grad k + grad k ⊗ (j + v)],

where α, α1 are phenomenological constants and turbulent mass flux is deter-
mined by the gradient of (k)1/2; j = α1[k

1/2grad ρ+ ρgrad(k1/2)]. An evolution
equation for the parameter k [it has the same physical dimension as the turbulent
kinetic energy] should be postulated separately using the Reynolds “discriminant
equation”. Additional complementary rational models of turbulent resistance are
discussed by Karcz and Badur [36].

2.2. Viscosity of rarefied gases

In the literature there is known a most simple method of modeling of flow-
enhanced resistance by making the viscosity a variable quantity [33, 37, 38].
This approach assumes a strong decrease (as many as 20 times) of the viscosity
coefficient near the wall: µe = µ0χ

(1−δ)/(Cδ) where δ, C are phenomenological
constants and χ = y/λ – dimensionless distance from the wall. The slip bound-
ary conditions are simplified for the case owing to the radical friction reduction
near the wall in such models. The integration of complex numerical formulas in
very thin boundary layers, which was presented in works [17, 34], is not easy,
hence the radical friction reduction near the wall is a huge simplification or even
an omission of sophisticated mathematical structure. But the variable viscosity
coefficient is an alternative resolution to introduce the slip boundary conditions.
Beskok and Karniadakis proposed a Bosanquet-type expression for the vis-
cosity [15]:

(2.13) µe = µ0
1

1 + αKn
, α = 2.2.

The purpose is to extend the slip model with dimensionless slip length [34]:

(2.14) Na =
2 − f

f

Kn

1 − bKn
, b = −1,

from the slip-flow regime to the transition, to the free molecular regime as well.
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2.3. Fluid surface friction

The second important mode of flow resistance was discovered by D’Alem-
bert in 1752 [39]. It is the external friction of fluid along the solid boundary
of a surrounding canal. In the opinion of D’Alembert this mode of resistance is
more important than the Newtonian one coming from internal friction of fluid
lamina.

The D’Alembert hypothesis concerning the laws of external friction was
mathematically expressed by Coulomb in 1801 [40] as a sum of three vectors:

(2.15) fr =

(

ν0

|vs|
+ ν1 + ν2|vs|

)

vs.

It means that a surface (skin) friction force fr appearing between a contacting
fluid and a solid material is some additive function of powers of the slip [relative]
velocity vs = vfluid − vwall. These are the adherence, slip and kinetic parts.
Precisely, due to assumed isotropy of friction, the direction of the vector of
friction force and the adherence part vector part are parallel to themselves and
identical with the direction of the slip velocity. In the case of patterned roughness
of the wall, in general, the isotropic coefficients ν0, ν1, ν2 become the symmetric
friction tensors which possess dimensions of matrix 2 × 2 [41].

From the historical point of view, the skin (surface) friction force (2.3) is
connected with the problem of resistance in elastic fluids (see: the first velocity
profile in Fig. 1). According to Euler, by elastic fluid one understood such fluids
as air and other gases where internal resistance had to be omitted; therefore, in
the elastic fluid any resistance can appear only between solid and fluid materi-
als. Analyzing air resistance, researchers such as Galileo, Marriotte, Picard and
Cassini [42] had assumed that resistance is proportional to the square of velocity,
in that time called the vis viva. But, finally, Huygens, circa 1670, had deduced
the law that the air resistance is proportional to the square of fluid velocity. It
appears that third part in (2.15), historically, was first taken into account by
researchers. In his celebrated monograph d’Alembert [39] discussed, but sep-
arately, three contributions to the skin friction. It was de Saint–Venant in 1887
[43], who interpreted a kinetic part of a skin friction as a force which separates
the “skin eddies” from the fluid-solid contacting layer.

For the first time, the adherence component was considered analytically by
Duhem in 1903 [44] who discussed required values of the coefficient ν0. The
second coefficient of linear skin friction ν1 = ν had been used by many researchers
before Navier, but it was indeed due to Navier’s unique efforts that the two
mechanisms of resistance – the internal one (governed by viscosity µ) and the
external one (governed by surface viscosity ν) – had appeared in one concise
mathematical model (see: the middle profile in Fig. 1). Let us note that in the
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time of Navier, it was difficult to measure an internal fluid viscosity µ. Navier
in 1827 [45], in the end, simplified his analytical solution, removing µ and giving
a formula for a mass flow rate in a pipe only in terms of external viscosity ν.
His first constitutive expression for the coefficient ν between water and glass had
been based on Gérad’s experiments and originally reads: “ν = 0.3333ρ” [45].

For one-dimensional pipe flow the friction force acts only along the pipe axis:
i.e. fr = frex, and this main component is:

(2.16) fr =

(

ν0

|us|
+ ν1 + ν2|us|

)

us,

where us is the main component of vs = vfluid − vwall = usex. In the literature
only one linear ν1 ≡ ν (or slip) coefficient has been employed and is usually
numerically and experimentally determined. In practice, the ratio µ/ν = ls,
called the slip length has been evaluated and measured in a variety of experiments
(see [21]). It should be highlighted that Helmholtz and Piotrowski, in 1860,
defined a ratio µ/ν = ls as the slip length, and its dimensionless value is called
the Navier number and should be defined by the following formula:

(2.17) Na =
ls
d
,

where d is a characteristic dimension of the channel [16, 34, 46, 47]. The impor-
tance of the dimensionless slip length (the Navier number) Na is considered in
the next section.

3. Dimensionless friction numbers

Traditionally, the most important of dimensionless numbers in fluid dynamics
are considered for the momentum governing equations. The balance of momen-
tum undergoes of a sort of purely mathematical analysis in a so-called dimen-
sionless form. A fundamental and widely-known dimensionless number related
to viscosity and insertion force is the Reynolds number:

(3.1) Re =
ṁdn

Aµ

which also can be understood as a dimensionless mass flow rate ṁ, where dn is
the hydraulic diameter and A is the cross section of the channel. Since for many
flows, viscosity µ weakly depends on the temperature and pressure, and hence,
ṁin = ṁout, the Reynolds number can be interpreted as a total (integral) flow
parameter. One should remember that in the above definition the mass flow rate
is defined via the normal component of velocity un = v · n, which usually is
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less than the velocity length c = |v| > un. For open canals, where cannot be
determined, Re usually means dimensionless inflow velocity u∞ [16, 34, 47].

To answer the question stated in the introduction the Stanton and Pannell
contribution to resistant force should now be presented. Stanton and Pan-
nell [48], making measurements of water flow within a capillary pipe, proposed
a change of the paradigm in the approach to the description of flow character-
istics. They had the courage to describe the results of measurements in a quite
new way – they broke away from the celebrated pressure-discharge characteristics
“∆p− ṁ”, deciding to present their own results as the diagram “Dimensionless
Wall Stress – Dimensionless Mass Flow Rate”. The dimensionless wall stress,
referred to as the Stanton–Pannell friction factor, was defined as the wall stress
divided by the vis viva of the flow: fSP = τw/(ρu

2). The dimensionless mass
flow rate was defined as the Reynolds number following Eq. (3.1). In the con-
sidered cases the “fSP − Re” characteristics of the analytical solutions of the
one-dimensional Navier–Stokes equation can be identified by the following equa-
tion [16]:

(3.2) fSP =
τw
ρu2

=











4µ

dρu
=

8

Re
no-slip solution,

4µ

dρu(1 + 4ls/d)
=

8

Re(1 + 4Na)
slip solution.

In the contemporary literature, instead of “vis viva”, we use “kinetic energy”
which is two-times less in quantity, and such obtained dimensionless wall stress
is called the Fanning friction factor : fF = 2fSP. Frequently, according to Darcy,
we apply a four times greater coefficient, called the Darcy friction factor fD =
4fF = 8fSP [4, 16]; it leads to the well-known expression: fD = 64/Re.

In the laminar regime, the classical no-slip Hagen–Poiseuille solution fD =
64/Re and the slip Helmholtz–Piotrowski solution fD = 64/Re(1 + 4Na) are
plotted. In the turbulent regime for smooth pipes, the no-slip Blasius solution
fD = 0.316Re−0.25 is plotted as continuous lines. Some experimental results [22]
for flow of gas within a peek-coated, fused-silica microchannel is also shown.
The friction factor is reduced due to slip at the walls as fSP−slip/fSP−no−slip =
1/(1 + 4Na) [49]. One crucial element of fD −Re universality is the appearance
of a single critical point exactly at the same level of viscosity and inertia forces
proportion. It should be mentioned that this point appears on the “∆p − ṁ”
diagram, as well as in the classical literature by Du Buat, Prony, Darcy, Eytelwein
where also exists some qualitative information about “transition” from a quiet
form of flow into a loud one. Finally, Reynolds, in the case of a pipe, found a
critical number for the laminar-turbulence transmission as: Recr = 2300.

Furthermore, for uniquely expressing a critical point on a plane of fD − Re
two coordinates are needed. The second critical coordinate has been discovered
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by Stanton and Pannell [48] as follows:

(3.3)

Re =
ρucrd

µ
is constant ∼ 2300,

StPa =
ρd3

µ2

dp

dx|cr
is constant ∼ 0.004.

The Stanton–Pannell number StPa depends only on a drop of pressure and can
give useful information such as the resistance of a system at the design level
or the calibration of new channels on the basis of experimental measurements.
This number is connected with another dimensionless factor called the Poiseuille
number Po = fD ·Re of the following form:

(3.4) StPa =
1

2
PoRe =

1

2
fD(Re)2.

From Eq. (3.2) it follows that the critical Darcy friction factor always is: fD =
0.32.

Enhancement of the Poiseuille number due to slip is Poslip/Pono−slip =
1/(1 + 4Na). This result is consistent with [22] where, for square channels, they
have obtained: fD · Re = 56.9/(1 + 7.88Kn). It should be highlighted that due
to the fact that the phenomenon of the laminas-to-turbulent transition does not
occur simultaneously in the entire channel, in practice, we are speaking of the
“transition region” [1, 2], which has been evidenced in Fig. 2.

Fig. 2. Dimensionless characteristic of the Stanton–Pannell number StPa and Reynolds
number Re including scale effect by the Navier number Na [16].

In Fig. 2 the wall stress τw [treated as a surface friction force per unit area]
is replaced by means of an analytical solution to the measurable fall of pressure
dp/dx. Thus, practically, the Darcy friction factor fD has the same information
that is described by the Stanton–Pannell number: StPa. Dependence of the
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Stanton–Pannell number StPa on the Navier number Na and Reynolds number
Re suggests the answer that friction is also dependent on the scale effect. Figure 2
is obtained on the basis both the Morini et al. and Celata et al. measurements
[1, 4, 22] and analytical consideration [16].

Stanton and Pannell were the first experimentalists who believed in a theoret-
ical anticipation of different profiles of fluid velocity within a pipe cross section.
Therefore they tried to measure two kinds of velocities – the first, the classical da
Vinci mass velocity, measured by weight of the total discharge of a fluid passing
through a pipe section within the given time frame. The second one is the maxi-
mum velocity at the axis of the pipe, estimated by measuring the pressure differ-
ence between that in a small Pitot tube located at the axis of the pipe facing the
current and that in a small hole in the wall of the pipe. As we know from basic ex-
amination, this pressure difference is 1

2ρu
2
max and from this relation the maximum

velocity [speed] can be calculated. Everyone involved was profoundly astonished
by a plot of the velocity ratio ϕSP = u/umax that had been made for different
falls of pressure, expressed as a logarithm of the dimensionless [Reynolds] num-
ber. Prior studies available in the literature have paid no attention to the issue
of the Stanton–Pannell critical number during laminar to turbulent transition
[1]. With respect to nanochannels, the notion of the Reynolds number and the
Stanton–Pannell number is meaningless and should be replaced by the Navier
number. Additionally, the role of the Navier number leads to expressing flow
enhancement in the laminar-turbulent transition regime [16, 50, 51].

4. Maxwell kinetic theory within a boundary layer

As discussed here, the Maxwell’s paper, entitled “On stresses in rarified

gases arising from inequalities of temperature” [7], possesses two distinct parts,
based on two strongly independent motivations. The first part of the paper, called
here “March 1878”, is motivated by an attempt to explain Crookes’ discovery
of the rotation of a “windmill” in a partially evacuated radiometer [52]. Maxwell
put forth a basic hypothesis that, in Crookes’ experiments, since the pressure is
very low, the new stresses are growing due to a second gradient of temperature
in the rarefied gas. These stresses are capable of producing rapid motion in
a radiometer windmill. In other words, in gaseous medium where there is only
a linear distribution of temperature, there are no additional thermal stresses.
A problem of boundary conditions in this first part of a paper [from March
1878] was not considered.

But, in that time, Maxwell was conscious that this kind of thermal stress,
calculated for a hot solid sphere of uniform temperature immersed in a colder
gas, cannot itself give rise to any force tending to move the sphere in one di-
rection rather than in another. In the framework of his model of stresses, the
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sphere placed within the finite portion of gas is already in equilibrium. How
then to account for the fact observed by Tyndall, that an additional force
acts between solid bodies immersed in rarefied gases [53]. This kind of motion,
nowadays called thermophoresis, is connected with small solid particles, typically
spherical, suspended in a fluid within which an externally imposed linear tem-
perature difference [constant temperature gradient] induces a force that moves
the sphere from the hotter to the colder place, that is, the particle moves against
the temperature gradient [54].

In order to explain this, even in March 1878, Maxwell turned his attention
not to his own model of thermal stresses but to slip phenomena discovered in
liquids by Helmholtz and Piotrowski [55] and Kundt and Warburg [56]
in rarefied gases. The mechanical slip phenomenon is related to the finite value
of the Navier external viscosity and appears as a sliding of a fluid in contact with
the surface of a solid. Maxwell precisely underlined a difficulty of mathematical
treatment, since the gas close to the solid surface is probably in a quite different
“state of condensation” – which means that a quite different model is needed for
describing the phenomena of sliding. One example of this extraordinary situation,
discovered by Kundt and Warburg [56], is the fact that the velocity of sliding
of the gas over the surface, induced by given tangential viscous stresses, varies
inversely as the pressure.

In the first part (March, 1878) of his celebrated paper Maxwell [7], did
not attempt to take into account the effect of this mechanical sliding motion,
because the main goal of his paper was devoted to the introduction of a thermal
stress model in the bulk – consideration of a kinetic relation close to the solid
surface that would be “completely destroying the simplicity of our first solution
to the problem”.

4.1. Maxwell’s model of the thermal transpiration in the bulk

Let us now very briefly recapitulate the Maxwell results concerning an ad-
ditional stress related to “inequalities of temperature”. These stresses can only
appear when the field of temperature is nonlinear. Maxwell has proposed the
following constitutive formula [7]:

(4.1) p = pI − 2µd +
2

3
µIdI + β1

1

2
(gradg + gradTg) + β2(divg) I,

where p = pijei ⊗ ej = pT is bulk flux of momentum, the temperature gradient
is denoted as g = grad θ and β1, β2 are the constitutive constants which can be
called the bulk thermal transpiration coefficients (see also Eq. (2.8)).

After substitution of the above equation for the balance of momentum and
after using a few tensorial identities: grad g = gradT g = θij , ei ⊗ ej , divd =
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1
2{lapv+grad Id}, we obtain an equation of fluid motion that takes into account
the above defined unconventional bulk thermal transpiration contribution to the
momentum transport:

(4.2) ρv̇ + grad p− µlapv + 1
3 grad Id + β1 lapg + β2 grad(div g) = ρb.

If Maxwell’s constitutive constants β1 and β2 are vanishing to zero, the model of
the fluid under consideration becomes identical to the Stokes model of viscous
compressible fluid [47]. Further taking the following identities: div g = lap θ and
lapg = lap(grad θ) = grad(lapθ) we write (4.2) to be:

(4.3) ρv̇ + grad p− µlapv + 1
3 grad Id + (β1 + β2) grad(lapg) = ρb.

Utilizing the non-equilibrium kinetic treatment, Maxwell was able to estimate
the value of the thermal transpirations constants to be [7]:

(4.4) β1 = 3
µ2

ρθ
, β2 =

3

2

µ2

ρθ
.

These are really very small quantities that depend on viscosity µ, density of the
gas ρ, and its’ temperature θ. Let us note that making more concise calcula-
tions with the Maxwell fundamental equation, which considers also its nonlin-
ear components, one can obtain the expression for the stress tensor in thermal
transpiration phenomena which depends additionally on a linear distribution of
temperature [57]:

(4.5) p = pI − 2µd +
2

3
µIdI + β1

1

2
(gradg + gradTg) + β2(divg)I + β3g ⊗ g.

But it should be noted from the very beginning that a boundary condition,
where the coefficient β3 and the first gradient of temperature g appears, is funda-
mentally quite different from Maxwell’s original example, since g appears within
the mobility force fm which physically suggests another phenomena. It is also a
historical truth that the presence of g in the boundary layer was first postulated
by Reynolds [5] and later proven by Maxwell [7].

4.2. Maxwell’s model of thermal transpiration within a slip layer

Let us now consider the second part of Maxwell’s paper, known as “Appendix
May 1879” [few months before Maxwell death]. His direct reason for writing
this appendix was the important Reynolds’ discovery of thermal transpiration.
Maxwell, having been a reviewer of Reynolds seminal paper [5], had an oc-
casion to study all Reynolds’ eight laws of thermal transpiration, though early
as a manuscript, before its’ formal publication. The thing of great novelty was
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Reynolds’ proposal for the modeling of thermal transpiration, i.e. the motion
of gas from the colder to hotter ends, through a capillary thin porous plate of
which the sides undergo different temperatures. Reynolds was able to predict
the transport of momentum as one-dimensional steady-state momentum drift
between the hot and cold reservoirs, situated at opposite ends of the porous
plate, with the resulting constant local temperature gradient at each point of
the fluid being in an isobaric state.

As it happens that these conditions are quite in opposition to the Maxwell
bulk model of stresses Eq. (4.1) – here there is only a linear distribution of tem-
perature - the only approach is to turn to boundary slip phenomena, where a
boundary force must be postulated that depends on a thermal gradient. This con-
cept, proposed early in Reynolds’ manuscript [5], is a subject of Maxwell’s
celebrated appendix [7].

Maxwell assumes, having Reynolds’ solution in hand, that the kinetic the-
ory of gases close to a solid surface should be reformulated and the governing
equations should take on the conditions which must be satisfied at the surface
of solid body. Unfortunately, his solid body surface is absolutely rigid and in a
stress-free state; its molecules are absolutely fixed which means that the surface
temperature is nearly absolute zero.

In turn, using the expression for the fluid stress tensor from the Stokes bound-
ary condition:

(4.6) divs(γIs) −̟n + f∂V + pn = 0,

where the Young–Laplace surface tension is ps = γIs, the general form of bound-
ary forces, that consist of contributions from the friction and the mobility com-
ponents f∂V = fr + fm, the surface Gibbs identity is defined to be: Is = I−n⊗n

and n is the unit normal vector on the boundary surface and ̟ is the Stokes
normal surface pressure. It is assumed that at the boundary of the layer the
usual spherical pressure tensor changes into an ellipsoidal pressure tensor, and
it follows that we would obtain a boundary relation of this same sort. Surface
divergence divs is defined as a right contraction of the surface gradient [25]:
grads(·) = grad(·)Is.

The difference of the Maxwell approach in the contact of two gasses, for
instance hydrogen and CO2, with the same glass surface is only in the number
of absorbed and reflected gas molecules. Maxwell prefers to treat the surface as
something intermediate between a perfectly reflecting and a perfectly absorbing
surface. Therefore, an experimentally verified portion f describes the absorption
of all the incident molecules, and the portion 1−f describes the perfect reflection
all molecules incident upon it.

Finally, Maxwell obtains the following boundary conditions. Let us suppose
that the surface is a plane y, z and that the gas flowing on that side of it for
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which x is positive. Let us be a main surface component of velocity in the main
y direction, then the slip velocity formula is given by the following expression:

(4.7) us −G

(

du

dx
− 3

2

µ

ρθ

d2θ

dxdy

)

− 3

4

µ

ρθ

dθ

dy
= 0,

where G is the Helmholtz–Piotrowski slip length, µ internal viscosity coefficient,
ρ – gas density, θ – absolute temperature. To bring to fruition the process of
reconstruction of the Maxwell slip boundary condition (4.7), let this boundary
condition be treated as a Stokes force condition (4.6). Thus, the elements of (4.7)
have the representation:

• the fluid wall stress:

(4.8) pn =

{

pI − 2µd +
2

3
µ IdI + β1

1

2
(gradg + gradTg) + β2(divg) I

}

n,

•• the surface friction force:

(4.9) fr = ν(v − vwall),

••• the surface mobility force:

(4.10) fm = −cmθgradsθ.

The thermo-mobility coefficient cmθ should be stated, based on Maxwell’s
formula (4.7), as a coefficient which is independent of the property of the solid
surface:

(4.11) cmθ =
3

4

µν

ρθ
.

Next, using definition ls ≡ G = µ/ν, after dividing the balance (4.6) by ν we
obtain a generalization of the Maxwell slip boundary layer (4.7) as:

(4.12) v − vwall −
cmθ

ν
gradsθ +

p−̟

ν
n − 2lsdn +

2

3
lsIdn

+
β1

ν

1

2
(gradg + gradTg)n +

β2

ν
(divg)n = 0.

In analogy, the ratios lsβ1 = β1/ν, lsβ2 = β2/ν can be called the thermal
transpiration slip coefficients. From the above, we conclude that ls = µ/ν cannot
be treated as only one characteristics of the Navier–Stokes layer, but undoubtedly
it is a main characteristic of the external viscosity.

Finally, if one introduces, following Maxwell, a directional derivative “d/ds”,
directed along some main flow direction “t” with the cosines given by l, m, n,
then the condition (4.7) can be expressed in the original form [7]:

(4.13) v − ls
d

ds
[(1 − t2)v − (t × v)(t ⊗ t)] + lsβ2t

d

ds

(

dθ

ds

)

− cmθ

ν
gradsθ = 0.
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This equation is called the “Maxwell slip boundary layer equation”. Let us
note that in each component of this equation, the gradient of temperature plays
a very special role. It is a completely external surface effect which is not con-
nected with the form of stress tensor, for instance with Eq. (4.5). This means that
the motion of gas close to a solid surface, in general, is governed by two kinds
of forces. The first is a mechanical friction force, connected with the external
viscosity, and the second one is a temperature gradient which urges gas particles
closer to the surface, from colder to hotter parts of the surface. Therefore the
coefficient of thermal mobility cmθ [see: Eq. (4.11)] is independent of mechani-
cal layer properties and should be experimentally verified. There are numerous
modern references in the literature describing the proper experiments. The im-
pressive electrokinetic properties predicted for carbon nano-tube channels have
not yet been measured by careful experiment [8, 58, 59].

In a particular case, when a rigid cold particle is immersed into a gas at
rest v ≡ 0, putting the linearity of temperature distribution (gradg = 0), from
Eq. (4.12) we obtain the thermal velocity of a particle:

(4.14) U = vwall = −cmθ

ν
grads θ.

The velocity U is nowadays called the thermophoretic velocity [60]. It char-
acterizes the motion of nano-particles that follow from the surface gradient of
temperature.

4.3. Maxwell’s closure for the Navier number

It is important that owing to application of the Kinetic Theory, Maxwell was
able to find an explicit formula for the length of slipping [7]:

(4.15) ls =
µ

ν
=

1

2
µ(2π)1/2(pρ)−1/2

(

2

f
− 1

)

=
2

3

(

2

f
− 1

)

l,

where l means the Meyer relation of the mean-free path of a gas molecule and f
being the fraction absorbed. When f = 1/2 or the surface acts as if it were half
perfectly reflecting and half perfectly absorbent then we get ls = 2l. If it were
wholly absorbent, ls = 2/3l. In practice the slip length depends on the kind of
surface and gas – for instance from Kundt and Warburg [56] experimental
data it follows that for air on a glass surface at 17◦C: ls = 8/p and for hydrogen
on glass: ls = 15/p, where the pressure is given in dynes per square centimeter.

In contemporary literature the coefficient of partial absorption f is called
“The Tangential Momentum Accommodation Coefficient” (TMAC). This coef-
ficient is not dependent on heat flow, and accounts for the average tangential
to a surface momentum exchange between the fluid molecules and the solid
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molecules. Its value should be evaluated experimentally, but it is known that
it varies from zero (for secular reflection) up to unity (for complete or diffuse
accommodation) [8, 60].

Unfortunately, the second coefficient of the Maxwell model, i.e. the coeffi-
cient of thermal mobility cmθ, essential for thermal transpiration, was omitted
from any literature discussion. Indeed, it is defined by Eq. (4.11), since it is
a combination of the bulk and of the surface properties, exactly the Navier ex-
ternal viscosity ν. Notice that it is a quite opposite situation within the Reynolds
boundary layer model, where Reynolds gives a much more correct definition
of the thermal mobility coefficient and a less assumptive definition of the slip
length [5, 6, 61].

4.4. Implementation of a model of a boundary layer with thermal mobility

The consistency of field equations of fluid in the bulk and within the layer
boundary began with Reynolds work [6], and this consistency has been ex-
panded by many types of research [62–70]. Despite the fact that investigation
into thermal transpiration began long ago (see: [5–7, 62, 66, 67]) many questions
continue to be unanswered. This is connected with a special feature of thermal
transpiration, that is very sensitive to the kind of solid material and the kind of
rarefied gas. The thermal mobility force expressed by Eq. (4.10) [7], as well as
proposals by Reynolds [6], is in general sensitive to the properties of both gas
and solid surfaces and depends on two thermal momentum accommodation coef-
ficients f3, f4. However, having a complete experimental dataset, for instance the
works of different authors Rojas-Cárdenas et al. [68] Pitakarnnop et al. [23],
enables the development of a consistent closure to the cmθ coefficient within the
framework of continuum modelling.

The new benchmark experiment [68], which has applied an original method
for thermal transpiration, induced mass flow rate measurements, conducted via
measuring in situ the pressure evolution in real time at both ends of the tube
using two high-speed response pressure gauges. A long, circular cross-section,
glass (borosilicate) microtube (d = 490 µm; L = 3.053 cm) is connected between
two reservoirs: cold (no 1, environmental temperature) and hot (no 2, θ2 = 80◦C,
heated by an internal heater) (Fig. 3) with the volume of the two reservoirs
VH/VC = 0.81 and for numerical simulations V1 = VC = 14.85 cm3 was selected.
Before experiment begins, the pressure inside the both reservoirs is regulated by
means of a vacuum system and stays between 13.3 and 1330 Pa for helium. After
the opening of the isolation valve, the flow induced by thermal transpiration is
simple – the pressures in both reservoirs are equal and flow from cold to hot areas
and is derived only by the wall mobility force (4.10), which depends on the cmθ

value between glass and helium and the wall temperature gradient. The volume
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of the reservoirs under consideration are finite. There is presented in Fig. 3 that
due to thermal transpiration gas molecules migrate from cold to hot reservoirs.
As the results of this migration pressure in the cold areas decreases and at the
hot areas increases.

Fig. 3. Scheme of helium flow cold (1) to hot (2) reservoir [68], where initial condition:
environmental temperature (cold, no 1) and θ2 = 80◦C (hot, no 2) and pressure

p1 = p2 = p0=196.25 Pa for t0 = tin.

Considering the previous literature according to [16, 17, 34, 47, 50], and keep-
ing in mind the value of the thermal accommodation coefficient proposed in the
literature [61, 69], there has been made a calibration of the cmθ value. Drawing
from the Rojas-Cárdenas et al. data [68] and Ewart et al.’s considerations
[70], this coefficient has been found to have the following form:

(4.16) cmθ =
3

4

µ2

ρθls
.

Here the main unknown is the Navier slip viscosity ν that can also be defined by
slip length (Badur et al., 2015). It was assumed that the numerical value of cmθ

has been calculated using the definition of the Helmholtz–Piotrowski slip length:
ls ≡ G = µ/ν, and helium-glass slip length ls = 0.00016 cm. In Eq. (4.16) the
temperature along the micro-pipe was taken according to linear distribution.

For the unsteady state flow analysis the Computational Fluid Dynamics
(CFD) solver was employed. This finite volume based code permits one to solve
three-dimensional fluid and heat flow problems involving turbulent structures
and chemical reactions. However, it also allows for the addition of user-defined
subroutines programmed in C++ for problems that fall outside the capability of
the standard version of the code. For the implemented thermal transpiration and
slip velocity condition at the wall, the numerical results agree very well with the
experimental data for the pressure plots in Fig. 4. Other results of non-stationary
thermal transpiration modelling of the benchmark experiment [68] with the ther-
mal transpiration mobility force (4.10) and closure for the thermal momentum
accommodation coefficient (4.16) have been presented in Figs. 5 and 6. A plot of
the mass flow rate has been shown in Fig. 5 with velocity profiles for two char-
acteristic times: of the maximum flow rate tmax and zero flow rate teq (Fig. 6).
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Fig. 4. Plot of pressure change in the cold (1) and hot (2) reservoirs, where initial pressure
p0 = 196.25 Pa for t0 = tin. From Ziółkowski and Badur [61].

Fig. 5. Plot of mass flow rate with two characteristic times, namely: tmax = 11.5 s time of
maximum flow rate and teq = 121 s time of zero flow rate – equilibrum conditions. From

Ziółkowski and Badur [61].

The mode of gas motion, driven by the difference of pressure ∆p = pH − pC ,
is similar to Poiseuille’s flow (see: the right side profile in Fig. 1) with a velocity
profile quite opposite to that of the flow induced by (4.10), which, at the central
axis, takes a maximum and is zero on the wall surface. Now, there is a character-
istic time tmax where the thermal transpiration forces achieve maximal impact
into fluid value and therefore the maximal value of mass flow rate is attained
(Fig. 5). After that the Poiseuille flow governed by a difference of pressure (Fig. 4)
is included, which finally leads, after time teq, to an equilibrated state when the
pressure difference arrives at its maximum and the resulting mass flow rate is
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Fig. 6. Velocity profiles for two characteristic times, namely: tmax = 11.5 s time of maximum
flow rate and teq = 121 s time of zero flow rate – equilibrium conditions ṁ = 0 g/s; where

R = d/2 is a radius of microtube and r is a distance from the centre of microtube.

zero. In the case of the Rojas-Cárdenas et al. benchmark experiment [68], the
following values from numerical simulations were obtained: tmax = 11.5 s and
teq = 121 s, respectively.

Also, during numerical simulations [61], it has been observed that the pressure
variations inside both reservoirs are not perfectly mirror-symmetric with respect
to the initial pressure axis, since the volumes of the two reservoirs differ (the hot
is smaller). Consequentially, the pressure variation in time within the reservoirs
is different – the increase in the hot (2) reservoir is to 199.72 Pa and decrease in
the cold (1) reservoir is to 193.98 Pa (Figs. 3 and 4).

After implementation of the mobility force (4.10) into the commercial code,
the benchmark experiment [68] has been performed for basic data corresponding
to helium. For the numerical simulation it utilizes the following data: initial
pressure p0 = pin = 196.25 Pa, cold temperature θC = 20◦C, hot temperature
θH = 80◦C (with linear distribution along the micro-pipe), referential viscosity
µ = 1.96× 10−5 Pas, individual gas constant R̃ = 2077 J/kg·K, and the ratio of
specific heats κ = 1.667.

Pressure values are in agreement when compared with the experiment [68].
It is easy to numerically prove that at the final equilibrium zero-flow state (see
Fig. 6, teq = 121 s) there is a connection between the Poiseuille flow in the
centre of channel and counter thermal transpiration flow on the surface [61].
Hence, based on the presented model and implemented experiment a concept of
Reynolds transpiration number can be proposed as follows:

(4.17) Re t =
surface thermal mobility force

volume viscous force
.
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5. The mystery of second-order boundary conditions

Deissler [18], on the basis of kinetic theory, has proposed a slip velocity
equation where the second and higher derivatives of gas velocities take part [18].
It can be, in short, written as [3]:

(5.1) ν(v − vwall) = µ

[

A1Kn
∂v

∂n
+A2Kn

2∂
2v

∂n2
+ · · ·

]

.

The term argued that a higher-order of the Kn and higher-order derivatives of
velocity must be used in the slip equations. But on the other hand, well known ki-
netic theory models of fluid stress presented in work [71], do not include any con-
tribution of a second velocity gradient – probably the Reynolds non-explicit con-
tribution via the gradient of acceleration d(2) (see: Eq. (2.9)) is consistent with
physical interpretation. In other words, the part of wall stresses governed by the
coefficient A2 in (5.1) do make any sense from the point of view of 3D modeling.

In general, the consistency of the field equation within the bulk and on its
boundary for weakly-nonlocal continua with higher gradient has not been com-
pletely solved and there are no appropriate scientific tools for solving this math-
ematically concise system of equations. The one known and recognized method
is the so-called “Green Transformation”, by which using an extended definition of
divergence, one can find the true interrelation between the bulk and the boundary
equations. For instance, when a continuum description contains time derivative
of the rate of deformation ḋ and its gradient gradd, it is simple to show, using
two cycles of the Green transformation that the balance of momentum takes the
Skiba–Pearson form:

(5.2) ρ
d

dt

[

v − div

(

∂φ

∂ḋ

)]

− ρb + div

[

p − div

(

∂φ

∂ gradd

)]

= 0,

where the additional dependence is described by the Rayleygh-like dissipation
function φ = φ(ḋ, gradd) which fulfills, from the definition, the perpetuum mo-
bile principles.

In a recent explanation of the problem of the second-order derivative of ve-
locity, Fried and Gurtin [72] assuming only the gradient of d: φ = φ(gradd),
have defined the hyper-viscous stress triad G = Gijkei ⊗ ej ⊗ ek:

G =
∂φ

∂ gradd
(5.3)

= η1grad(gradv) + η2[gradT(gradTv) + gradT(gradv) − I ⊗ lapv]

with two additional internal viscous friction coefficients η1, η2. Thus, they have
obtained the following momentum balance in the bulk:

(5.4) ρ(v̇ − b) + div(p − div G) = 0
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and not one, but two boundary conditions coming from making the Green trans-
formation twice [68]:

(5.5)
pn = pn − (divG)n − divs(Gn) − Ib(Gn)n,

mn = (Gn)n.

These are nothing less than an extension of the classical Cauchy definition
of the traction force pn = pn. The first traction force is working on a field
of velocity [like the classical Umov flux of mechanical energy] and the second
fraction vector mn, new in the context of a viscous fluid, is to work on the
normal derivative of velocity ∂v/∂n. Therefore, Fried and Gurtin postulate
the following slip and adherence condition [47]:

ν(vA − vwall) = pn (generalized slip condition),(5.6)

νa

(

∂vA

∂n
− ∂vwall

∂n

)

= mn (generalized adherence condition).(5.7)

Here, ν = µ/ls; νa = η1/la are the external friction and external adherence
friction coefficients, respectively. ls and la represent the slip length and the ad-
herence length. This model of boundary layer is fully consistent with Fried and
Gurtin’s bulk model of the second-order fluid, and cover Deissler’s Eq. (5.1).

6. Poiseuille, Knudsen and Reynolds components

of the filtration velocity

A peculiar difficulty in the modeling of flow in porous media often arises
if we are forced to apply the so-called “non-Darcy equation”. Or if we try to
develop some extension of the Darcy equation such as the Brinkmann–Darcy–
Forchheimer equation [73]. Moreover, trying to develop a model from which
one can describe the Klinkenberg effect, i.e. different permeability of a porous
media for different gases, one should take into account the velocity slip and the
temperature jump [74–76].

But also the state of phenomenological level of modeling is far from clear
due to the lack of the accumulation of knowledge from several separate fields
of application. In our opinion, there is no exchange of information and ideas
between various fields involved with flow in porous media, therefore the Darcy
equation is always given ex cathedra.

Treating a nano-pipe as equivalent to a single porous domain and looking for
common effects of the bulk and surface motion, one can consider the following
momentum flux integral in any cross section of a porous media oriented by the
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tangential component of unit vector ntan:

(6.1)

∫ ∫

bulk section

(ρv ⊗ v + p)ntandA

+

∮

C

(ρsvs ⊗ vs + ps + nnorp + f∂V )ntan dC = 0.

In the above ρv and ρsvs are the bulk and the surface momentum density vec-
tors, ρ and ρs are the gas density in the bulk and on the boundary. Next, p =
pijei ⊗ ej = pT and ps = pT

s are the bulk and the surface flux of momentum.
Let us define the total momentum influx to be:

(6.2) M =

∫ ∫

bulk section

ρvutandA+

∮

C

ρsvsus tan dC.

This consists of contributions from the bulk velocity and from the slip veloc-
ity. Hence,

∫∫

bulk section ρvutandA is a contribution from the bulk velocity and
∮

C
ρsvsus tan dC is a contribution from the surface (slip) velocity. Using some

principals from a technique of homogenization, we assume the existence of a re-
sultant velocity, say vr, which is parallel to the vector of total momentum:

(6.3) M = ṁvr.

It is located somewhere in the geometrical center of the velocity profile. In many
cases, independently of the shape of the cross section, the bulk profile of velocity
is nearly flat and ending with value of us tan – the magnitude of slip velocity.
In the above, in accordance with traditional Reynolds notation, denotes the
resultant mass flow rate. Remembering that the boundary force f∂V = fr + fm =
ν(v−vwall)− [cmθ gradsθs + · · · ] is a composition of friction forces and mobility
forces, we can reorganize the integral (6.1), expressing explicitly the thermal
mobility part cmθ gradsθs and the slip friction part νvsIs:

ṁvr =

∫ ∫

Poiseuille

[pI + 2µd]n dA(6.4)

+

∮

Darcy

νvsIsdC −
∮

Reynolds

cmθ grads(θs)dC + · · · .

Since the cross section of porous media is quite arbitrary, that a known pro-
cedure of homogenization can be applied, and Eq. (6.4) leads to 3D resultant
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equations [74]:

Poiseuille = −ṁP

µ
B

gradP

P
,(6.5)

Kundsen = −ṁDK
gradP

P
,(6.6)

Reynolds = +ṁD
gradT

T
.(6.7)

Here, the surface pressure ps does not appear, nor does the surface temper-
ature θs, since after homogenization their role takes the capillarity pressure P
and the capillarity temperature T . Also, the two-dimensional surface gradient,
due to homogenization, becomes the three-dimensional gradient grad(·). Finally,
the Poiseuille–Knudsen–Reynolds equations possess the form [74]:

(6.8) vr = −
(

P

µ
B + DK

)

gradP
P

+ D
gradT
T

,

where vr is the resultant filtration velocity, µ is a gas viscosity, B is the perme-
ability tensor, DK is the Knudsen accommodation diffusion tensor and D is the
thermal transpiration coefficient tensor. The sign of D is indeed negative, which
means that gas has tendency to flow toward the hotter side of a porous body.

It is useful here to recall that rarefied gas flow through a porous media in
non-isothermal conditions is mathematically described by the so-called “Dusty-
Gas-Model” (DGM) [77], which is an appropriate approximation of the kinetic
theory of gases within the slip-flow regime. In contrast to the DGM model, we
have shown that, the continuous model (6.8) is also obeying the slip-flow regime.
The model (6.8) insists on a combination of an effective viscous Poiseuille bulk
flow, a Knudsen surface slip-driven flow and a Reynolds surface thermally- driven
flow. This phenomenological model is based on the previously averaged equations
for the bulk flow resistance and the surface mobility forces.

7. Conclusions

Despite the fact that investigation of slip-flow and thermal transpiration
started long ago, many questions remain unresolved. This is connected with
a special feature of thermal transpiration, which is very sensitive to the kind
of solid material and the kind of rarefied gas. Thermal mobility force fm =
−cmθ grads θ proposed by Reynolds and Maxwell [on the ground of kinetic the-
ory] is, in general, sensitive to properties of both gas and solid surfaces and
additionally depends on two thermal momentum accommodation coefficients f3,
f4 proposed by Reynolds [5]. However, thermal mobility force can also be de-



On Navier slip and Reynolds transpiration numbers 295

veloped within the framework of continuum modeling with consistent closure to
the cmθ. The coefficient cmθ should be based on complete experimental data.

The rising interest in the Knudsen pump and the accommodation pump is
connected with the problem of temperature dependence of both the friction ν
and thermal mobility cmθ coefficients. Quite new devices based on an increased
understanding of the influence of slip conditions and thermal mobility are un-
der development for the power industry. These devices mainly include: 1) a wet
combustion chamber using oxy-combustion and water cooling by thermal tran-
spiration; 2) a spray-ejector condenser (using bulk condensation on the surface
of steam-gas water droplets); 3) gas turbine blades. The walls of combustion
chambers and the bodies of turbine blades are created as porous structures. Us-
ing such porous structures or structures with microchannels, bringing the cooling
fluid closer to the surface ensures that a much stronger uniformity of cooling and
thermal gradients are obtained [78]. The research on combustion chambers with
thermal transpiration or microholes cooling effectiveness can be described more
accurately taking into account the surface friction force and surface mobility
force. In this connection it is of interest to consider effective boundary condi-
tions for an extremely irregular surface with nano-patterns [79, 80]. Then the
friction force becomes non-parallel to a vector of slip velocity and the thermal
mobility force is not parallel to a surface gradient of temperature. This kind of
anisotropy requires a deeper experimental set-up [81].

The model of thermal mobility force, revalorized here after Maxwell and
numerically proven in [61], can be, in our opinion, also extended to the so-called
second-order continuum model but only if we simultaneously redefine the stress
tensor, adding the hyper-stress (5.3), and supplement a boundary condition in
the form of Eq. (5.5).

Finally, the result of joint action of the both surface Navier slip and Maxwell
thermal mobility may be predicted by measuring gas mass flow rates in porous
materials. If the pores are larger than 2–5 times the free length of the rarefied
gas, then an additional bulk contribution of viscous flow (Poiseuille’s type) is
visible and the mass flow rate is the summary effect of one bulk and two surface
contributions. Thus, as we have shown in Sec. 6, the resultant flow velocity
of filtration governed by the Poiseuille–Knudsen–Reynolds Eq. (6.8). It is an
analogy of Maxwell’s equation for a long cylindrical pore. Equation (6.8) may
help at least to decrease the number of experimental attempts to find the proper
composition of an experimental set up [74].
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