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Abstract. In the following study we rigorously analyze the problem of a circular inclusion with
inhomogeneous imperfect sliding interface in finite deformation of harmonic materials. The work
begins by defining the inhomogeneous sliding boundary conditions characterized by two imperfect
interface parameters m(θ) → ∞ and n(θ) = finite corresponding to the normal and tangential
coordinate directions (with respect to the interface boundary curve), respectively. Then, through
the process of analytic continuation the problem is eventually reduced to the determination of
a single analytic function given by an ordinary differential equation with variable coefficients. A
specific example is selected to illustrate the method. The effects of the circumferential variation
of the interface parameter on the mean stress at the interface and the average mean stress in the
inclusion are discussed.
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1. Introduction

The study of inclusion problems in the linear theory of elasticity has seen a great deal of devel-
opment over the past decades. The research conducted in this area ranges from the fundamental
works of Eshelby [1] and Muskhelishvili [2], amongst others, which utilized perfect bonding conditions
and ellipsoidal geometries, to the introduction of arbitrary inclusion geometries (see, for example
[3, 4, 5]), imperfect bonding models (see, for example [6, 7, 8]) and complex interphase models (see,
for example[9]) in more recent years. On the contrary, inclusion problems in finite elasticity theory,
specifically in the area of harmonic materials, has not seen the same degree of interest or success. The
works of Fritz [10], Ogden and Isherwood [11], Varley and Cumberbatch [12],Knowles and Sternberg[13]
laid the foundation for the finite deformation of harmonic materials. However, it was not until Ru
[14] who developed a more convenient form of the complex variable formulation for harmonic ma-
terials that research into inclusion problems experienced rapid growth. Building on this work, finite
elasticity problems of elliptical inclusions with uniform internal stress fields[15], designing an inclusion
with uniform interior stress[16], partially debonded circular inclusions[17] and a circular inclusion with
homogeneous imperfect interface[18] have been studied just to name a few. However, in many real
world problems a homogeneous imperfect interface is not a realistic assumption. Hence, what is of
particular interest is a model that captures the variability of interface damage (such as the presence of
microcracks, voids and impurities) which is referred to as an inhomogeneous imperfect interface. This
assertion is supported, in part, by previous works (see [19, 20]) corresponding to an inhomogeneous
spring-type interface and an inhomogeneous non-slipping interface, respectively.
Recently, the concept of a sliding boundary has been receiving increasing interest in the literature
since the study of sliding boundaries is necessary for modelling critical features of material behaviour.
In 1993 Mijailovich et al. ([21]) hypothesized that dissipative stresses arise in the interaction among
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fibers in connective lung tissue matrix. They established a mechanistic model by reducing the com-
plicated three dimensional fiber network to the interaction of two ideal fibers that dissipate energy
along their common slipping interface surface. The resulting model illustrates that a slipping interface
is critical in understanding the mechanisms behind connective tissue elasticity. In the area of material
science, it has been demonstrated through atomistic simulations (see, for example, Van Swygenhoven
([22]) that for nanocrystalline materials macroscopic imposed deformations are accommodated by
grain boundary slipping and separation. Following this fact Wei et al. ([23]) considered the effects
of grain boundaries on polycrystalline materials. By incorporating crystal plasticity for the grain in-
terior together with an interface constitutive model that takes into account grain boundary related
deformation at the interface the authors illustrate that grain boundary slip-separation deformation
has a significant effect on material response. Barton et al. ([24]) developed a multi-material numeri-
cal scheme for non-linear elastic solids that examines interfacial boundary conditions with particular
emphasis placed on a sliding interface. Several examples are provided to illustrate the scheme.
In this work we consider the inhomogeneous sliding imperfect interface (where the interphase layer is
modeled as a 2-dimensional curve of vanishing thickness and the material properties of the interphase
layer are given as spring-type interface parameters) where the interfacial bonding is characterized by
m(θ) → ∞ and n(θ) = finite (where m(θ) and n(θ) are the normal and tangential imperfect interface
parameters, respectively describing the variability of interphase damage and θ is the polar angle). Such
an interface condition allows for a relative tangential displacement but maintains continuity of radial
displacements across the interphase layer. Use of the inhomogeneous sliding imperfect interface for the
case of finite deformation is suitable for applications where type 1 harmonic materials are considered
as it was demonstrated by Varley et al [12] that for type 1 harmonic materials the differences in the
principal Piola stresses are linearly proportional to the difference in the stretch ratios.
The work begins with section 2 where the fundamental equations of type 1 harmonic materials are
presented. Following section 2, section 3 discusses the formulation of the problem and the sliding
boundary conditions where eventually a first order linear ordinary differential equation with variable
coefficients is developed for the inclusion function. Section 4 illustrates the analysis for a specific class
of imperfect interface and in section 5 an example is given to illustrate the method. In section 6 the
average mean stress in the inclusion and the mean stress at a point on the interface is evaluated and
compared to the corresponding homogeneous imperfect interface. Finally a summary of the results
are presented in section 7.

2. Mathematical Preliminaries

Figure 1. Elastic circular inclusion(D1) bounded by curve ∂D1 embedded in a infi-
nite matrix (D2)

Consider a single simply connected domain bounded by a continuous circular curve ∂D1, embedded in
an infinite matrix in R2. Let us assume that any deformation relative to the reference configuration is



A circular inclusion with inhomogeneous sliding imperfect interface in harmonic materials 3

confined to the x1x2 plane. Let z = x1+ix2 be the Lagrangian coordinates of a particle in the reference
configuration and let w(z) = y1(z) + iy2(z) be the Eulerian coordinates of a particle in the current
configuration. The inclusion is denoted by D1and endowed with material properties µ1, α1, β1. The
matirx is denoted by domainD2 with material properties µ2, α2, β2 where

1
2 ≤ αk < 1, βk > 0, k = 1, 2.

In both cases, µ represents the material shear modulus, and α, β are derived from the ratios of the
principal stretches of a harmonic material under uni-axial tension. The matrix and inclusion are
assumed to be type 1 harmonic materials with a strain energy function W (I, J)defined as follows

(2.1) W (I, J) = 2µ [H(R)− J ] , Fij =
∂yi
∂xj

, H
′

(R) =
1

4α

[

R+
√

R2 − 16αβ
]

,

where I and J are the scalar invariants of the right Cauchy Green tensor FT
F corresponding to the

two dimensional deformation as noted above and are given by

(2.2) I = λ21 + λ22 = tr[C], J = λ1λ2 =
√

det[C] = det[F],

where λ1, λ2 are the principal stretches and R =
√
I + 2J . According to Ru [14], the deformation

map and the Piola stress function can be given in terms of two complex potential functions φk(z) and
ψk(z) as follows

iwk(z, z) = αkφk(z) + iψk(z) +
βkz

φ
′

k(z)
,

χk(z, z) = 2iµk

[

(αk − 1)φk(z) + iψk(z) +
βkz

φ
′

k(z)

]

, for k = 1, 2.(2.3)

Equation (2.3) gives rise to the following Cartesian expressions for the stress and displacement fields

wk(z, z)− z = (u1 + iu2)k ,

χk(z, z),1 = (P22 − iP12)k , χk(z, z),2 = (−P21 + iP11)k , k = 1, 2.(2.4)

where the subscript k refers to the either the inclusion k = 1 or the matrix k = 2.
In order to illustrate the significance of the inhomogeneous sliding imperfect interface we consider

the scenario where the rotations are neglected. Then equation (2.4) may be transformed into polar
coordinates as shown:

(2.5)
R

z
wk(z, z)−R = (ur + iuθ)k, χ

′

k(z, z) = (Prr + iPθr)k , k = 1, 2.

where a prime (′) denotes differentiation with respect to z.

3. Formulation

Assuming that the inclusion is imperfectly bonded to the matrix along ∂D1 the general imperfect
interface conditions are given by

(3.1) ||Prr + iPθr|| = 0, Prr = m(θ) ||ur|| , Pθr = n(θ) ||uθ|| , z ∈ ∂D1,

where m(θ) and n(θ) are two non-negative imperfect interface parameters and ||.|| = (.)2 − (.)1 is the
quantitative jump across ∂D1. It is assumed that the potential functions φ2(z) and ψ2(z) exhibit the
following asymptotic behavior as |z| → ∞

(3.2) φ2(z) = Az +O(1), ψ2(z) = Bz +O(1), |z| → ∞,

where A and B are complex constants that reflect the far-field loading and are given by [19]
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(3.3) A = i









P∞

22
+P∞

11

4µ2
±
√

(

P∞

22
+P∞

11

4µ2

)2

+ 4(1− α2)β2

2(1− α2)









,

(3.4) B =
P∞
11 − P∞

22 − 2iP∞
12

4µ2
,

and the O(1) are some first order constant terms. Furthermore, since φk, ψk are potential functions,
we only consider the case where they are analytic and hence the potentials φk(z) and ψk(z), k = 1, 2
admit the following series expansions

φ1(z) = X0 +

∞
∑

k=1

Xkz
k, ψ1(z) = Y0 +

∞
∑

k=1

Ykz
k, z ∈ D1,

φ2(z) = Az +
∞
∑

k=0

Akz
−k, ψ2(z) = Bz +

∞
∑

k=0

Bkz
−k, z ∈ D2.(3.5)

Remark 1. From (3.5) we require that X1 6= 0 for |z| ≤ R and A 6= 0 for |z| ≥ R. This guaran-

tees that F
′

(I) = |φ′

k(z)| 6= 0 ∀z ∈ C.

In the present work we do not consider a rigid displacement of the inclusion, hence, without loss
of generality, it is admissible to set both X0, Y0 = 0 and the continuity of traction condition from (3.1)
gives

(3.6) µ1

[

(α1 − 1)φ1(z) + iψ1(R
2/z) +

β1z

φ1
′

(R2/z)

]

=

µ2

[

(α2 − 1)φ2(z) + iψ2(R
2/z) +

β2z

φ2
′

(R2/z)

]

, z ∈ ∂D1.

Substituting Γ = µ1

µ2
into the above yields

(3.7) Γ(α1 − 1)φ1(z)− iψ2(R
2/z)− β2z

φ
′

2(R
2/z)

=

(α2 − 1)φ2(z)− Γiψ1(R
2/z)− Γβ1z

φ
′

1(R
2/z)

, z ∈ ∂D1.

The LHS of (3.7) is analytic for z ∈ D1 and the RHS is analytic for z ∈ D2. Utilizing the principle of
analytic continuation on (3.7) we arrive at the following

(3.8) iψ2(R
2/z) +

β2z

φ
′

2(R
2/z)

= Γ(α1 − 1)φ1(z)− (α2 − 1)Az +
Γβ1z

X1

+
iBR2

z
, z ∈ ∂D1,

and

(3.9) iψ1(R
2/z) +

β1z

φ
′

1(R
2/z)

=
(α2 − 1)

Γ
φ2(z)−

(α2 − 1)

Γ
Az +

β1z

X1

+
iBR2

Γz
, z ∈ ∂D1.

Thus, the problem is now reduced to determining two unknown analytic functions φ1(z) and
φ2(z) complying with the interface condition and the asymptotic condition for φ2(z).
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3.1. Solution for Homogeneous Imperfect Interface

In this section we will briefly examine the homogeneous imperfect interface where the parameters m
and n appearing in (3.29) are assumed to be constant along ∂D1. Although a similar problem has
been investigated by Wang[18], for ease of comparison, we present a solution that is more amenable
to validating the present work.

The general form of the imperfect interface condition is given as

(3.10) (Prr + iPθr)2 =
m+ n

2
||ur + iuθ|| +

m− n

2
||ur − iuθ||, z ∈ ∂D1,

Inserting the definitions of (2.5) into (3.10) yields

(3.11) iχ
′

2(z) =
(m+ n)R

2z
(iw2(z)− iw1(z)) +

(m− n)z

2R

(

iw1(R
2/z)− iw2(R

2/z)
)

, z ∈ ∂D1.

Next, substituting in (3.8,3.9) into (3.11) gives

(3.12)

(1− α2)φ
′

2(z) + Γ(1− α1)φ
′

1(z) + (α2 − 1)A− Γβ1

X1

+
iBR2

z2
=

(m+ n)R

4µ2

[

φ2(z)

z

(

α2Γ− α2 + 1

Γ

)

+
φ1(z)

z
(Γ(α1 − 1)− α1) +A(

α2 − 1

Γ
− α2 + 1) +

β1(Γ− 1)

X1

+
iBR2

z2
Γ− 1

Γ

]

+

m− n

4µ2R

[

zφ1(R
2/z)(α1 − Γ(α1 − 1)) + zφ2(R

2/z)(
α2 − 1

Γ
− α2) +AR2(α2 − 1− α2 − 1

Γ
)

+
β1R

2(1 − Γ)

X1
+ iBz2

(Γ− 1)

Γ

]

, z ∈ ∂D1.

Substituting the definitions of (3.5) into (3.12) and performing analytic continuation yields the fol-
lowing expression as a compatibility condition between the two resulting functions

(3.13) Γ(1− α1)X1 −
Γβ1

X1

=
mR

4µ2

[

(Γ(α1 − 1)− α1)(X1 −X1) + β1(Γ− 1)

(

1

X1

− 1

X1

)

+ 2A

]

+
nR

4µ2

[

(Γ(α1 − 1)− α1)(X1 +X1) + β1(Γ− 1)

(

1

X1

+
1

X1

)]

,

As an example, it can be shown that (3.13) may be rearranged into

(3.14)

[

R(m+ n)

4µ1
+

1− α1

α1 + Γ(1− α1)

]

X1 +
(n−m)R

4µ1
X1+

β1
α1 + Γ(1− α1)

[ (m+n)R
4µ1

(1 − Γ)− 1

X1

+

(n−m)R
4µ1

(1− Γ)

X1

]

=

ARm
2µ1

α1 + Γ(1 − α1)
,

which is identical to the results provided by Wang, save for the insertion that A is purely imaginary,
in [18].

Noting that as either (m or n) → ∞ in (3.13) we recover only the displacement continuity
boundary condition, we must further evaluate the stress-displacement condition given by

(3.15)
(Prr)2
m

+ i
(Prθ)2
n

= ||ur + iuθ||, z ∈ ∂D1,
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which degenerates to

(3.16)
χ

′

2(z)− χ
′

2(R
2/z)

2i
= −inR

z
[w2(z)− w1(z)] , z ∈ ∂D1,

as m → ∞. Substituting the definitions of χ2(z) and wk(z), k = 1, 2 into (3.16) and comparing
coefficients of like powers of z on the LHS and RHS gives the following

(3.17) Γ(α1 − 1)(X1 +X1) + Γβ1

(

1

X1
+

1

X1

)

=

nR

µ2

[

(α1 − Γ(α1 − 1))X1 + (1 − Γ)
β1

X1

−A

]

, (z0),

(3.18) X2 = A0 = 0, (z±1),

(3.19) 3Γ(α1 − 1)X3 + (1 − α2)
A1

R4
+
iB

R2
=
nR

µ2
[(α1 − Γ(α1 − 1))X3] , (z

2),

(3.20) (1− α2)A1 + 3Γ(α1 − 1)X3R
4 − iBR2 =

nR

µ2

[

iBR2 (1 − Γ)

Γ
+
α2 − 1− Γα2

Γ
A1

]

, (z−2),

(3.21) Ak = Xk+2 = 0, ∀k ≥ 2.

If we then input the compatibility condition from (3.13) into (3.17) for the case of m → ∞ we arrive
at the following expression for X1 and X1

(3.22) Γ(1− α1)(X1 +X1)− Γβ1

(

1

X1
+

1

X1

)

=
nR

µ2

[

(Γ(α1 − 1)− α1)(X1 +X1)+

(Γ− 1)β1

(

1

X1

+
1

X1

)]

.

Equation (3.22) implies that Re[X1] = 0 and that X1 being purely imaginary is given by

(3.23) (α1 − Γ(α1 − 1))X1 + (1− Γ)
β1

X1

−A = 0.

3.2. Inhomogeneous Imperfect Sliding Interface

We shall now consider a circular inclusion for which the inhomogeneous imperfect interface is charac-
terized by m(θ) → ∞, n(θ) = finite. For this so called sliding interface the boundary conditions take
the form

(3.24)
(Prθ)2
n(θ)

= ||uθ||, ||ur|| = 0, z ∈ ∂D1,

where n(θ) is non-negative and periodic along ∂D1. The displacement continuity condition is evaluated
as follows

(3.25) ||ur|| =
R

z
(iw2(z)− iw1(z)) +

z

R

(

iw1(R
2/z)− iw2(R

2/z)
)

, z ∈ ∂D1.
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Inserting (2.3) in combination with (3.8,3.9) into (3.25) gives

(3.26) [Γ(α1 − 1)− α1]
R

z
φ1(z) +

[

α2 − 1− Γα2

Γ

]

z

R
φ2(R

2/z) +
α2 − 1 + Γ(1− α2)

Γ
AR

+
iBz2

R

Γ− 1

Γ
+
β1
X1

(1− Γ) = [Γ(α1 − 1)− α1]
z

R
φ1(R

2/z) +

[

α2 − 1− Γα2

Γ

]

R

z
φ2(z)

+
α2 − 1 + Γ(1− α2)

Γ
AR+

iBR3

z2
1− Γ

Γ
+
β1

X1

(1− Γ), z ∈ ∂D1.

In (3.26) the left hand side is analytic in D1 and the right hand side is analytic in D2 except for
possibly at the point |z| = 0 and as |z| → ∞, respectively. Employing the technique of analytic
continuation, we first analyze the behavior of the left hand side of (3.26) as |z| → 0 as follows

(3.27) (Γ(α1 − 1)− α1)X1R+
α2 − 1− Γα2

Γ
AR+

α2 − 1 + Γ(1− α2)

Γ
AR+

β1
X1

(1− Γ), |z| → 0.

Since (3.27) does not contain any strictly singular terms, we may conclude that the left hand side of
(3.26) is analytic in D1 as |z| → 0. Moving on to the right hand side of (3.26), we observe the following
as |z| → ∞

(3.28) (Γ(α1 − 1)−α1)X1R+
α2 − 1− Γα2

Γ
AR+

α2 − 1 + Γ(1− α2)

Γ
AR+

β1

X1

(1−Γ), |z| → ∞.

Equation (3.28) represents the asymptotic behavior of the right hand side of (3.26) and , subtracting
(3.28) from both sides of (3.26), we may form the following function

(3.29) D(z) =



















































[Γ(α1 − 1)− α1]
R
z
φ1(z) +

[

α2−1−Γα2

Γ

]

z
R
φ2(R

2/z) + α2−1+Γ(1−α2)
Γ AR

+ iBz2

R
Γ−1
Γ + β1

X1
(1− Γ)− (Γ(α1 − 1)− α1)X1R− α2−1−Γα2

Γ AR−
α2−1+Γ(1−α2)

Γ AR− β1

X1

(1− Γ), z ∈ D1

[Γ(α1 − 1)− α1]
z
R
φ1(R

2/z) +
[

α2−1−Γα2

Γ

]

R
z
φ2(z)

+α2−1+Γ(1−α2)
Γ AR+ iBR3

z2

1−Γ
Γ + β1

X1

(1− Γ)− α2−1−Γα2

Γ AR−
α2−1+Γ(1−α2)

Γ AR− β1

X1

(1− Γ), z ∈ D2.

Now, since D(z) is well defined and analytic in the entire plane including as |z| → ∞, Louisvilles
theorem states that D(z) = constant. This implies, through the subtraction of (3.28) on the left hand
and right hand side of (3.26), that D(z) = 0 and hence we arrive at the following two equations

(3.30) [Γ(α1 − 1)− α1]
R

z
φ1(z) +

[

α2 − 1− Γα2

Γ

]

z

R
φ2(R

2/z) +
α2 − 1 + Γ(1− α2)

Γ
AR

+
iBz2

R

Γ− 1

Γ
+
β1
X1

(1− Γ)− (Γ(α1 − 1)− α1)X1R− α2 − 1− Γα2

Γ
AR−

α2 − 1 + Γ(1 − α2)

Γ
AR − β1

X1

(1− Γ) = 0, z ∈ D1,
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(3.31) [Γ(α1 − 1)− α1]
z

R
φ1(R

2/z) +

[

α2 − 1− Γα2

Γ

]

R

z
φ2(z)

+
α2 − 1 + Γ(1 − α2)

Γ
AR +

iBR3

z2
1− Γ

Γ
+
β1

X1

(1 − Γ)− α2 − 1− Γα2

Γ
AR−

α2 − 1 + Γ(1 − α2)

Γ
AR − β1

X1

(1− Γ) = 0, z ∈ D2.

The compatability requirement between equations (3.30) and (3.31) is given by

(3.32) (Γ(α1 − 1)− α1)(X1 −X1) + β1(1− Γ)

(

1

X1
− 1

X1

)

= −2A.

We now consider the tangential stress-displacement interface condition which may be written as

(3.33)
(Prθ)2
n(θ)

= −i||ur + iuθ||, z ∈ ∂D1,

which, in terms of (2.3,2.4) and (3.8,3.9,3.31,3.33) becomes

(3.34)

[

Γ(1− α2 + Γ(1− α1))

α2 − 1− Γα2

]

φ
′

1(z) +

[

Γ(1− α2 + Γ(1− α1))

α2 − 1− Γα2

]

φ1
′

(R2/z)+

2Γ(α2 − 1)(α1 − Γ(α1 − 1))

α2 − 1− Γα2

φ1(z)

z
+

2Γ(α2 − 1)(α1 − Γ(α1 − 1))

α2 − 1− Γα2
φ

′

1(R
2/z)

z

R2

+
iBR2

z2
Γ

α2 − 1− Γα2
− iBz2

R2

Γ

α2 − 1− Γα2
+

Γ(α2 − 1)(Γ(α1 − 1)− α1)

α2 − 1− Γα2
X1

+
Γ(α2 − 1)(Γ(α1 − 1)− α1)

α2 − 1− Γα2
X1 +

Γβ1

X1

+
Γβ1
X1

=

n(θ)R

µ2

[

(α1 − Γ(α1 − 1)
φ1(z)

z
+ (α1 − Γ(α1 − 1)

z

R2
φ1(R

2/z)+

(Γ(α1 − 1)− α1)
X1

2
+

β1

2X1

(1 − Γ) + (Γ(α1 − 1)− α1)
X1

2
+

β1
2X1

(1 − Γ)

]

, z ∈ ∂D1.

The problem is now reduced to determining the single analytic function φ1(z). Unlike the homoge-
neous analog, direct substitution of the power series expansion of φ1(z) into (3.34) will result in an
unsolveable system of equations for the coefficients of φ1(z). As such, we shall seek to use analytic
continuation to further reduce (3.34) into an ordinary differential equation with variable coefficients
for φ1(z). To aid in this process we will define a new imperfect interface parameter to replace n(θ) in
(3.34) as follows

(3.35) δ(θ) =
n(θ)R

µ2
, δ(θ) > 0,

and since 1/δ(θ) is a non-negative and periodic function on ∂D1, we may write

(3.36)
δ0
δ(θ)

= 1 + f(θ), δ0 > 0, f(θ) > −1,

where δ0 is real, f(θ) is 2π periodic on ∂D1, and as f(θ) → −1, n(θ) → ∞, which is the case of a
perfectly bonded interface. Given f(θ) is 2π periodic on ∂D1 we are afforded a Fourier series expansion
for (1 + f(z)) which we may then rewrite as a function of the complex variable z as follows
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(3.37) f(z) =
1

2

s
∑

k=1

(bk + iak)
Rk

zk
+ (bk − iak)

zk

Rk
, ∀z ∈ ∂D1, f(θ) = f(z).

3.3. The Differential Equation for φ1(z)

Before returning to (3.34) we introduce the following two material parameters

(3.38) Ω =
(1− α2)(α1 − Γ(α1 − 1))

1− α2 + Γ(1− α1)
> 0, ω =

Γα2 − α2 + 1

1− α2 + Γ(1− α1)
> 0.

Using (3.36,3.37,3.38) we may rewrite (3.34) as

(3.39) (1 + f(z))φ
′

1(z) +

[

ω(α1 − Γ(α1 − 1)

Γ

δ0
z

− 2Ω(1 + f(z))

z

]

φ1(z)+

(1 + f(z))

[

ΩX1 −
iBz2

R2

ω

Γα2 − α2 + 1
− ωβ1

X1

]

− ω(α1 − Γ(α1 − 1))

Γ

δ0
2
X1+

β1
2X1

(1− Γ)ωδ0
Γ

= −(1 + f(z))φ
′

1(R
2/z)+

[

2Ω(1 + f(z))z

R2
− ω(α1 − Γ(α1 − 1))

Γ

δ0z

R2

]

φ1(R
2/z)−

(1 + f(z))

[

ΩX1 −
ωβ1

X1

+
iBR2

z2
ω

Γα2 − α2 + 1

]

+
ω(α1 − Γ(α1 − 1))

Γ

δ0
2
X1−

β1

2X1

(1 − Γ)δ0ω

Γ
, z ∈ ∂D1.

The left hand side of (3.39) is analytic in D1 and the right hand side is analytic in D2. Using the
technique of analytic continuation we may construct an entire function by studying the behaviour of
the left hand and right hand side of (3.39) as |z| = 0, and |z| → ∞, respectively. Beginning with the
left hand side we allow |z| → 0 and recover the following singular terms

(3.40)

k
∑

j=1

jXjz
j−1

s
∑

k=1

bk + iak
2

Rk

zk
− 2Ω

k
∑

j=1

Xjz
j−1

s
∑

k=1

bk + iak
2

Rk

zk
+

[

ΩX1 −
ωβ1
X1

] s
∑

k=1

bk + iak
2

Rk

zk
− iBω

Γα2 − α2 + 1

s
∑

k=3

bk + iak
2

Rk−2

zk−2
, |z| → 0.

Proceeding to the right hand side of (3.39), we find the following asymptotic and singular behavior as
|z| → ∞
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(3.41) X1(Ω− 1)−
k

∑

k=1

jXj

(

R2

z

)j−1 s
∑

k=1

bk − iak
2

zk

Rk
−

s
∑

k=1

(k + 1)Xk+1
bk − iak

2
Rk+

2Ω





k
∑

j=1

Xj

(

R2

z

)j−1 s
∑

k=1

bk − iak
2

zk

Rk
+

s
∑

k=1

Xk+1
bk − iak

2
Rk



− ω(α1 − Γ(α1 − 1))

Γ

δ0
2
X1+

ωβ1

X1

−
[

ΩX1 −
ωβ1

X1

] s
∑

k=1

bk − iak
2

zk

Rk
− iBω

Γα2 − α2 + 1

s
∑

k=2

bk − iak
2

zk−2

Rk−2
−

β1

X1

(1− Γ)δ0ω

2Γ
, |z| → ∞.

The sum of (3.40) and (3.41) is defined by L(z)

(3.42) L(z) =

k
∑

j=1

jXjz
j−1

s
∑

k=1

bk + iak
2

Rk

zk
− 2Ω

k
∑

j=1

Xjz
j−1

s
∑

k=1

bk + iak
2

Rk

zk
+

[

ΩX1 −
ωβ1
X1

] s
∑

k=1

bk + iak
2

Rk

zk
− iBω

Γα2 − α2 + 1

s
∑

k=3

bk + iak
2

Rk−2

zk−2
+

X1(Ω− 1)−
k
∑

k=1

jXj

(

R2

z

)j−1 s
∑

k=1

bk − iak
2

zk

Rk
−

s
∑

k=1

(k + 1)Xk+1
bk − iak

2
Rk+

2Ω





k
∑

j=1

Xj

(

R2

z

)j−1 s
∑

k=1

bk − iak
2

zk

Rk
+

s
∑

k=1

Xk+1
bk − iak

2
Rk



− ω(α1 − Γ(α1 − 1))

Γ

δ0
2
X1+

ωβ1

X1

−
[

ΩX1 −
ωβ1

X1

] s
∑

k=1

bk − iak
2

zk

Rk
− iBω

Γα2 − α2 + 1

s
∑

k=2

bk − iak
2

zk−2

Rk−2
−

β1

X1

(1− Γ)δ0ω

2Γ
,

such that by subtracting L(z) from both the left hand side and right hand side of (3.39) we obtain
the following entire function

(3.43) E(z) =







































































(1 + f(z))φ
′

1(z) +
[

ω(α1−Γ(α1−1)
Γ

δ0
z
− 2Ω(1+f(z))

z

]

φ1(z)+

(1 + f(z))
[

ΩX1 − iBz2

R2

ω
Γα2−α2+1 − ωβ1

X1

]

− ω(α1−Γ(α1−1))
Γ

δ0
2 X1+

β1

2X1

(1−Γ)ωδ0
Γ − L(z), z ∈ D1,

−(1 + f(z))φ
′

1(R
2/z)+

[

2Ω(1+f(z))z
R2 − ω(α1−Γ(α1−1))

Γ
δ0z
R2

]

φ1(R
2/z)−

(1 + f(z))
[

ΩX1 − ωβ1

X1

+ iBR2

z2

ω
Γα2−α2+1

]

+ ω(α1−Γ(α1−1))
Γ

δ0
2 X1−

β1

2X1

(1−Γ)δ0ω
Γ − L(z), z ∈ D2.

Once again we seek to take advantage of Louisville’s theorem whereby it is realized that E(z) =
constant in (3.43) . Owing to the subtraction of L(z), E(z) = 0 and we generate the following two
equations
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(3.44) (1 + f(z))φ
′

1(z) +

[

ω(α1 − Γ(α1 − 1)

Γ

δ0
z

− 2Ω(1 + f(z))

z

]

φ1(z)+

(1 + f(z))

[

ΩX1 −
iBz2

R2

ω

Γα2 − α2 + 1
− ωβ1

X1

]

− ω(α1 − Γ(α1 − 1))

Γ

δ0
2
X1+

β1
2X1

(1− Γ)ωδ0
Γ

− L(z) = 0, z ∈ D1,

(3.45) − (1 + f(z))φ
′

1(R
2/z)+

[

2Ω(1 + f(z))z

R2
− ω(α1 − Γ(α1 − 1))

Γ

δ0z

R2

]

φ1(R
2/z)−

(1 + f(z))

[

ΩX1 −
ωβ1

X1

+
iBR2

z2
ω

Γα2 − α2 + 1

]

+
ω(α1 − Γ(α1 − 1))

Γ

δ0
2
X1−

β1

2X1

(1− Γ)δ0ω

Γ
− L(z) = 0, z ∈ D2.

The compatibility requirement between (3.44) and (3.45) is given by allowing |z| → 0 in (3.45)

(3.46) L0 = −L0,

where

(3.47) L0 = X1(1 − Ω)− ωβ1
X1

+

s
∑

k=1

(k + 1− 2Ω)Xk+1
bk + iak

2
Rk+

ω(α1 − Γ(α1 − 1))

Γ

δ0
2
X1 +

β1(1 − Γ)ωδ0
2ΓX1

− iBω

Γα2 − α2 + 1

b2 + ia2
2

.

Given equation (3.46), equations (3.44) and (3.45) are equivalent and hence we may use (3.44) to
define a simplified differential equation for φ1(z) as follows

(3.48) φ
′

1(z) +

[

ω(α1 − Γ(α1 − 1)

Γ

δ0
z(1 + f(z))

− 2Ω

z

]

φ1(z) = P (z), z ∈ D1,

where

(3.49) P (z) =
ωβ1
X1

− ΩX1 +
iBz2

R2

ω

Γα2 − α2 + 1
− δ0/2

1 + f(z)

[

β1(1− Γ)ω

ΓX1

−ω(α1 − Γ(α1 − 1))

Γ
X1

]

+
L(z)

1 + f(z)
.

Equation (3.48) is a first order ordinary differential equation with variable coefficients which has the
following general solution

(3.50) φ1(z) = e−T (z)

z
∫

z1

eT (z)P (z)dz + C0e
−T (z), z ∈ D1,

where
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(3.51) T (z) =

∫
(

ω(α1 − Γ(α1 − 1))

Γ

δ0
z(1 + f(z))

− 2Ω

z

)

dz,

and z1 is any point in D1 and C0 is an arbitrary constant of integration. In light of the fact that P (z)
in (3.50) contains the Xs+1 coefficients of the power series expansion of φ1(z), any solution of (3.50)
must satisfy the consistency condition given by

(3.52) Xk =
φk1(0)

k!
, k = 1, 2, ..., s, s+ 1,

We may derive equation (3.52) by first recalling that since φ1(z) is analytic it has a Taylor series
expansion in D1 given by

(3.53) φ1(z) =

∞
∑

k=0

Qkz
k , Qk =

φk1(0)

k!
.

Then, by substituting (3.53) into (3.44) and comparing coefficients of negative powers of z as we arrive
at the following

(3.54)

k
∑

j=1

(j − 2Ω)Qjz
j−1

s
∑

k=1

(bk + iak)

2

Rk

zk
=

k
∑

j=1

(j − 2Ω)Xjz
j−1

s
∑

k=1

(bk + iak)

2

Rk

zk
.

Careful inspection of (3.54) reveals that when Ω 6= 1/2 (3.52) is true for all s. However, for the case
of Ω = 1/2 we see that the first statement of (3.54) will be an identity, which provides no information
on the form of the coefficient X1 and implies (3.52) is not automatically satisfied for k = 1. Hence we
must impose the additional requirement that

(3.55) X1 = φ
′

1(0).

In general, the solution for φ1(z) in (3.50) is not holomorphic in the uncut domain D1 due to
the presence of multivalued logarithmic functions from under the integral and from isolated singular
points stemming from the zeros of the interface function (1 + f(z)). To ensure the holomprphicity of
φ1(z) the domain must be cut appropriately such that φ1(z) both single valued and bounded at all
isolated singular points.

4. A Specific Class of Inhomogeneous Interface

To illustrate an example we shall consider a specific form of the interface function δ(θ) as follows

(4.1) δ(θ) =
δ0

1 + bscos(sθ)
, δ0 > 0, − 1 < bs < 1.

Upon converting (4.1) into a complex variable form it is seen that there will be singularities in the
interface function originating from the roots of the following polynomial of degree 2s

(4.2)
2

bs

( z

R

)s

+
( z

R

)2s

+ 1 = 0.

Of the 2s roots of (4.2), s will lie inside D1 and the remaining s will lie in D2. Let the s roots inside
D1 be denoted by

(4.3) ρ1, ρ2, ρ3, ..., ρs,
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where ρs(1,2,...,s) = ρ∗ and ρ∗ is real and given by

(4.4) ρ∗ =







√

1
b2s

− 1− 1
bs
, < 0, bs > 0,

−
√

1
b2s

− 1− 1
bs
, > 0, bs < 0,

such that −1 < ρ∗ < 1, and the remaining s roots in D2 are given by 1
ρ1
, 1
ρ2
, ..., 1

ρs
. As a consequence

of the above interface definitions we make note of the following

− 2

bs
=

1 + ρ∗2

ρ∗
,

Rδ0
z(1 + f(z))

= − λ( z
R
)s−1

( z
R
)s − ρ∗

+
λ( z

R
)s−1

( z
R
)s − 1

ρ∗

,

λ = −δ0
(

1 + ρ∗2

1− ρ∗2

)

< 0,

(4.5)
1

1 + f(z)
=

2
bs
( z
R
)s

[

( z
R
)s − ρ∗

]

[

( z
R
)s − 1

ρ∗

] .

Utilizing (4.5) we may express (3.50) as follows

(4.6) φ1(z) = (
z

R
)2Ω

[

(
z

R
)s − ρ∗

]

λΩη
s

[

(
z

R
)s − 1

ρ∗

]

−λΩη
s

z
∫

z1

(
t

R
)−2Ω+1

[

(
t

R
)s − ρ∗

]

−λΩη
s

[

(
t

R
)s − 1

ρ∗

]

λΩη
s P (t)

t
R

dt, z ∈ D1,

η =
Γα2 − α2 + 1

Γ(1− α2)
> 0,

where the integration path is taken along the edge of any branch cuts originating from each of the s
branch points. In addition, to ensure boundedness of φ1(z) at z = Rρk we set C0 = 0 and we require
that

(4.7)

Rρk
∫

Rρ1

(
t

R
)−2Ω+1

[

(
t

R
)s − ρ∗

]

−λΩη
s

[

(
t

R
)− 1

ρ∗

]

λΩη
s P (t)

t
R

dz = 0, k = 2, 3, ..., s,

in order to maintain boundedness of φ1(z) at any of the potential isolated singular points Rρk, k =
2, 3, ..., s in D1. Additionally, by taking the difference

(4.8) φ1(z
+)− φ1(z

−) = 0,

we may prove that (4.6) is continuous across any of the s branch cuts by noting that, due to the sign
change of the exponents in and outside of the integral, any increments in the multivalued logarithmic
terms that will arise from inside the integral will be nullified from which (4.8) is easily confirmed. The
remaining irregular point to be considered is when z = 0. Closer inspection of (4.6) reveals that there
are three cases to be considered as z → 0.
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4.1. Case One: Ω > 1
2 .

When Ω > 1
2 we see from (4.6) that φ1(z) → 0 as z → 0. However, in order to ensure the holomorphicity

of φ1(z) we must ensure that φ1(z) is continuous across the branch cut formed from z = Rρ∗ along
the real axis inside D1. Closer inspection of (4.6) reveals the presence of an unintegrable singularity at
z = 0. Hence we must define a new path of integration, L∗, to skirt around a neighborhood of z = 0
and set z = z∗ ,where z∗ is any particular point on the branch cut from z = 0, to compensate for this
change. In this way the continuity condition becomes

(4.9)

∫

L∗

(
z∗

t
)−2Ω

[

( z
∗

R
)s − ρ∗

( t
R
)s − ρ∗

]

−λΩη
s

[

( t
R
)s − 1

ρ∗

( z
∗

R
)s − 1

ρ∗

]

λΩη
s

P (t)dt = 0

We may then solve for the Xs+1 unknown coefficients using (3.32,3.46,4.10) and in cases of s > 1,
(4.7).

4.2. Case Two: Ω < 1
2 .

For this case we shall rewrite (4.6) in the form

(4.10)
φ1(z)

z
R

= (
z

R
)2Ω−1

[

(
z

R
)s − ρ∗

]

λΩη
s

[

(
z

R
)s − 1

ρ∗

]

−λΩη
s

z
∫

Rρ1

(
t

R
)−2Ω

[

(
t

R
)s − ρ∗

]

−λΩη
s

[

(
t

R
)s − 1

ρ∗

]

λΩη
s

P (t)dt, z ∈ D1.

Given that X0 = 0, the LHS of (4.10) is analytic within D1. As a consequence, φ1(z)
z
R

must be bounded

at z = 0 and since Ω < 1
2 this implies that

(4.11)

0
∫

Rρ1

(
t

R
)−2Ω

[

(
t

R
)s − ρ∗

]

−λΩη
s

[

(
t

R
)s − 1

ρ∗

]

λΩη
s

P (t)dt = 0, Ω <
1

2
.

Note that in (4.11) there is a singularity in the integrand owing to the term ( t
R
)−2Ω for Ω < 1

2 . Due
to the fact that the path of integration in (4.11) lies on the real axis we may treat

(4.12) K(ρ∗, t) = (
t

R
)−2Ω

[

(
t

R
)s − ρ∗

]

−λΩη
s

[

(
t

R
)s − 1

ρ∗

]

λΩη
s

,

as a proper singular kernel function on such that (4.11) belongs to a class of Hölder continuous
functions of ρ∗ and is thusly integrable along such a domain [?]. We may then solve for the Xs+1

unknown coefficients using (3.32,3.46,4.11) and in cases of s > 1, (4.7).

4.3. Case Three: Ω = 1
2 .

In this case from (4.6) we see that z = 0 is not a singular point of φ1(z) and hence φ1(0) = 0. We may
then proceed to solve for the Xs+1 unknown coefficients by recalling relation (3.46) and by evaluating
(3.52) as

(4.13) RX1 = [−ρ∗]
λη
2s

[

− 1

ρ∗

]−
λη
2s

0
∫

Rρ1

[

(
t

R
)s − ρ∗

]

−λη
2s

[

(
t

R
)s − 1

ρ∗

]

λη
2s P (t)

t
R

dt = 0.

The s+ 1 unknown coefficients are then determined from (3.32,3.46,4.13)and in cases of s > 1, (4.7).
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5. Example

For ease of analysis in illustrating the method we shall assume that Ω = 1
2 , λ = −1, η = 2 and we shall

confine ourselves to the case s = 1. From these preliminaries we may evaluate (4.6) as

(5.1) φ1(z) =
z

R

(

z/R− 1/ρ∗

z/R− ρ∗

)[

I1(z)

(

ωβ1

(

1

X1
+

1

X1

)

− 1

2

(

X1 +X1

)

)

+

X2RI2(z) + δ0(2/b1)
ωβ1(α1 − Γ(α1 − 1))

Γ
X1I2(z) +

iBω

Γα2 − α2 + 1
I3(z)

]

, z ∈ D1,

where

I1(z) =

z
∫

Rρ∗

t/R

(t/R− 1/ρ∗)2
dt,

I2(z) =

z
∫

Rρ∗

1

(t/R− 1/ρ∗)2
dt,

(5.2) I3(z) =

z
∫

Rρ∗

t/R(t/R− ρ∗)

(t/R− 1/ρ∗)2
dt, z ∈ D1.

The unknown coefficients X1, X1, X2, X2 are then evaluated from (3.46,4.13) as follows

(5.3)
1

2

(

X1 +X1

)

− ωβ1

(

1

X1
+

1

X1

)

+
b1
2
R(X2 +X2) =

δ0
2

[

ω(Γ(α1 − 1)− α1)

Γ
(X1 +X1) +

β1(Γ− 1)ω

Γ

(

1

X1
+

1

X1

)]

,

(5.4)

[

Rρ∗2

ρ∗2 − 1
+Rln

(

1

1− ρ∗2

)](

ωβ1

(

1

X1
+

1

X1

)

− 1

2
(X1 +X1)

)

+X2R

(

Rρ∗3

ρ∗2 − 1

)

+
iBω

Γα2 − α2 + 1

[

R(1− ρ∗2)

ρ∗2
ln

(

1

1− ρ∗2

)

+
Rρ∗2

2
−R

]

= 0,

− 1 < ρ1 < 1.

Noting that 1
2 = 1 − Ω it can be shown that since δ0

2 = nR
2µ2

, (5.3) is in fact identical to (3.22) in the

case where ρ1 → 0.

6. Results

Having verified the formulation we may now proceed to compare the homogeneous imperfect interface
to the inhomogeneous one. For the purpose of this example we will compare the inhomogeneous
interface of the form

(6.1)
n(θ)R

µ2
=

δ0
1 + b1Cos(θ)

, δ0 =
1− ρ21
1 + ρ21

, − 1 < b1 < 1,

to the homogeneous imperfect interface given by

(6.2)
nR

µ2
= δ0.
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Close inspection of the expression given by (3.4) reveals that in the cases of either a uniaxial or biaxial
remote loading, B is in fact purely real. Hence we may prove from (5.3,5.4) that X1, X2 must both be
purely imaginary and we may solve for them using (3.46,5.3,5.4). Computing the average mean stress
on the boundary defined by

(6.3) (P11 + P22)2,Avg =
1

C∂D1

∫

∂D1

4µ2Im

[

Γ(1− α1)X1 +
Γβ1
X1

]

ds,

the ratio of the inhomogeneous to homogeneous interfaces will be one to one since X1 is identical in
both interface conditions. In an attempt to explore further the results we compute the ratio of the
mean stresses at z = R given by the relations

(6.4) (P11 + P22)2,Homogeneous = 4µ2Im

[

Γ(1 − α1)(X1) +
Γβ1
X1

]

,

(6.5) (P11 + P22)2,Inhomogeneous = 4µ2Im

[

Γ(1− α1)(X1 + 2X2z) +
Γβ1

X1 + 2X2z

]

,

from which the following results are observed
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HΣ11+Σ22LHomogeneous

Α2=Α1=0.5, Β2=Β1=0.5 , G=1
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Figure 2. Ratio of inhomogeneous to homogeneous mean stress at z = R for the
remote loading P∞

11 = 0, P∞
22 = 1, P∞

12 = 0

From Figure 2 we conclude that the inhomogeneous interface parameter ρ∗ does have an influence on
the mean stress at the point z = R on the boundary ∂D1, which at its peak reaches an error of 13
percent. In contrast, Ru [25] observed a relative error in the mean stress of up to 80 percent in the case
of a inhomogeneous sliding interface in linear elasticity. While the present work does not reach relative
errors of a similar magnitude we cannot simply ignore the effects of the circumferential variation of
the interface in the finite deformation setting. Therefore, replacing the circumferential variation of the
interface by its homogenous counterpart will contribute to a modest relative error.

7. Conclusions

The general solution for the case of an inhomogeneous imperfect sliding interface characterized by
the imperfect interface parameters m(θ) → ∞, n(θ) = finite is presented. The formulation has been
validated by referring to the solution of a homogeneous imperfect interface under the same sliding
interface boundary conditions and subsequently results were presented for the mean stress at a specific
point along the inclusion matrix boundary curve under remote loads. From these results it was observed
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that the average mean stress within the inclusion was identical between the inhomogeneous and
homogeneous interface conditions and that there was a maximum error of 13 percent when comparing
the mean stress at a point on the interface between the inhomogeneous and homogeneous models. Thus,
replacing the circumferential variation of the interface by its homogenous counterpart will contribute
to a modest relative error in not only the mean stress but the field quantities as well.
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