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The present study is aimed to study the postbuckling response of the
graphene sheet (GS)-reinforced plate including the effect of van-der-Waals (vdW)
bonding between GS and matrix. An equivalent solid fibre (ESF) containing GS and
the interfacial region is modelled, and that are randomly dispersed into the matrix
with the aid of the Boolean based random sequential adsorption (RSA) technique.
The elastic constants of the nanocomposite are calculated by the FEM-based homog-
enization procedure. It is established that interphase zone, stacking and short GSs
pose the negative effect on the elastic properties of nanocomposite and postbuckling
strength of the GS-reinforced plate.
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1. Introduction

The two-dimensional honeycomb crystal lattice of sp2-hybridized car-
bon atoms i.e., Graphene Sheet (GS) possess extraordinary mechanical and elec-
trical properties [1] and has been theoretically studied for seventy years [2, 3].
Even though GSs were known as an integral part of 3D materials, but it was pre-
sumed that GS does not exist in a free state and is supposed to be unstable with
respect to the formation of curved structures like fullerenes and nanotubes [4]. In
2004, Novoselov et al. [5] experimentally reported the naturally-occurring GS
and attracted world-wide attention of scientists to a new window of nanoscience.
The elastic modulus and tensile strength of GS are found to be nearly the same as
that of the widely celebrated tube-like structure of sp2-hybridized carbon atoms
i.e., carbon nanotube (CNT) [6]. But because of its high aspect ratio, surface
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area, tensile strength, thermal and electrical conductivity associated with a low
coefficient of thermal expansion and the production cost, GSs are preferred over
CNTs as a reinforcing agent. With the addition of only a few percentage (by
weight/volume) of GSs in soft matrix materials like polymers, the stiffness and
strength of the resulting nanocomposite increase significantly [7]. GS possesses
higher specific area than CNT and can interact with the matrix material at its
both surfaces (i.e., upper and lower) which is higher than that of CNT (i.e., outer
surface). The 2D structure of GSs has better mechanical interlocking with the
polymer chains and an enlarged interfacial region at GS-matrix interface than
CNTs which results in better mechanical properties of GS-reinforced nanocom-
posites [8, 9]. For instance, at a weight fraction of 3% of GS reinforcement, the
tensile strength and Young’s modulus of the high-density polyethene (HDPE)
nanocomposite is increased by about 77% and 87%, respectively, than those of
the neat HDPE. In contrast, reinforcement of the same weight fraction of multi-
wall CNTs (MWCNTs) in HDPE shows an increase in the tensile strength and
Young’s modulus of HPDE nanocomposites by 58% and 57%, respectively, as
compared to the neat HDPE matrix [10].

For the reason that the GSs are of a miniature size, the proper character-
ization of GS-nanocomposites possessing enhanced elastic constants has been
a challenging assignment either analytically or experimentally. Thus the com-
putational simulations play a major role in the mechanical characterization of
nanocomposites because of its handy nature (for different size & shape of GSs
and loading pattern) as well as less computational cost and time. These computa-
tional simulations are mostly classified in two widely used simulation approaches
(i) molecular and, (ii) continuum simulation. A number of publications are re-
ported by the researchers around the world based on the molecular simulations to
characterize GS-nanocomposites [11, 12]. Though molecular simulations present
a better insight into the material behaviour at nanoscale but possess restrictions
on small time and length scale. Whereas continuum simulations are not limited
to time and length scales and are appropriate for the study of GS-reinforced
nanocomposites at a comparatively less computational cost and time. Thus, the
multiscale methods combining the benefits of molecular simulations at nano level
and finite element methods at a macro level would be very effective to charac-
terize the nanocomposite materials. To study the material behaviour of mul-
tiscale material like GS-reinforced nanocomposite, various literature had been
reported by researchers [13–15]. In 2011, Montazeri and Rafii-Tabar [13]
combined the molecular dynamics (MD), molecular structural mechanics (MSM),
and the continuum mechanics-based finite element method (FEM) to predict the
elastic properties of GS/CNT-reinforced polymer nanocomposite and reported
that at low nanofiller content, GS-reinforced nanocomposites offer better elastic
properties than CNT-reinforced nanocomposites. Giannopoulos and Kalli-
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vokas [14] showed that the interfacial region between GS and matrix have the
positive effect on the effective elastic constants of polymer nanocomposite. GS-
reinforced nanocomposites also possess higher critical buckling load than CNT-
reinforced nanocomposites [15]. The simulation of an individual GS using a con-
tinuum approach, plate-like models are reported in the literature. For instance,
Hemmasizadeh et al. [16] presented an equivalent continuum model of a single-
layered GS by integrating MD with the theory of shells. Kitipornchai et al. [17]
performed the vibration analysis of multi-layered GS using the continuum model.
Analytical formulations were presented by Shokrieh and Rafiee [18] to predict
the elastic modulus of GS and CNT using a linkage between the molecular lat-
tice structure and the equivalent discrete frame structure based on the nanoscale
continuum mechanics approach. In order to further reduce the simulation cost,
only the continuum mechanics based analysis of GS-reinforced nanocomposites
(as also utilized for CNT-reinforced nanocomposites [19, 20]) was performed by
Kumar and Srivastava [21].

If no chemical bonds are available between GS and the matrix material, the
GS interacts with the matrix material only by van-der-Waals (vdW) forces. This
vdW interaction between embedded GS and surrounding matrix affects substan-
tially the load transfer between the two and therefore the role of an interfacial
region on the net elastic constants of GS-nanocomposite materials is substan-
tial. Numerous studies are available in the literature on the continuum mechanics
based simulation of an interfacial region. Anjomshoa et al. [22] modelled the
vdW bonding between the GS and polymer matrix with a set of linear springs us-
ing the Lennard-Jones (LJ) potential with the aid of FEM whereas, Naderi and
Saidi [23] considered the same vdW interaction as a nonlinear function of the
GS’s deflection. Similarly, Parashar and Mertiny [24] employed a truss model
using the FEM software ANSYS to simulate the interfacial region. The stiffness of
the linear and nonlinear spring elements between CNT/GS and matrix modelled
in aforementioned studies was widely computed with the concept of equivalent
force, derived from an interfacial potential [15, 25]. Likewise, Georgantzinos

et al. [26, 27] have predicted Young’s modulus of CNT-reinforced nanocomposite
by modelling the interfacial region as spring elements. The same authors studied
the elasto-plastic behaviour of CNT-reinforced rubber nanocomposites where the
interfacial region was simulated via the application of special joint elements of
variable stiffness which interconnect the two materials in a discrete manner [28].
The interfacial region between nano-reinforcement and matrix was also modelled
as the third phase, i.e., the interphase zone having elastic properties derived from
the interfacial potential [29]. A general expression for the interfacial potential,
based on vdW interactions between GS and the matrix material, in terms of area
and volume density of GS and the matrix respectively, was proposed by Jiang

et al. [30], and expressions for net cohesive stresses between the GS and the ma-
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trix was also derived. Zhao et al. [31] extrapolated the work by Jiang et al. [30]
and discussed the effects of spacing, size and crossing angles of the nanofillers
(i.e., GS & CNT) on the effective potential of interfacial region, and reported
that smaller radius CNT possess the higher cohesive energy than the large diam-
eter CNT, and the equilibrium distance of the interphase zone enhances with the
radius of CNT. Very recently, using the same cohesive zone model, Srivastava

and Kumar [32] have predicted Young’s modulus and thickness of an interfacial
region between matrix materials (ranging from soft to stiff) and CNT/GS.

The thickness of the interfacial region strongly affects the elastic constants
nanocomposite material, especially for soft matrices [33]. The separate modelling
of an interfacial region having the finite thickness from the GSs in a matrix re-
quires the high computational cost which can be reduced by modelling a GS
along with its interphase zone as an equivalent solid fibre (ESF). The assump-
tion of the perfect bonding between ESF and the matrix material is made in
a continuum model. The elastic constants of the ESF-reinforced nanocomposite
material obtained by the FEM modelling should not be compared with those
estimated by the micro mechanics based rule of mixtures (ROM) without con-
sidering the effect of the interphase zone. If the perfect bonding between GS and
matrix is assumed, the ROM will overestimate the elastic modulus of resulting
nanocomposite [34].

To impart the extraordinary elastic properties of GSs to the nanocompos-
ite material, it is essential to resolve the issue of proper dispersion of GSs in
the matrix material, since the non-uniform dispersion of GSs results in stack-
ing and causes an adverse effect on the effective elastic constants of nanocom-
posites material [35]. Many researchers have devised various experimental tech-
niques to homogeneously disperse the GSs in matrix materials [36,37]. Chen et

al. [36] reported a novel manufacturing method to make GS-reinforced magne-
sium nanocomposite by combining liquid state ultrasonic processing and solid
state stirring whereas Kim et al. [37] utilized the melt mixing process to fabricate
the GS-reinforced polyamide nanocomposite. In 2009, Fang et al. [38] studied
the GSs reinforced polystyrene nanocomposites and having GSs diameters in two
different ranges i.e., (20–40 nm) and (30–150 nm) and showed that the dispersion
of GSs can also be improved by reinforcing short GSs, instead of long GSs, in
the matrix material. Apart from the random dispersion of GSs into the matrix
material, another important procedure to further enhance the elastic properties
of the GS-reinforced nanocomposite in a specific direction is by alignment of
GSs [39].

The complex geometry of actual nanocomposite possessing homogeneously
dispersed GSs can be modelled by the random sequential adsorption (RSA) al-
gorithm [40], which is widely utilized for modelling the representative volume
element (RVE) of a conventional composite having randomly dispersed fibre.
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The number of research articles on RSA technique is reported in the litera-
ture [41–43], but these algorithms require tedious looping calculations to predict
the orientation and position of newly added non-overlapping reinforcement. In
2016, Liu et al. [44] reported a very efficient Boolean based RSA approach to
model an RVE possessing the non-intersecting reinforcements of any shape by
determining the angle and location of new reinforcement without using an iter-
ative procedure.

Outstandingly high material constants of GSs and enhanced material con-
stants of GS-reinforced nanocomposites further necessitates the study of plate or
beam-like nanostructures made of GS-reinforced nanocomposites [45, 46]. The
full load carrying capacity of these nanostructures subjected to in-plane com-
pression and/or shear or thermal loading after buckling of the nanostructure
(i.e., postbuckling behaviour) has been an area of intense study. For instance,
Yang et al. [47] studied the postbuckling response of functionally graded (FG)
GS-reinforced nanocomposite beams resting on an elastic foundation. The net
material properties of each layer reinforced with randomly dispersed GSs were
estimated by the micro mechanics based Halpin-Tsai model. Similarly, the post-
buckling behaviour of FG GS-reinforced nanocomposite plate subjected to ther-
mal loading was studied by Shen et al. [48], wherein the elastic constants of
the nanocomposite material were predicted using the same methodology as em-
ployed by Yang et al. [47]. It was concluded that the temperature rise, trans-
verse shear deformation, plate aspect ratio, foundation stiffness and in-plane
boundary conditions affect substantially the thermal postbuckling response of
FG GS-reinforced nanocomposite plate.

It is evident from the literature that, vdW interaction between GS & matrix
and the proper dispersion of GSs affects substantially the net material constants
of the nanocomposite material and thus require the proper attention. It is also to
be noticed that, no research article has been reported to date on the buckling and
postbuckling behaviours of GS nanocomposite plate under in-plane compressive
loading along with the effect of interfacial behaviour. In this study, initially the
interfacial region between GS and matrix materials is modelled as a third phase
and its Young’s modulus and thickness are obtained by using the cohesive zone
model as described in [32] and further utilized to model an equivalent solid fibre
(ESF) for GS along with the corresponding third phase i.e., the interphase zone.
Thereafter, ESFs are randomly dispersed or aligned in the matrix material by
employing Boolean based RSA technique to make the nanocomposite RVEs.
The net elastic constants of GS nanocomposite are computed with the FEM-
based numerical homogenization approach. The obtained elastic constants of
nanocomposite are again employed to predict the postbuckling behaviour of the
GS nanocomposite plate, under in-plane compressive loading. Various studies
are performed to predict the effects of bonding between GS/CNT and matrix



8 A. Kumar Srivastava, D. Kumar

Fig. 1. Multiscale modelling procedure to form the nanocomposite plate.

materials, GS-alignment, stacking, length of GSs and geometric parameters on
the postbuckling behaviour of the GS nanocomposite plate. A schematic diagram
of the multiscale modelling procedure of the present problem is shown in Fig. 1.

2. Equivalent solid fiber model

The cohesive zone model (CZM) based on vdW interactions between GS and
the matrix proposed by Jiang et al. [30] and also utilized by Srivastava and
Kumar [32, 49] in order to predict the thickness (h0) and elastic modulus (EI) of
the hypothetical third phase i.e., the interphase zone, is employed in the present
article to estimate the elastic response of equivalent solid fibre (ESF). The energy
between two atoms of the distance r due to the vdW force can be represented by
a pair potential. Pair potentials are the simplest inter-atomic interactions and are
dependent on the distance r between two atoms. Most widely used pair potentials
for simulation in chemistry, physics and engineering are Lennard–Jones (LJ) and
Morse potentials. The LJ potential may be too hard to describe the repulsive
force for some materials such as copper whereas Morse potentials are relatively
computationally expensive [50]. Jiang et al. [30] have employed LJ potential to
model the vdW interaction between GS and the matrix material, and obtained
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cohesive energy between the matrix and GS, per unit area of GS, is given as:

(2.1) ϕ =
2π

3
ρmρcεIσ

3
I

(

2σ9
I

15r9
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I

r3

)

,

The variation of interphase cohesive energy with respect to the inter-atomic
distance r, for GS-reinforced aluminium composite, is plotted in Fig. 2. The well
depth (εI) and vdW radius (σI) of the LJ potential curve for the interfacial
region between GS and the matrix material can be calculated by applying the
extensively used Lorentz–Berthelot (LB) mixing rule [51, 52]. The required values
of different parameters employed to generate the curve are taken from [30, 50].

Fig. 2. Cohesive energy between GS and aluminium matrix per unit surface area of GS.

The detailed explanation of this approach to find the thickness (h0) and
Young’s modulus (EI) of this third phase are given in [32], and for ready reference
given below.

The equilibrium distance (i.e., h0) between the GS and matrix by satisfying,
∂ϕ/∂r = 0:

(2.2) h0 = 0.8584σI .

The Young’s modulus of the interphase zone (i.e., EI) for the equilibrium position
(at r = h0), is computed by:

(2.3) E =
∂2ϕ

∂2S
,

where, strain (S) at any distance is taken as, S = r − h0/h0 and obtained the
expression for Young’s modulus is given by:
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(2.4) EI = 8πh0ρmρcεIσ
2
I

(

σ10
I

r11
− σ4

I

r5

)

,

where r represents the distance between GS & matrix material, and the area
(ρC) and the volume density (ρm) specify the number of carbon atoms per unit
surface area of GS and number of atoms per unit matrix volume, respectively.

After obtaining Young’s modulus (EI) and the thickness (h0) of the inter-
phase zone, the plate-like continuum structure of GS and the corresponding in-
terphase zone is replaced by an equivalent solid fibre (ESF) and utilized to form
an RVE consisting of uniformly distributed ESFs as shown in Fig. 1. Where the
position and orientation of each ESF are obtained by employing uniform random
numbers as discussed in Section 3. To model the ESF for GS and the interphase
zone, the nanofiller and corresponding interphase region have to be transformed
to ESF in accordance with the micromechanics approach. The perfect bonding
is assumed between GS and the interphase zone. Thus the same axial force is
applied to GS & corresponding interphase region and ESF to obtain the effective
width & thickness of ESF by equaling axial deformation of GS & interphase zone
and ESF.

Therefore, the axial force applied on the ESF is given as:

(2.5) FESF = FGS + FINT ,

where FGS and FINT are the fractions of the applied force (i.e., FESF ) borne by
GS and the interphase region, respectively.

Similarly, the same axial deformation of GS, the interphase zone and ESF
can be represented as

(2.6) ∆LGS = ∆LINT = ∆LESF ,

where ∆L represents the change in longitudinal length.
While estimating the width and thickness of newly formed ESF, it is supposed

that the change in width/thickness of GS is constant (i.e., κ) and therefore, Eqs.
(2.5) and (2.6) reduces to:

(2.7) EESF (w + 2κ)(t+ 2κ)= EGSwt+ EINT [(w + 2h0)(t+ 2h0) − wt,

where w and t are the width and thickness of GS, respectively; κ represents the
increase in width/thickness of GS while modelling the ESF.

To predict the width/thickness of isotropic ESF using Eq. (2.7), it is neces-
sary to have the value of Young’s modulus of ESF. The Young’s modulus of ESF
(i.e., EESF ) can be computed by using micro-mechanical schemes like ROM,
The Halpin–Tsai method and composite cylinder assemblage (CCA) models etc.
Out of which ROM and the Halpin–Tsai method are simple, accurate and yield
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the same expressions for Young’s modulus and Poisson’s ratio aligned fiber rein-
forced composites [53]. The corresponding expression for Young’s modulus and
Poisson’s ratio of ESF are given as:

(2.8) EESF = VGSEGS + (1 − VGS)EINT .

Similarly, the Poisson’s ratio of ESFs can also be evaluated with the aid of ROM
and given as:

(2.9) νESF = VGSνGS + (1 − VGS)νINT

Where VGS stands for the volume fraction of GS in ESF and computed by

(2.10) VGS =
(wt)

(w + 2h0)(t+ 2h0)

3. Modeling and characterization of ESF-reinforced RVE

To estimate the effective elastic constants of the GS-reinforced nanocompos-
ite, an RVE is created consisting of ESFs reinforced in a matrix material using the
Boolean-based RSA technique as also employed by Srivastava and Kumar [54]
for CNT-reinforced nanocomposites. ESF is described by its origin O and Euler
angles θ and ϕ in the xyz coordinate system, as shown in Fig. 3. In the Boolean
based RSA approach (described in Fig. 4), initially the first reinforcement is
placed randomly (i.e., random-orientation and -position) into the RVE volume,
and then new reinforcement is considered for adsorption in RVE volume only if
it does not intersect with the previously adsorbed reinforcements. A new ESF is

Fig. 3. Coordinate system and definitions of θ and φ for an ESF (consisting of GS and
corresponding interphase zone).
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Fig. 4. Boolean based RSA algorthm to generate periodic RVE.

kept on adding into the RVE till the volume fraction of ESF (i.e., Vf ) reaches to
the reference volume fraction (i.e., Vref ), and when the reference volume fraction
is reached, the parts of ESFs lying outside the RVE boundary are chopped off to
form the resulting RVE. The total number of ESFs is limited to 27 in the present
study. Using the Boolean based RSA algorithm, the non-intersecting, randomly-
oriented and -positioned ESFs-reinforced RVE is modelled as shown in Fig. 5a.
The same methodology is also employed to RVEs with randomly-positioned, but
aligned ESF, to study the effect of GS-alignment on the elastic constants of the
nanocomposite, as shown in Fig. 5b. Similarly, to study the effect of stacking of
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Fig. 5. Periodic RVE containing: a) randomly-oriented and -positioned ESFs, b) aligned and
randomly-positioned ESFs, c) randomly-oriented and -positioned stacked ESFs.

GSs on elastic constants of the resulting nanocomposite material, three GSs are
stacked together and randomly-oriented and -positioned in the matrix volume
as shown in Fig. 5c. Modeled heterogeneous RVEs (consisting of GS and the
matrix material) are subjected to periodic boundary conditions and the homog-
enization approach in order to estimate the homogeneous elastic properties of
resulting nanocomposite [32].

4. Micromechanics based Halpin–Tsai model

The widely used Halpin-Tsai model to evaluate the elastic properties of fibre
composites is also employed with modifications by different authors to predict the
elastic properties of GS-reinforced nanocomposites [48, 55]. To model the elastic
modulus of the GS-reinforced nanocomposites, it was assumed that ESFs of GSs
act as an effective rectangular solid fibre with the width (wESF ), length (LESF ),
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and thickness (tESF ). The modified Halpin–Tsai equations for GS-reinforced
nanocomposites are given as:

(4.1) EC = Em

(

3

8

1 + ξηLVf

1 − ηLVf
+

5

8

1 + 2ηwVf

1 − ηwVf

)

,

where

ηL =
(EESF /Em) − 1

(EESF /Em) + ξ
,(4.2)

ηw =
(EESF /Em) − 1

(EESF /Em) + 2
.(4.3)

EC represents the elastic modulus of the GS-reinforced nanocomposite, EESF

and Em are the ESF and matrix moduli. For rectangular reinforcements GSs,
the parameter ξ is given as

(4.4) ξ = 2

(

(wESF + LESF )/2

tESF

)

,

where wESF , LESF and tESF represent the width, length, and thickness of ESF.
For the axial modulus, the Halpin–Tsai equation reduces to ROM [53]. The
volume fraction Vf of the reinforcement in the RVE is calculated using

(4.5) Vf =
VESF

VRV E
=

wESFLESF tESF

(a3 − nwESFLESF tESF )
.

5. FEM procedure for postbuckling analysis of GS nanocomposite

plate

For the postbuckling analysis of the GS-reinforced nanocomposite plate, the
FEM-based commercial code ANSYS is employed and the eight-node shell el-
ement (i.e., SHELL281) with 6 degrees of freedom (i.e., 3-translational and
3-rotational) in a plane stress state is used to discretize the GS-nanocomposite
plate. The resulting set of nonlinear algebraic equations are solved by employing
the arc-length method. A complete formulation for the postbuckling analysis is
provided by Kubiak [56], for the sake of ready reference a brief description of
the procedure is given below.

It is a well-established fact that studies involving the buckling and postbuck-
ling analysis of thin plate-like structures under in-plane compressive loads need
some kind of imperfections in terms of out-of-plane displacement (provided ei-
ther by a little transverse force or by specifying a small initial displacements)
to initiate the buckling response. Therefore, in the present study, the buckling
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and postbuckling analysis of the GS ESF-reinforced nanocomposite plate is per-
formed in two stages: (1) the eigenvalue linear buckling analysis, and (2) the
nonlinear (geometric) postbuckling analysis. In the eigenvalue buckling analysis,
the buckling load and corresponding the buckling mode are evaluated, and there-
after, the buckled mode shape is further employed to provide an initial tiny per-
turbation/imperfection into the GS ESF-reinforced nanocomposite plate. Subse-
quently, the nonlinear postbuckling analysis of the GS ESF-reinforced nanocom-
posite plate using FEM is performed by utilizing an iterative procedure wherein
the in-plane compressive load on the ESF-reinforced nanocomposite plate is in-
creased gradually in each successive step, and the corresponding out-of-plane
deformation is obtained.

The nonlinear algebraic equations of a discrete system are given by:

(5.1) [K̄(u)]{u} − {P} = 0,

where [K̄] is the tangent stiffness matrix depending on the nodal displace-
ment {u}, and the net nodal force vector {P}.

At a particular load step, Eq. (5.1) for the ith iteration can be rewritten as:

(5.2) [K̄i]{∆ui} = {∆Pi},

where the increment of displacement (i.e., ∆ui) is assumed to comply with the
following expression:

(5.3) {ui+1} = {ui} + {∆ui},

and
{∆Pi} = ζ{Pa} − {Pr

i },
wherein {Pa} represents the applied nodal force vector adjusted via the load
factor ζ (−1 < ζ < 1) in the subsequent iterative process and {Pr

i } is the
restoring forces vector for the ith iteration.

Therefore, the Eq. (5.2) in the incremental form of any intermediary step
(i.e., at the substep n and the iteration i) has the following form:

(5.4) [K̄i]{∆ui} − ∆ζ{Pa} = (ζn + ζi){Pa} − {Pr
i }.

The incremental load factor (i.e., ∆ζ) is evaluated by the arc-length (li) for the
ith iteration, as reported by Forde and Stiemer [57], and given as:

(5.5) l2i = ∆ζ2
i + β2{∆un}T {∆un},

where, β represents the scaling factor and ∆un is the sum of all the displacement
increments ∆ui up to ith iteration of the current load step.
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The convergence for each iteration process is checked by the following error
tolerance procedure:

(5.6) ‖R‖ ≤ α‖∆P‖,

where R refers to the residual force at each iteration (i.e., [K̄i]{∆ui} − {∆Pi})
and α is a tolerance parameter which is chosen as 10−4.

FEM based software ANSYS is used to carry out the buckling and post-
buckling study of the GS ESF-reinforced nanocomposite plate through a macro
written in APDL (i.e., ANSYS Parametric Design Language).

Fig. 6. In-plane boundary conditions for a square plate subjected to uni-axial compression
load applied on x = b edge.

To perform the buckling and postbuckling studies of the GS nanocomposite
plate all edges simply supported (i.e., SSSS) the boundary condition is employed.
The in-plane boundary conditions on edges x = 0, x = b, y = 0 and y = b related
to in-plane displacements in x- and y- directions (i.e., u and v, respectively) are
depicted in Fig. 6. The axial compression load per unit width is applied on the
edge x = b for uni-axial loading, and on the edges x = b and y = b for bi-axial
loading.

6. Present study

In this study, initially, an ESF is formed to represent a GS along with the in-
terphase zone for different matrix materials. The isotropic effective material con-
stants of the heterogeneous nanocomposite material are estimated by the proper
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application of periodic boundary conditions on an RVE generated through RSA
technique. The obtained material constants of ESFs-reinforced nanocomposite
are presented and discussed in Section 7.2. The material constants of GS and
the geometric dimensions are given below:

Young modulus Ef = 1 TPa, Poisson’s ratio υ = 0.3.
Length LGS = 100 nm, width ’w’ of GS is computed by opening a cylindrical

shaped CNT into a plate-like structure using the following relation:

(6.1) w =
π(r20 − r2i )

r0 − ri

where the outer radius of CNT, r0 is equal to 3.6 nm and inner radius of CNT,
ri is equal to 3.2 nm. The thickness of GS, i.e., t = r0 − ri.

Thereafter, the effective material constants of the GS-reinforced nanocom-
posite material are further utilized to study the buckling and postbuckling be-
haviour of the GS-reinforced nanocomposite plate. The square nanocomposite
plate having a width-to-thickness ratio equal to 50 is utilized in the current study
to predict the postbuckling behaviour of the GS-reinforced nanocomposite plate
under different boundary and loading conditions. The effects of various parame-
ters, viz. perfect and imperfect bonding, ESF-alignment, ESF-stacking, length of
ESF, matrix materials and geometric parameters (i.e., the aspect ratio and the
width-to-thickness ratio of the plate) on the buckling and postbuckling response
of GS-reinforced nanocomposite plates, are studied and discussed in Section 8.2.

7. Elastic constants of GS-reinforced nanocomposites

7.1. Validation

To verify the procedure followed in the current study to characterize the GS-
reinforced nanocomposite material, an ESF-reinforced nanocomposite system
is considered and its effective elastic modulus obtained through FEM based
software COMSOL Multiphysics are compared with the value obtained through
the semi-empirical Halpin–Tsai equation as discussed in Section 4 and given by
Eq. (4.1) and also with the results reported in literature.

Initially, the interphase zone between GS and the different matrix material
is characterized in terms of its Young’s modulus and thickness (i.e., the equilib-
rium distance, h0) [32] for GS-reinforced nanocomposites. The obtained values
of Young’s modulus of the hypothetical material of the interphase zone and the
corresponding thickness for different matrix materials (i.e., polyethylene (PE),
magnesium (Mg), copper (Cu), Iron (Fe), Aluminum (Al) and Gold (Au)) (di-
rectly taken from reference [32] ) are employed to model and characterize an
ESF for its elastic modulus (i.e., EESF ) and change in width/thickness of GS
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(i.e., κ) by following the procedure mentioned in Section 2. The Poisson’s ratios
of different interphase zones are taken as 0.3. The obtained values of EESF and κ
of ESF are given in Table 1. Thus the width and thickness of newly formed ESF
for GS along with interphase zone are wESF = (w + 2κ) and tESF = (t+ 2κ)
respectively as also used in Eq. (2.7).

Table 1. Young’s modulus of ESF and change in width/thickness of GSs for
different matrix material.

Matrix material
[Young’s modulus
of matrix in GPa]

Modulus of
interphase zone

[GPa] [32]

Thickness of
interphase zone
[nm], h0 [32]

Young’s modulus
of ESF [GPa]

(EESF )

Change in
width/thickness
of GS (κ) [nm]

PE [3.4] 8.9658 0.3283 369.4078 0.3331

Mg [45] 3.1885 0.2755 436.5826 0.2496

Iron [211] 6.6420 0.3243 503.1041 0.1948

Cu [130] 9.3378 0.2469 510.5524 0.1895

Al [70] 8.6854 0.2689 456.9322 0.2336

Au [78] 16.5792 0.2268 501.0694 0.1995

Thereafter, ESFs are randomly-positioned and -oriented into the matrix ma-
terial to form an RVE using the Boolean based RSA technique to characterize the
GS-reinforced nanocomposites for its Young’s modulus. The RVE is subjected
to periodic boundary conditions. The obtained value of the elastic modulus of
the nanocomposite is matched in Table 2 with the value obtained from the
semi-empirical Halpin-Tsai method and with the results reported in the litera-
ture. Using the FEM-based procedure, the net elastic modulus of nanocomposite
material is computed as an average of nearly isotropic elastic moduli of RVE ob-
tained in x, y and z directions (i.e., E = (Ex +Ey +Ez)/3). It can be observed

Table 2. Comparison of Young’s modulus (in GPa) of the nanocomposite.

Matrix
material

FEM
[Present study]

Halpin–Tsai model
[Eq. (4.1)]

Reference
Deviation

between FEM
and reference
results (%)Experimental

Molecular
Dynamics (MD)

PE 1.6683 1.6792 1.5660 [59] – 6.1319

Mg 13.7145 13.7869 14.6000 [60] – 6.4567

Iron 203.0791 203.5862 214.1000 [61] – 5.4269

Cu 96.2685 96.3156 104.0000 [62] – 8.0311

Al 66.0425 66.1133 67.0000 [63] – 1.4498

Au 116.5893 116.7410 – 118.5800∗ [64] 1.7074

∗Taken as the average of Young’s moduli of armchair and zigzag GS-reinforced Au nanocom-
posite.
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from Table 2 that FEM based results are in good agreement with the results
obtained from Halpin–Tsai and reported in reference as well.

A comparative study between the computational time taken by the the FEM
based proposed 2-phase model (i.e., ESF-reinforced Al nanocomposite), 3-phase
model (i.e., GS-reinforced Al nanocomposite with the interphase zone) and the
widely employed molecular dynamics (MD) is also reported in Table 3. Alu-
minium is taken as a matrix material and volume of RVE is taken kept as
50.5×50.5×50 A◦ in x-, y- and z-direction, respectively. To perform the MD sim-
ulation, open source code LAMMPS (Large-scale Atomic/Molecular Massively
Parallel Simulator) [65] distributed by Sandia national laboratories is used in
the present study. The inter-atomic potential that acts in between the covalently
bonded carbon atoms of the GS is computed using the AIREBO (Adaptive Inter-
molecular Reactive Empirical Bond Order) potential function. Whereas, widely
used Embedded Atom Method (EAM) is employed to model the pair-wise in-
teractions between aluminium (Al) atoms by the application of EAM/ALLOY
potential, which can be used to describe the interaction between metals and
metal alloy. The long-range Lennard–Jones 12-6 potential as given in Eq. (7.1),
is further deployed to account for the non-bonded interactions between GS and
Al matrix.

(7.1) E = 4ε

[(

σ

r

)12

−
(

σ

r

)6]

, r < rc,

where rc is the LJ cutoff radius after which the vdW interaction is very weak
and can be neglected and is chosen as 2.5σ (i.e., 7.83125 A◦. The parameters
ε and σ are the coefficients of the well depth energy and equilibrium distance,
respectively. These parameters for the interactions between carbon atoms and
Al atoms are computed applying widely used Lorentz Berthelot (LB) rules [52]
and given as σ = 3.1325 A◦ and ε = 0.003457 eV. The used parameters of Al
and C atoms are listed in Table 3.

Table 3. 3 LJ pair potential parameters for C and Al atoms.

LJ Potential parameters Carbon, C Aluminum, Al

σ (Ao) 3.41500 2.8500

ε (eV) 0.00239 0.0050

For the MD simulation, the GS of dimension 50.5 × 50.5 A◦ is selected. The
periodic boundary condition is applied in all the three directions, and the RVE
is given constant strain in the armchair and zigzag direction, respectively to
predict the stress-strain behaviour of the nanocomposite. The GS is spanned
through the total length of the unit cell. The equilibrated molecular structure
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Fig. 7. a) MD simulation based equilibrated GS reinforced Al nanocomposite RVE;
b) Two-phase model of FEM based RVE (i.e., ESF reinforced Al nanocomposite); and
c) Three-phase model of FEM based RVE (i.e., GS reinforced Al nanocomposite with

interphase zone).

(Fig. 7a) with minimized energy is accomplished by performing the sequence of
energy minimization, NVT and NPT ensembles. It is noted that NVT ensem-
ble stands for the volume and temperature being fixed during the simulation
and NPT ensemble stands for the pressure and temperature being fixed during
the simulation. All simulation is carried out at 300 K. After the equilibration
process, the dimension of RVE becomes 50.8 × 50.6 × 53.7 A◦ and the volume
fraction of GS-reinforcement is 6.8912%. MD simulation is carried under NVT
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conditions by applying a constant strain rate on the RVE. MD simulation runs
for 200,000 steps and the time step is taken as 0.5 fs. Results are obtained by us-
ing a personal computer equipped with the processor AMD A8-5550M APU with
installed RAM of 8 GB. The obtained stress-strain behaviour of the nanocom-
posite is given in Fig. 8 and the corresponding computational times have also
been tabulated in Table 4.

Fig. 8. Stress-strain behaviour of GS-reinforced Al nanocomposite (vf = 6.8912%).

It can be observed from the Table 4 that, the FEM-based simulations are
far more computationally effective in comparison with MD based simulations.
The results obtained in the armchair and zigzag direction are averaged as taken
by [66] to compare with the results obtained by the FEM based continuum model
having material isotropy as also reported by [67]. While comparing the 2- and
3-phase FEM based models, 3-phase models are slightly more computationally
expensive than 2-phase models which will enhance substantially by increasing
the number of GSs in RVE with almost the same accuracy of results.

Table 4. Comparison of Young’s modulus for Al GS aligned nanocomposite.

Molecular Dynamics FEM

Difference
Armchair

Simulation
time

[Hour]
Zigzag

Simulation
time

[Hour]
Average FEM

Simulation
time

[Hour]

120.9374 2:08:08 89.6547 2:05:25 105.2961

107.1548
(2 phase model) 0:00:52 1.7344 %

107.1543
(3 phase model) 0:00:57 1.7341 %
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It is to mention here that the FEM-based 2-phase procedure is employed in
Section 6.2 of the current study to predict the other elastic constants of GS-
reinforced nanocomposite materials.

7.2. Effective material constants of GS nanocomposite

In this section, stiffness properties of GS-reinforced nanocomposites are esti-
mated, for 3% volume fraction of GS-reinforcement using FEM. Initially, the
ESF-reinforced nanocomposite RVE is modelled by the Boolean-based RSA
technique. Thereafter, the stiffness properties of different nanocomposites are
obtained through the homogenization technique and listed in Table 5. From
Table 5, it can be observed that the values of estimated Young’s and shear
moduli of various nanocomposites depict good isotropy because of the random-
orientation of GSs, irrespective of the types of the matrix material. It is also clear
from the Table 5 that the GSs are found to be a better reinforcing element in soft
polymers (like PE) as compared to stiff materials (like Iron). For instance, in the
case of PE matrix reinforced with 3% volume fraction of uniformly-oriented and
-positioned GSs, the enhancement in Young’s modulus of the matrix is approx-
imately 47.9% whereas, for Iron matrix, the enhancement obtained is 2.9%. To
study the effect of alignment and stacking of GS (as shown in Figs. 5b and 5c) on
the elastic constants of the nanocomposite material, The GS-PE nanocomposite
is modelled and corresponding stiffness properties are shown in Table 6. The
effect of length of GSs on the elastic properties of the nanocomposite material
is also studied and given in Table 6 for the RVE having GSs of length 50 nm
(i.e., half of the length taken from other parametric studies) as also considered
in literature for CNT-reinforced RVE [68, 69].

Table 5. Stiffness properties of nanocomposite having 3% of uniformly-oriented
and -positioned GSs.

Matrix material

[Elastic modulus

of matrix in GPa]

Stiffness Properties [GPa]

Ex Ey Ez Gxy Gxz Gyz νxy νxz νyz

PE [3.4] 5.1563 5.7441 4.1873 2.0681 1.6368 1.7330 0.2661 0.2989 0.2909

Mg [45] 50.2856 51.0145 49.1384 19.4700 19.1085 19.3898 0.2929 0.2984 0.3012

Iron [211] 217.1221 217.4442 216.6902 83.5973 83.4081 83.6791 0.2991 0.2996 0.3002

Cu [130] 136.7623 137.3047 135.9715 52.7182 52.3487 52.7689 0.2977 0.2992 0.3005

Al [70] 75.9084 76.5568 74.8685 29.2911 28.9237 29.3679 0.2955 0.2988 0.3009

Au [78] 84.5267 85.2332 83.4128 32.6261 32.2246 32.7195 0.2956 0.2987 0.3009

In order to make a comparison between the stiffness properties of GS- and
CNT-reinforced plates, CNT-reinforced nanocomposites are also characterized
with and without the interphase zone. ESFs are modelled for CNT reinforced
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Table 6. Effect of different parameters on the stiffness properties of
PE-nanocomposite having 3% of GS.

Parameter
Stiffness Properties [GPa]

Ex Ey Ez Gxy Gxz Gyz νxy νxz νyz

Alignment of GS

(x-direction)
9.2656 4.1102 3.9104 1.9017 1.6590 1.5402 0.2899 0.1413 0.3610

Stacked GS 4.1492 4.2583 3.9401 1.8673 1.4974 1.5744 0.3236 0.2771 0.2766

Short GS 4.7251 4.9890 4.2052 1.9956 1.6436 1.8299 0.2703 0.2991 0.2945

Table 7. Elastic modulus and radius of CNT-ESF reinforced in PE matrix.

Type of bonding ECNT−ESF [GPa] rCNT−ESF [nm]

Imperfect 525.5178 2.2843

Perfect 1000.0000 1.6492

Table 8. Stiffness properties of CNT/GS-reinforced PE-nanocomposites
(Vf = 0.03).

Nanofiller
Type of
bonding

Stiffness Properties [GPa]

Ex Ey Ez Gxy Gxz Gyz νxy νxz νyz

CNT
Perfect 4.3915 4.6175 5.8612 2.0848 1.7963 1.8462 0.3149 0.2495 0.2343

Imperfect 4.0690 4.0953 4.9392 1.5514 1.7055 1.5910 0.3148 0.2630 0.2527

GS
Perfect 5.7405 7.0541 5.0198 2.6985 2.2018 2.3623 0.2264 0.2980 0.2923

Imperfect 5.1563 5.7441 4.1873 2.0681 1.6368 1.7330 0.2661 0.2989 0.2909

in PE matrix using the same procedure as discussed in Section 2. The obtained
values of Young’s modulus and radius of CNT-ESF for perfect and imperfect
bonding between CNT and matrix material are given in Table 7. Thereafter, the
stiffness properties of CNT- and GS-reinforced PE nanocomposites are compared
in Table 8. It can be seen from Table 8 that, GSs are better reinforcing nanofiller
than CNTs for both type of bonding (i.e., perfect and imperfect). It is also found
that the interfacial effect leads to a reduction in the elastic properties of PE-
nanocomposite for both nanofillers.

8. Postbuckling study

8.1. Validation

To verify the accuracy and validity of the approach to study the buckling and
postbuckling responses of the GS-reinforced nanocomposite plate, the results pre-
dicted from the nonlinear FEM analysis with the aid of ANSYS is equalled with
the results reported in the literature. All edges simply-supported (i.e., SSSS)
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the isotropic square plate subjected to edge uni-axial compression is taken for
comparing its buckling and postbuckling responses with that presented by Sun-

daresan et al. [70]. Sundaresan et al. [70] have utilized the FEM based on
the 8-node isoparametric plate element with 5 degrees of freedom per node to
predict the postbuckling response of the plate whereas, in this study SHELL281
element possessing 6 degrees of freedom is employed. The material properties
(i.e., elastic modulus = 3 × 106 Psi, and Poisson’s ratio is 0.25) and the width-
to-thickness ratio (i.e., b/h = 50) taken for the comparison purpose are similar
to those utilized by Sundaresan et al. [70].

While comparing, the results, the applied uni-axial edge compressive load
Nx and the corresponding maximum transverse deflection of the plate wmax, are
normalized as follows

(8.1) λ =
Nxb

2

π2D
and W∗ =

wmax

h
,

where D, the flexural rigidity of plate, is given by Eh3

12(1−ν2)
; b is the side of the

square plate, and; h represents the thickness of the plate.

Fig. 9. Validation of postbuckling response of SSSS isotropic plate subjected to uni-axial
compression.

As shown in Fig. 9, the postbuckling response and the critical buckling load
obtained using the present methodology is in good agreement with that of [70].
Little deviation in the plots in Fig. 9 can be attributed to the different type of
elements used in [70] and the present study, as also commented by Le-manh

and Lee [71].
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8.2. Postbuckling response of GS-reinforced nanocomposite plate

After the validation of the postbuckling approach, the buckling and postbuck-
ling behaviour of the GS-reinforced nanocomposite plate, subjected to in-plane
compressive load is presented and results are discussed. The effective elastic con-
stants of GS/ESF nanocomposite obtained in the previous section are utilized to
study the effects of perfect and imperfect bonding, ESF-alignment and geometric
parameters (i.e., the aspect ratio and width-to-thickness ratio) on buckling and
postbuckling responses of GS-ESF-reinforced nanocomposite plates. Excluding
the study on the effect of the matrix material on the postbuckling behaviour of
the GS-nanocomposite plate, all other studies are conducted for ESF-reinforced
PE nanocomposite plate. Similarly, except the study on the effect of perfect and
imperfect bonding on the postbuckling behaviour of the nanocomposite plate, all
other studies are performed for imperfectly bonded GS-reinforced nanocomposite
plate. The uni-axial/bi-axial compressive loads, N and the maximum transverse
deflection is normalized as:

(8.2) λ =
Nb2

Emh3
,

where Em represents the elastic modulus of the matrix material.
The effect of type of bonding (i.e., perfect and imperfect) between GS and

the matrix on the postbuckling response of SSSS GS-reinforced nanocompos-
ite plate subjected to uni-axial compressive load is studied and also compared
with that of the CNT-reinforced nanocomposite plate as shown in Fig. 10. It
can be seen from Fig. 10 that the nanocomposite plate having perfect bonding
between GS and the matrix material has the higher buckling load and postbuck-
ling strength corresponding to a particular value of transverse deflection than
imperfectly bonded GS reinforced PE nanocomposite plate. For instance, the
perfectly bonded GS-reinforced nanocomposite plate has approximately 24.24%
and 20.03% more buckling load and postbuckling strength (corresponding to
W∗ = 0.5), respectively than the imperfectly bonded GS-reinforced nanocompos-
ite plate. This reduced enhancement in the buckling strength and postbuckling
load can be attributed to the reduced enhancement in stiffness properties of the
GS-nanocomposite as given in Table 8. GS-reinforced nanocomposite plate of-
fers better buckling load and postbuckling strength than that of CNT reinforced
nanocomposite plates regardless of the nature of bonding (i.e., perfect or imper-
fect). For instance, imperfectly bonded GS-reinforced nanocomposite plate has
approximately 11.86% and 13.88% more buckling load and postbuckling strength
(corresponding to W∗ = 0.5), respectively than the imperfectly bonded CNT-
reinforced nanocomposite plate. This reduction in the buckling strength and
postbuckling load of CNT-reinforced nanocomposite plate can be attributed to
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the reduced area of CNT available to load transfer from matrix materials as
compared to GS-reinforced nanocomposite for the same volume fraction because
of cylindrical and plate like the structure of CNT and GS respectively. GSs are
found to be better reinforcements as also reported by [55].

Under uni-axial compression, the effect of GS-alignment in the direction of
loading on the buckling load and postbuckling response of the GS-reinforced
nanocomposite plate is studied, and the results are demonstrated in Fig. 11.

Fig. 10. Comparison of buckling and postbuckling behaviour of SSSS 3%-GS-reinforced PE
nanocomposite plate subjected to uni-axial loading conditions.

Fig. 11. Effect of alignment of GS on the buckling and postbuckling behaviour of SSSS
GS-reinforced PE nanocomposite plate subjected to uni-axial loading conditions.
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It can be observed from the Fig. 11 that the GS-alignment have the substan-
tial effect on the buckling load and postbuckling response of the GS-reinforced
PE nanocomposite plate than randomly-oriented and -positioned GS-reinforced
nanocomposite plate. This finding can be explained by the fact that the aligned
GS-reinforced nanocomposite possesses higher axial modulus (i.e., Ex) than
uniformly-oriented and -positioned nanocomposite plates; therefore, offers bet-
ter resistance to in-plane compressive loading. For instance, the imperfectly
bonded aligned GS-reinforced nanocomposite plate has approximately 15.15%
and 8.57% more buckling load and postbuckling strength (corresponding to
W∗ = 0.5), respectively than uniformly-oriented and -positioned imperfectly
bonded GS-reinforced nanocomposite plate. Thus, higher buckling load and post-
buckling strength are obtained for the GS nanocomposite plates reinforced with
aligned GSs.

Fig. 12. Effect of stacking of GSs on the buckling and postbuckling behaviour of SSSS
GS-reinforced PE nanocomposite plate subjected to uni-axial loading conditions.

Figures 12 and 13 represent the effect of agglomeration and length of GSs
on the buckling load and postbuckling response of nanocomposite plates respec-
tively. It is observed that, by stacking 3 GSs together, the percentage decrease
in the buckling load and postbuckling strength (corresponding to W∗ = 0.5)
of the nanocomposite plate are 14.16 and 13.31%, respectively. On the other
hand, in order to study the effect of length on the postbuckling behaviour of
the nanocomposite plate, the length of GSs is shortened from 100 nm to 50 nm.
The buckling load and postbuckling strength (corresponding to W∗ = 0.5) of the
nanocomposite plate are reduced by 5.01 and 4.57% respectively, by shortening
the length of GSs to half.
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Fig. 13. Effect of length of GSs on the buckling and postbuckling behaviour of SSSS
GS-reinforced PE nanocomposite plate subjected to uni-axial loading conditions.

Fig. 14. Effect of matrix materials on buckling and postbuckling behaviour of SSSS
nanocomposite plates with 3% volume fraction of GS.

The effects of matrix materials on buckling and postbuckling behaviour of
SSSS nanocomposite plate with 3% volume fraction of GS are shown in Fig. 14.
It can be seen from Fig. 14 that the GS reinforcement enhances the buckling
load and postbuckling strength of nanocomposite plates made of soft materials
more significantly than made of stiff materials. For example, 3% of GS reinforce-
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ment increases the buckling load and postbuckling strength (corresponding to
W∗ = 0.5) of GS-PE nanocomposite by 40.4% and 41.5%, respectively, as com-
pared to the corresponding values for pure matrix material (as given in Table
9); on the other hand, for GS-Fe nanocomposite, these values are limited to only
0.9% and 2.5%, respectively. This finding signifies the fact that GSs are far better
reinforcing elements in polymer than stiff metals.

Table 9. Normalized buckling load and postbuckling strength (corresponding
to W∗ = 5) of different plates.

Matrix material Normalized buckling load
(i.e., λcr)

Normalized postbuckling strength
corresponding to W∗ = 0.5 (i.e., λ)

Polyethylene (PE) 3.30 5.25

Magnesium (Mg) 2.60 4.02

Aluminum (Al) 2.52 3.91

Gold (Au) 2.48 3.90

Copper (Cu) 2.42 3.81

Iron (Fe) 2.35 3.72

The effects of geometric parameters (i.e., aspect and width-to-thickness ra-
tios) on the buckling and postbuckling behaviour of the GS-reinforced nanocom-
posite plate are shown in Fig. 15 and Table 10, respectively. The results are
obtained for imperfectly bonded GS-reinforced PE nanocomposite plate.

It is observed from Fig. 15, that with the increase in the aspect ratio (b1/b2)
of nanocomposite plate, (where b1 is the width of the plate in the x-direction,

Fig. 15. Effect of aspect ratio (b1/b2) on the postbuckling response of SSSS imperfectly
bonded GS-reinforced PE nanocomposite plate.
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similarly b2 represents the width of the plate in the y-direction) the buckling load
and postbuckling strength of the nanocomposite plate decreases. The difference
in the buckling load and postbuckling strength of GS nanocomposite plates of
lower aspect ratios is substantial, and this difference decreases for the higher
aspect ratio, as shown in Fig. 15. Therefore, the GS nanocomposite plates having
higher aspect ratios possess almost the same buckling load and postbuckling
response, indicating that for the higher aspect ratio the nanocomposite plate
behaves more or less as a column.

Table 10. Effect of b/h ratio on the buckling load and postbuckling strength of
GS-reinforced PE nanocomposite plate.

b/h
Buckling load Postbuckling strength at W∗ = 5

Dimensional
(Nx) [kN/mm]

Non-dimensional
(λ)

Dimensional
(Nx) [kN/mm]

Non-dimensional
(λ)

25 189.4164 3.12 307.8017 5.07

50 25.0430 3.30 39.6894 5.25

100 3.2252 3.40 4.9991 5.27

200 0.4055 3.42 0.6261 5.28

The effect of the width-to-thickness ratio (i.e., b/h) on the buckling load and
postbuckling strength (at W∗ = 5) of the GS-reinforced nanocomposite plate are
given in Table 10. It is evident from Table 10 that with the increase in thickness
of the GS-reinforced nanocomposite plate, its buckling load, and postbuckling
strength increase substantially.

9. Conclusion

In the current study, an equivalent solid fibre (ESF) containing GS and the
corresponding interphase zone is modelled, and that are dispersed randomly into
the matrix material by the Boolean based RSA technique to make a nanocom-
posite. The Young’s modulus and thickness of the interphase zone are derived by
using the cohesive zone model. The effective stiffness properties of GS-reinforced
nanocomposite material are evaluated with the application of the finite element
method (FEM)-based numerical homogenization technique. The obtained stiff-
ness properties of the nanocomposite material are further utilized to model and
study the buckling and postbuckling behaviour of the GS-reinforced nanocom-
posite plate, with and without considering the interphase effect, subjected to in-
plane compressive loading. Different studies are performed to study the effects
of perfect and imperfect bonding between GS/CNT and the matrix material,
GS-alignment, GS-stacking, length of GS, matrix materials, geometric param-
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eters (i.e., the aspect ratio and width-to-thickness ratio), boundary conditions
and type of loading (i.e., uni-axial and bi-axial compression) on the postbuckling
behaviour of the GS-reinforced nanocomposite plate. The following conclusions
based on the studies conducted are drawn:

• Effect of interphase between GS and PE matrix results in the reduced buck-
ling load and postbuckling strength of the GS-reinforced nanocomposite
plate as compared to the perfectly bonded GS-reinforced nanocomposite
plate.

• GS-reinforced nanocomposite plate offers better buckling load and post-
buckling strength than that of CNT-reinforced nanocomposite plates re-
gardless of the nature of bonding (i.e., perfect or imperfect).

• GS reinforcement enhances the buckling load and postbuckling strength of
nanocomposite plates made of soft materials (like PE) more significantly
than made of stiff materials (like Fe).

• Buckling load and postbuckling strength of GS-reinforced PE nanocom-
posite plate under uni-axial compression load are substantially improved
when the GSs are aligned in the direction of loading than that of the
nanocomposite plate having randomly-oriented and -positioned GSs.

• Stacking of GSs and GSs having smaller length offer reductions in stiff-
ness properties of the nanocomposite material, which therefore reduces
the buckling load and postbuckling strength of nanocomposite plate.

• GS-reinforced nanocomposite plates having high aspect ratios possess al-
most the same buckling load and postbuckling strength, thus indicating
that such plates would behave more or less like a column possessing only
marginal postbuckling strength beyond buckling.

• The increase in the thickness of the GS-reinforced nanocomposite plate
results in substantial improvement in its buckling load and postbuckling
strength.
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