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Analytical solutions are derived to analyze elastic limit heat loads in tubes
subjected to periodic surface temperatures. The tube is initially at zero temperature
and for the times greater than zero one of the surfaces of the cylinder is subject to
a periodic boundary condition while the other surface is insulated. For the transient
temperature distribution, the heat conduction equation is solved by using Duhamel’s
theorem. The uncoupled theory of thermoelasticity is used as the cylinder is heated
or cooled slowly. Tresca’s yield criterion is used to monitor the yielding of the tube.
The generalized plane strain condition is assumed. It is observed that yielding always
occurs at the surface subject to a periodic boundary condition. It is also observed
that, depending on the material properties of the tube and the amplitude of the
boundary condition, yielding commences with different stress states.
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1. Introduction

Axially symmetric machine parts like the cylinders, tubes and disks are
widely used in engineering applications [1–3]. Some of the applications like heat
exchangers, heat pipes, manufacturing processes, nuclear engineering structures,
nozzle section of rockets include transient thermal conditions such as periodic
boundary conditions with various forms [4–6]. Because the problem of heat con-
duction with transient boundary conditions cannot be solved directly by using
the method of separation of variables, researchers solved the problem by using dif-
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ferent methods like Laplace transforms, Hankel transforms, Fourier transforms,
and Duhamel’s theorem. These methods can be found in the book by Ozisik [7].

Some of the works related to transient temperature fields and related ther-
mal stresses in tubes subjected to transient boundary conditions like in peri-
odic, cyclic or exponential forms are summarized subsequently. In the studies
of Kandil et al. [4] and Kandil [5], the thermoelastic stresses for thick-walled
tubes subjected to several boundary conditions including cyclic function at the
inner surface [4] and cyclic temperature and cyclic pressure at the inner surface
[5] have been obtained by using a finite difference method. Segall [8, 9] has
investigated the transient response of thick-walled tubes subjected to boundary
conditions in exponential form [8] and a polynomial form [9] at the inner surface
with external convection to the surrounding environment by using Duhamel’s
theorem. Atefi et al. [10] have also used Duhamel’s theorem to solve the heat
conduction problem of a hollow cylinder subjected to a periodic boundary condi-
tion decomposed by the Fourier series at the outer surface while the inner surface
is insulated. Lu et al. [11] have investigated the transient temperature distribu-
tion for n-layer composite cylinder subjected to time-dependent boundary condi-
tions assumed to be changed with the Fourier series at both the inner and outer
surfaces. Mahmoudi and Atefi [12] have obtained the thermoelastic stresses in
a finite length tube subjected to periodic thermal loading on the inner circular
surface while the outer circular surface was insulated when both lateral surfaces
were kept at constant temperature. They have obtained the transient tempera-
ture distribution by using the Fourier series for the periodic boundary condition
function. In this study, they have also derived the temperature distribution in
axial direction and showed that according to the same boundary conditions at
ends of the tube, temperature distribution and induced thermal stresses do not
vary on changing the axial coordinate. Radu et al. [13] have developed a set of
analytical solutions for the transient temperature field by using the finite Han-
kel transform and related thermoelastic stress distributions for a hollow cylinder
subjected to sinusoidal transient thermal loading only at the inner surface while
the outer surface is kept at zero temperature. Lee and Huang [14] have devel-
oped an analytical solution method, without integral transformation, to find the
exact solutions for the transient heat conduction in functionally graded circular
hollow cylinders with time-dependent boundary conditions. They have consid-
ered different boundary conditions with the forms of exponential and sinusoidal.
Kaya and Eraslan [15] have used a temperature cycle to obtain an analyti-
cal solution toward the prediction of the thermoelastic response of a long tube
heated by a temperature cycle at one surface while the other was insulated. Tu

and Lee [16] have used the shifting function method to obtain an analytical so-
lution for the heat transfer problem in hollow cylinders with the time-dependent
boundary condition and time-dependent heat transfer coefficient simultaneously.
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They have assumed that the surface is subject to a time-dependent temperature
field at the inner surface with the combination of exponential and cosine func-
tions, whereas the heat is dissipated by time-dependent convection from the
outer surface into a surrounding environment at zero temperature. In their re-
cent work related to the transient thermal stress behavior of a cylinder subjected
to a periodic boundary condition, Eraslan and Apatay [17] have investigated
the transient thermoelastoplastic behavior of a solid cylinder.

Some of the recent studies solve transient problems in tubes and cylinders as-
suming functionally graded materials. For example, Takabi [18] has investigated
the thermomechanical behavior of the thick hollow FGM cylinder subjected to
a pressure and a thermal load in the transient condition. Manthena et al. [19]
have investigated the thermoelastic behavior of a hollow FGM cylinder subjected
to internal transient heat generation. They have obtained the solution of the two
dimensional heat conduction equation in the transient state in terms of Bessel
and trigonometric functions. Ayoubi and Alibeigloo [20] have obtained the
three dimensional elasticity solution for transient thermoelasticity analysis of
FGM cylindrical shell subjected to both thermal and mechanical loading analyt-
ically for the case of a simply supported boundary condition using the Fourier
series expansions and semianalytically for the edge boundary conditions. Man-

thena and Kedar [21] have investigated two dimensional temperature distribu-
tion and associated thermal stresses of a thick hollow FGM cylinder subjected to
a varying point heat source. The solutions are obtained in the transient state in
the form of Bessel functions. Najibi and Talebitooti [22] have investigated the
transient thermo-elastic analysis of a thick hollow finite length FGM cylinder.
They have solved the transient heat conduction and the thermo-elastic equa-
tions for the cylinder subjected to thermal loading utilizing the finite element
method.

In the present work, analytical models are developed to investigate the stress
states at elastic limits of sufficiently long tubes subjected to periodic heating on
one face while the other one isolated. It is observed that yielding commences
on the face under periodic heating. Moreover, different stress states emerge at
the yielding surface depending on the amplitude of heating and the material
properties. Parametric analyses are performed to draw charts in order to identify
when and according to which stress state yielding occurs. These charts can be
used in investigations which go beyond elastic states of stress. In the following
sections we outline our model and present its results.

2. Temperature distributions

A long tube of inner radius a and outer radius b is taken into account. The
tube is initially at zero temperature but for the times t > 0 either the outer or
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Fig. 1. Geometry and boundary conditions for problems 1 and 2.

the inner surface is subjected to a periodic boundary condition, while the other
surface is isolated. These boundary conditions are explained in Fig. 1.

2.1. Problem 1 – Periodic boundary condition at the outer surface

This heat transfer problem is described by a transient one-dimensional heat
conduction equation

(2.1)
1

αT

∂T

∂t
=

1

r

∂T

∂r
+
∂2T

∂r2
; a < r < b, t > 0,

which is accompanied by the boundary and initial conditions

∂T

∂r

∣

∣

∣

∣

r=a

= 0, T (b, t) = f(t),

T (r, 0) = 0.(2.2)

In these equations αT is the thermal diffusivity, T (r, t) the temperature at the ra-
dial position r at time t, and f(t) a function defining the time dependent bound-
ary condition. Introducing the dimensionless variables: temperature T = T/T0,
time τ = αT t/b

2 and radial coordinate r = r/b, where T0 being a reference
temperature, the dimensionless form of the conduction equation and the accom-
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panied conditions take the forms

∂T

∂τ
=

1

r

∂T

∂r
+
∂2T

∂r2
; a < r < 1, τ > 0,(2.3)

∂T

∂r

∣

∣

∣

∣

r=a

= 0, T (1, τ) = F (τ),

T (r, 0) = 0.

(2.4)

The equations given below are written in terms of these variables, but to simplify
the notation overbars are not used. Because of the nonhomogeneous and time-
dependent boundary condition the solution is obtained by using the Duhamel’s
theorem as (Ozisik [7])

(2.5) T (r, τ) =

τ
∫

0

F (β)
∂

∂τ
Φ(r, τ − β) dβ,

where Φ(r, τ) is the solution of the auxiliary problem given by

(2.6)
∂Φ

∂τ
=

1

r

∂Φ

∂r
+
∂2Φ

∂r2
; a < r < 1, τ > 0,

with the conditions

∂Φ

∂r

∣

∣

∣

∣

r=a

= 0, Φ(1, τ) = 1,

Φ(r, 0) = 0.(2.7)

The nonhomogeneous boundary condition Φ(1, τ) = 1 is handled by proposing
a solution of the form

(2.8) Φ(r, τ) = Y (r, τ) + Z(r).

Substituting Φ(r, τ) into the auxiliary problem, Eq. (2.6), the following differen-
tial equation is obtained

(2.9)
∂Y

∂τ
=

1

r

∂Y

∂r
+
∂2Y

∂r2
+

1

r

dZ

dr
+
d2Z

dr2
; a < r < 1, τ > 0,

Letting

(2.10)
1

r

dZ

dr
+
d2Z

dr2
= 0,

Eq. (2.9) is divided into two parts as

(2.11)
1

r

dZ

dr
+
d2Z

dr2
= 0;

dZ

dr

∣

∣

∣

∣

r=a

= 0, Z(1) = 1,
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and

(2.12)
∂Y

∂τ
=

1

r

∂Y

∂r
+
∂2Y

∂r2
; a < r < 1, τ > 0,

subject to

∂Y

∂r

∣

∣

∣

∣

r=a

= 0, Y (1, τ) = 0,

Y (r, 0) = −Z(r).(2.13)

The solutions are obtained as

(2.14) Z(r) = 1,

and

(2.15) Y (r, τ) =
∞

∑

n=1

Bne
−λ2

nτ [J0(λnr)Y1(λna) − J1(λna)Y0(λnr)],

where λn for n = 1, 2, . . . are the positive roots of

(2.16) J0(λ)Y1(λa) − J1(λa)Y0(λ) = 0,

in which J0(λ) and J1(λ) represent the Bessel functions of the first kind of order
zero and one, and Y0(λ) and Y1(λ) represent the Bessel functions of the second
kind of order zero and one, respectively. Applying the boundary condition of
Y (r, 0) = −1 and using the relationship (Spiegel [23])

(2.17) Y1(λna)J0(λna) − Y0(λna)J1(λna) = − 2

aπλn
,

the constant Bn is obtained as

(2.18) Bn =
2π2λn[Y1(λn)J1(λna) − Y1(λna)J1(λn)]

−4 + λ2
nπ

2[Y1(λn)J1(λna) − Y1(λna)J1(λn)]2
.

Hence, the solution of the auxiliary problem defined by Eqs. (2.6) and (2.7) turns
out

(2.19) Φ(r, τ) = 1 +
∞

∑

n=1

Bne
−λ2

nτ [J0(λnr)Y1(λna) − J1(λna)Y0(λnr)] .

According to Eq.(2.5) the temperature distribution in the tube is obtained as

T (r, τ) = −
∞

∑

n=1

Bne
−λ2

n τλ2
n[J0(λnr)Y1(λna) − J1(λna)Y0(λnr)](2.20)

×
τ

∫

0

eλ
2
n β F (β) dβ,
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and integrating by parts

(2.21)

τ
∫

0

eλ
2
n β F (β) dβ =

1

λ2
n

[

eλ
2
n τF (τ) − F (0) −

τ
∫

0

eλ
2
n β dF (β)

dβ
dβ

]

,

it becomes

(2.22) T (r, τ)

= F (τ) +
∞

∑

n=1

Bn[J0(λnr)Y1(λna) − J1(λna)Y0(λnr)]

τ
∫

0

e−λ2
n (τ−β) dF (β)

dβ
dβ.

Here, the initial condition of F (0) = 0 is utilized. Note that at r = 1, i.e., at the
outer surface, based on Eq. (2.16) the temperature becomes T (1, τ) = F (τ) as
required. In addition, the temperature gradient is derived as

(2.23)
∂T (r, τ)

∂r
= −

∞
∑

n=1

Bnλn[J1(λnr)Y1(λna) − J1(λna)Y1(λnr)]

×
τ

∫

0

e−λ2
n (τ−β) dF (β)

dβ
dβ

2.2. Problem 2 – Periodic boundary condition at the inner surface

The conditions that accompany Eq. (2.3) becomes

T (a, τ) = F (τ),
∂T

∂r

∣

∣

∣

∣

r=1

= 0,

T (r, 0) = 0.(2.24)

Thus, the conditions of the auxiliary problem turn into

Φ(a, τ) = 1,
∂Φ

∂r

∣

∣

∣

∣

r=1

= 0,

Φ(r, 0) = 0

Using the procedure described in the Problem 1, the solution of the auxiliary
problem is obtained as

(2.25) Φ(r, τ) = 1 +
∞

∑

n=1

Dne
−λ2

nτ [J0(λnr)Y0(λna) − J0(λna)Y0(λnr)],

in which the eigenvalues λn for n = 1, 2, . . . are the roots of

(2.26) J0(λa)Y1(λ) − J1(λ)Y0(λa) = 0,
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and

(2.27) Dn =
4π

−4 + λ2
nπ

2[Y0(λn)J0(λna) − Y0(λna)J0(λn)]2
.

By Duhamel’s theorem, Eq. (2.5), the temperature distribution and its gradient
in the tube for this problem are obtained, respectively, as

(2.28) T (r, τ) = F (τ) +
∞

∑

n=1

Dn[J0(λnr)Y0(λna) − J0(λna)Y0(λnr)]

×
τ

∫

0

e−λ2
n (τ−β) dF (β)

dβ
dβ,

and

(2.29)
∂T (r, τ)

∂r
= −

∞
∑

n=1

Dnλn[J1(λnr)Y0(λna) − J0(λna)Y1(λnr)]

×
τ

∫

0

e−λ2
n (τ−β) dF (β)

dβ
dβ.

Note again that, according to Eq. (2.26), T (a, τ) = F (τ) as required.

a) b)

Fig. 2. Temperature distributions in time intervals: a) 0 < τ ≤ 1.6, b) 1.8 ≤ τ ≤ 3.2
corresponding to A = 3.0.
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For both of the problems the periodic function F (τ) = A sin τ , with A being the
thermal load, is used at the periodic boundary. As a result of which

(2.30)

τ
∫

0

e−λ2
n (τ−β) dF (β)

dβ
dβ =

A[λ2
n cos τ + sin τ − λ2

ne
−λ2

n τ ]

1 + λ4
n

.

Assigning A = 3.0, the results of the temperature distributions for both problems
are plotted in Figs. 2a and 2b within 0 < τ < 3.2. The increase in temperature
within a tube of a = 0.5 with increasing surface temperature may be visualized
in Fig. 2a, while its decrease with decreasing surface temperature can be seen
in Fig. 2b.

3. Thermoelastic solution

Because of the temperature distribution is time-dependent, all stresses, strains
and the radial displacement are functions of time. The mechanical properties
of the material are assumed to be constant. Dimensionless forms of the elastic
equations are used. The equilibrium equation (Timoshenko and Goodier [2])

(3.1)
dσr

dr
+
σr − σθ

r
= 0,

the equations of the generalized Hooke’s law

ǫr = σr − ν(σθ + σz) + αT,(3.2)

ǫθ = σθ − ν(σr + σz) + αT,(3.3)

ǫz = σz − ν(σr + σθ) + αT,(3.4)

form a basis. In these equations σj is the dimensionless stress (stress/σY ), ǫj the
normalized strain (strain × E/σY ), ν the Poisson’s ratio and α the dimensionless
coefficient of thermal expansion (the coefficient of thermal expansion × ET0/σY ).
Furthermore, E is the modulus of elasticity and σY the yield stress. In a state of
generalized plain strain ǫz = ǫ0 is constant and Eq. (3.4) can be solved for the
axial stress to give

(3.5) σz = ǫ0 + ν(σr + σθ) − αT,

The axial stress is eliminated from the radial and circumferential strain ex-
pressions and substituted in the strain-displacement relations: ǫθ = u/r and
ǫr = du/dr to obtain the stress-displacement relations

σr =
1

(1 + ν)(1 − 2ν)

[

νǫ0 +
νu

r
+ (1 − ν)u′

]

− αT

1 − 2ν
,(3.6)

σθ =
1

(1 + ν)(1 − 2ν)

[

νǫ0 +
(1 − ν)u

r
+ νu′

]

− αT

1 − 2ν
,(3.7)
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where u is the dimensionless radial displacement (radial displacement × E/σY b).
A prime in above equations denotes differentiation with respect to the radial
coordinate r. Substituting the stress expressions Eq. (3.6) and Eq. (3.7) into Eq.
(3.1) yields

(3.8) r2
d2u

dr2
+ r

du

dr
− u =

1 + ν

1 − ν
αr2

∂T

∂r
,

which is the governing differential equation in terms of the radial displacement.
The general solution is

(3.9) u(r) = C1r +
C2

r
+

(

1 + ν

1 − ν

)(

α

r

)

r
∫

a

ηT (η, τ) dη

where C1 and C2 are the integration constants. Having the analytical expression
for u(r), the stresses are obtained by the use of Eqs. (3.6), (3.7) and (3.5). As
these expressions contain the unknowns C1, C2 and ǫ0, the following boundary
conditions and the free end condition are then used

(3.10) 1. σr(a) = 0, 2. σr(1) = 0, 3.

1
∫

a

r σz dr = 0,

to determine

C1 =
α(1 − 3ν)

(a2 − 1)(ν − 1)

1
∫

a

rT (r, τ) dr,(3.11)

C2 =
a2α(1 + ν)

(a2 − 1)(ν − 1)

1
∫

a

rT (r, τ) dr,(3.12)

ǫ0 = − 2α

a2 − 1

1
∫

a

rT (r, τ) dr.(3.13)

As a result, the thermoelastic solution of the tube is completed with the following
stress and displacement expressions

σr =
α

1 − ν

[

r2 − a2

r2(1 − a2)

1
∫

a

r T (r, τ) dr − 1

r2

r
∫

a

η T (η, τ) dη

]

,(3.14)

σθ =
α

1 − ν

[

r2 + a2

r2(1 − a2)

1
∫

a

rT (r, τ) dr +
1

r2

r
∫

a

ηT (η, τ) dη − T (r, τ)

]

,(3.15)
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σz =
α

1 − ν

[

2

1 − a2

1
∫

a

rT (r, τ) dr − T (r, τ)

]

,(3.16)

u =
α

1 − ν

[

r2(1 − 3ν) + a2(1 + ν)

r(1 − a2)

1
∫

a

rT (r, τ) dr(3.17)

+
1 + ν

r

r
∫

a

ηT (η, τ) dη

]

.

Note that, analytical evaluation of the integrals

(3.18)

r
∫

a

ηT (η, τ) dη and

1
∫

a

rT (r, τ) dr,

can be performed by the use of formulae

(3.19)

r
∫

a

ηJ0(λnη) dη =
1

λn
[rJ1(λnr) − aJ1(λna)],

and

(3.20)

r
∫

a

ηY0(λnη) dη =
1

λn
[rY1(λnr) − aY1(λna)].

4. Results and discussion

In the following calculations the Poisson’s ratio is ν = 0.3 and the inner
radius is a = 0.5. Furthermore, Tresca’s yield criterion is used to examine elastic
limits. In this regard the equivalent stress is defined as

(4.1) σEQ = σmax − σmin.

Firstly, for both problems an attempt is made to show how the stress states
change in tubes with time. For this purpose the stress distributions are drawn
corresponding to the parameters A = 3.0 and α = 1.75 at two different time
instants. At an early time τ = 0.2, the unknowns of the problem 1 are determined
as C1 = 0.0539, C2 = 0.1750, ǫ0 = 0.7540 and of the problem 2 as C1 = 0.0405,
C2 = 0.1310, ǫ0 = 0.5663. At time τ = 2.8 these are C1 = 0.1462, C2 = 0.4751,
ǫ0 = 2.046 for the problem 1 and C1 = 0.1647, C2 = 0.5354, ǫ0 = 2.306 for the
problem 2. As it is seen in Figs. 3a and 3b, for the problem 1 σEQ is always at
the outer surface of the tube, while at τ = 0.2 the stress state is σr > σθ (= σz),
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a) b)

Fig. 3. Stress distributions for A = 3.0, α = 1.75 at: a) τ = 0.2, b) τ = 2.8.

Fig. 4. Change of equivalent stress at the boundaries with time for A = 3.0, α = 1.75.
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a) b)

c)

Fig. 5. a) Deformation chart based on the numerical values of the set {A, α} for Problem 1;
b) stress distributions on Limit Line 1, c) stress distributions on Limit Line 2.
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a) b)

c)

Fig. 6. a) Deformation chart based on the numerical values of the set {A, α} for Problem 2;
b) stress distributions on Limit Line 1, c) stress distributions on Limit Line 2.
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it turns into σθ (= σz) > σr at τ = 2.8. A similar situation is observed for
the problem 2 as well. As it is seen in Figs. 3a and 3b, for this problem σEQ is
always at the inner surface of the tube with the stress state σr > σθ (= σz) at
time τ = 0.2 and with σθ (= σz) > σr at time τ = 2.8. These two similar states
indicate that σEQ is always located at the periodically heated surface.

As mentioned before, σEQ takes its maximum value at the periodically heated
boundaries. This is the outer surface of the tube for the problem 1 and inner
surface for the problem 2. The time rate of change of σEQ at these locations
are calculated and plotted in Fig. 4. As it is seen in this figure, there are two
peaks for both problems. For the problem 1, these peaks correspond to times
τ = 0.31 and τ = 3.218 and for the problem 2 they correspond to τ = 0.433
and τ = 3.275. For both problems, the tubes may first yield either from the first
peak or the second depending on the values of the set {A,α}.

Parametric analyses are performed to identify when and according to which
stress state yielding occurs in the tubes. Figure 5a shows the results of these
calculations for the tube of the problem 1. The tube always behaves in elastic
way if the parameter set {A,α} is below Limit Line 1. If the set is on Limit Line 1,
yielding commences on the second peak with Tresca’s criterion σθ (= σz) > σr.
On the other hand, if the set is on Limit Line 2, yielding commences on the
first peak according to σr > σθ(= σz). Finally, if the parameter set happens to
be located just above these lines, yielding may take place a little earlier than
τ = 0.31 or τ = 3.218 with the criteria indicated above. Keeping α constant at
α = 2.25 and changing A values, two example figures are drawn and presented
in Figs. 5b and 5c. In Fig. 5b A = 5.1894 which is exactly located on Limit
Line 1. As a result yielding commences at the outer surface when τ = 3.218
with the condition σθ(= σz) > σr. In the second example, A is selected on the
Limit Line 2 as A = 5.435. The corresponding stress state is shown in Fig. 5c.
Yielding begins at the outer surface when τ = 0.31 according to the criterion
σr > σθ(= σz).

For problem 2, the results of similar analyses can be followed in Figs. 6a–6c.

5. Concluding remarks

Thermoelastic behavior of tubes near and at elastic limits subjected to pe-
riodic heating have been investigated. Two possible cases have been considered;
heating from the inner surface and from the outer. The function F (τ) = A sin τ is
used to define the periodic surface temperature. Assuming that the other face of
the tube has been isolated, the corresponding transient heat conduction problem
has been solved by the use of Duhamel’s theorem. An uncoupled, thermoelastic
solution has been carried out under the state of generalized plane strain. Tresca’s
yield criterion has been utilized to monitor yield points.
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It is observed that yielding commences at the surface that is subject to the
periodic heating. Depending on the parameters A and α, there might be two
different stress states when yielding begins. One possible stress state is σr >
σθ = σz and the other one is σθ = σz > σr. The numerical values of the pair
A-α that leads to different stress states at the yield point are shown in Figs.
5a and 6a. These figures are especially useful in doing research to understand
loading and unloading behavior of such tubes.
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