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In this paper, we consider the design of neutral coated holes in two
particular cases when the thick coating itself is altered by the presence of some form
of material imperfection. In the first case we consider anti-plane deformations of
a linearly elastic solid when the thick coating applied to the hole includes a screw
dislocation dipole. In the second case, we investigate the design of neutral coated
holes in plane elasticity when the thick coating contains a circular thermal inclusion
and the surrounding linearly elastic solid is subjected to uniform remote hydrostatic
stresses. The design is achieved by constructing particular forms of the conformal
mapping function for the coating itself. Several examples are presented to demonstrate
the resulting solutions. Our numerical results show that the existence of the screw
dislocation dipole or the circular thermal inclusion in the coating exerts a significant
influence on the shape of the neutral coated hole.
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1. Introduction

A hole introduced into an elastic body will inevitably disturb the body’s
original stress field and often lead to a stress concentration. Mansfield [1] was
among the first to recognize the feasibility of designing a reinforced “neutral”
hole which eliminates any stress concentrations introduced by the hole and hence
does not disturb the original stress field in the uncut body. Relevant studies on
the design of neutral holes and neutral inclusions in composite materials are
abundant and can be found in [2–14]. The concept of neutral inclusions has also
been adapted to the design of cloaking structures [15–17].
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In the aforementioned discussions of neutrality in composites, the compos-
ites themselves are assumed to be free of the presence of dislocations. The ex-
istence of dislocations in solid materials, however, has now been confirmed ex-
perimentally [18]. Considerable efforts have been made to associate plastic flow
in crystalline solids with motions of dislocations (see for example, [19–23]). It
is therefore natural to ask whether it remains possible to design neutral holes
or inclusions when dislocations are present in the composite? Furthermore, it
has been established that the shape of a neutral hole in an isotropic field (or
hydrostatic stress field) is certainly circular [7]. Will this interesting and impor-
tant result persist if the thick coating reinforcing the hole surrounds a circular
thermal inclusion?

In this paper, we indeed address each of the aforementioned questions. We
begin with an investigation of the neutrality of coated holes in anti-plane elastic-
ity when a screw dislocation dipole is present in the thick coating itself. Secondly,
we address the neutrality of coated holes in plane elasticity when the thick coat-
ing contains a circular thermal inclusion and the solid is subjected to uniform
remote hydrostatic stresses. Our method includes the introduction of particular
forms of the corresponding conformal mapping which includes either a logarith-
mic function to account for the existence of the dislocation dipole or a first-order
pole in the case of the circular thermal inclusion. These conformal mappings are
then the key to the successful solution of the corresponding boundary value prob-
lems. We validate and illustrate our solutions via the use of several numerical
examples.

2. Complex variable formulation

Under anti-plane shear deformations of a linearly isotropic elastic material,
in a Cartesian coordinate system, the two shear stress components σ31 and σ32,
the out-of-plane displacement w and the stress function ϕ can be expressed in
terms of a single analytic function f(z) of the complex variable z = x1 + ix2

as [24]

(2.1) σ32 + iσ31 = µf ′(z), ϕ+ iµw = µf(z),

where µ is the shear modulus and the two stress components can be expressed
in terms of the same stress function as [24]

(2.2) σ32 = ϕ,1, σ31 = −ϕ,2.

For plane deformations of an isotropic elastic material, the stresses (σ11, σ22, σ12),
displacements (u1, u2) and stress functions (ϕ1, ϕ2) can be expressed in terms of
two analytic functions φ(z) and ψ(z) of the complex variable z = x1 + ix2 as [25]
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σ11 + σ22 = 2[φ′(z) + φ′(z)],

σ22 − σ11 + 2iσ12 = 2[z̄φ′′(z) + ψ′(z)],

(2.3)

2µ(u1 + iu2) = κφ(z) − zφ′(z) − ψ(z),

ϕ1 + iϕ2 = i[φ(z) + zφ′(z) + ψ(z)],
(2.4)

where κ = 3 − 4ν for plane strain and κ = (3 − ν)/(1 + ν) for plane stress with
ν (0 ≤ ν ≤ 1/2) being the Poisson’s ratio. In addition, the stresses are related
to the stress functions through [24]

(2.5)
σ11 = −ϕ1,2, σ12 = ϕ1,1,

σ21 = −ϕ2,2, σ22 = ϕ2,1.

3. Neutral coated holes in the presence of screw dislocation dipoles

Consider a domain in ℜ2, infinite in extent, containing a hole occupying
a simply connected region Ω, as shown in Fig. 1. The hole is surrounded by
a thick coating occupying a doubly connected region S2 and the coating is per-
fectly bonded to the surrounding matrix occupying the region S1. The coating-
matrix interface is denoted by L1 whilst the traction-free boundary of the hole
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Fig. 1. A neutral coated hole in the presence of a screw dislocation dipole in the thick
coating.
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is denoted by L2. The matrix is subjected to uniform remote anti-plane shear
stresses (σ∞31, σ

∞
32) while the coating is under the action of a screw dislocation

dipole composed of a screw dislocation with the Burgers vector b3 located at
z = z1 and a second screw dislocation with the opposite Burgers vector −b3
located at z = z2 (see Fig. 1). Throughout the paper, the subscripts 1 and 2
are used to identify the respective quantities in S1 and S2. Our objective is to
design the shape of the thick coating to achieve neutrality, i.e. to ensure that the
coated hole will not disturb the original uniform stress field in the surrounding
matrix. The incorporation of a dislocation dipole as opposed to a dislocation in
the coating is to ensure the single-valuedness of the displacement field on any
contour in the matrix surrounding the coating.

The boundary value problem for the two-phase composite takes the following
form:

f2(z) + f2(z) = Γf1(z) + Γf1(z),

f2(z) − f2(z) = f1(z) − f1(z), z ∈ L1;
(3.1a)

f2(z) + f2(z) = 0, z ∈ L2;(3.1b)

f2(z) ∼=
b3
2π

ln(z − z1) +O(1), z → z1,

f2(z) ∼= − b3
2π

ln(z − z2) +O(1), z → z2;

(3.1c)

f1(z) = Cz, z ∈ S1,(3.1d)

where Γ = µ1/µ2 and the complex number C is given by

(3.2) C =
σ∞32 + iσ∞31

µ1
.

Consider the following conformal mapping function for the coating

z = ω(ξ)(3.3)

= q ln
ξ − ξ̄−1

1

ξ − ξ̄−1
2

+
+∞
∑

n=1

(anξ
n + a−nξ

−n), ξ = ω−1(z), r ≤ |ξ| ≤ 1,

where q, an, a−n, n = 1, 2, . . . ,+∞ are complex constants to be determined,
ξ1 = ω−1(z1) and ξ2 = ω−1(z2). Using the mapping function, the coating in
the z-plane is mapped onto an annulus r ≤ |ξ| ≤ 1 in the ξ-plane, the coating-
matrix interface L1 in the z-plane is mapped onto |ξ| = 1 in the ξ-plane, the
traction-free boundary of the hole L2 in the z-plane is mapped onto |ξ| = r in
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the ξ-plane, z = z1 is mapped onto ξ = ξ1 and z = z2 is mapped onto ξ = ξ2

(see Fig. 2). The appearance of the logarithmic function ln
ξ−ξ̄−1

1

ξ−ξ̄−1

2

in the mapping

function is to account for the existence of the screw dislocation dipole.

|ξ|=1

|ξ|=r

Reξ

Imξ

ξ
1

ξ
2

Fig. 2. The problem in the ξ-plane.

By enforcing the continuity conditions of traction and displacement across
the coating-matrix interface L1 in Eq. (3.1a), we arrive at

(3.4) f2(ξ) = f2(ω(ξ)) =
C(Γ + 1)

2
ω(ξ) +

C̄(Γ − 1)

2
ω̄

(

1

ξ

)

, r ≤ |ξ| ≤ 1,

or more explicitly

f2(ξ) = f2(ω(ξ))(3.5)

=
C(Γ + 1)

2

[

q ln
ξ − ξ̄−1

1

ξ − ξ̄−1
2

+
+∞
∑

n=1

(anξ
n + a−nξ

−n)

]

+
C̄(Γ − 1)

2

[

q̄ ln
ξ − ξ1
ξ − ξ2

+
+∞
∑

n=1

(ānξ
−n + ā−nξ

n)

]

, r ≤ |ξ| ≤ 1.

By enforcing the traction-free condition along the hole boundary L2 in Eq. (3.1b),
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the following relationships can be obtained

(3.6) a−n =
C̄[1 − Γ − r2n(Γ + 1)]

C[Γ + 1 + r2n(Γ − 1)]
ān

+
r2n

[

C̄
C q̄(Γ + 1)(ξn

1 − ξn
2 ) + q(Γ − 1)(ξ̄−n

1 − ξ̄−n
2 )

]

n[Γ + 1 + r2n(Γ − 1)]
, n = 1, 2, . . . ,+∞,

which demonstrates that a−n is related to an. It can be easily checked that in
the absence of the screw dislocation dipole with q = 0, Eq. (3.6) simply reduces
to the result by Milton and Serkov [8].

A comparison of Eq. (3.5) with Eq. (3.1c) leads to

(3.7) q =
b3

πC(Γ − 1)
,

which indicates that q is real if C is real (i.e., σ∞32 6= 0, σ∞31 = 0), and q is purely
imaginary if C is purely imaginary (i.e., σ∞31 6= 0, σ∞32 = 0).

Examples of neutral coated holes are constructed in Figs. 3 and 4 with only
a1 6= 0 in Eq. (3.6); in Figs. 5 and 6 with only a1, a2 6= 0; in Figs. 7 and 8 with
only a1, a3 6= 0 in Eq. (3.6); in Figs. 9 and 10 with only a1, a4 6= 0 in Eq. (3.6);
in Fig. 11 with only a1, a5 6= 0 in Eq. (3.6); and in Fig. 12 with only a1, a6 6= 0

Fig. 3. Neutral coated hole when choosing Re C = 0, Γ = 1/3, r = 0.8, a1 = 1, q = 0.25i,
ξ1 = 0.85, ξ2 = 0.95.
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Fig. 4. Neutral coated hole when choosing Im C = 0, Γ = 1/3, r = 0.8, a1 = 1, q = 0.5,
ξ1 = 0.85, ξ2 = 0.95.

Fig. 5. Neutral coated hole when choosing Re C = 0, Γ = 1/3, r = 0.75, a1 = 1 − i,
a2 = 0.3 − 0.3i, q = −i, ξ1 = 0.8, ξ2 = 0.95.
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Fig. 6. Neutral coated hole when choosing Im C = 0, Γ = 1/3, r = 0.75, a1 = 1 − i,
a2 = 0.3 − 0.3i, q = 0.5, ξ1 = 0.8, ξ2 = 0.95.

Fig. 7. Neutral coated hole when choosing Re C = 0, Γ = 1/3, r = 0.8, a1 = 1, a3 = 0.17,
q = 0.5i, ξ1 = 0.85, ξ2 = 0.95.
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Fig. 8. Neutral coated hole when choosing Im C = 0, Γ = 1/3, r = 0.8, a1 = 1, a3 = 0.17,
q = 0.5, ξ1 = 0.85, ξ2 = 0.95.

Fig. 9. Neutral coated hole when choosing Re C = 0, Γ = 1/3, r = 0.75, a1 = i, a3 = −0.1i,
q = 0.5i, ξ1 = 0.8, ξ2 = 0.95.
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Fig. 10. Neutral coated hole when choosing Im C = 0, Γ = 1/4, r = 0.75, a1 = i, a3 = −0.1i,
q = −0.1, ξ1 = 0.755i, ξ2 = 0.995i.

Fig. 11. Neutral coated hole when choosing Im C = 0, Γ = 1/3, r = 0.8, a1 = 1, a5 = 0.1,
q = 0.3, ξ1 = 0.85, ξ2 = 0.95.
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Fig. 12. Neutral coated hole when choosing Im C = 0, Γ = 1/3, r = 0.8, a1 = 1, a6 = 0.05,
q = 0.8, ξ1 = 0.85, ξ2 = 0.95.

in Eq. (3.6). The values of an and r in Figs. 5–10 are those adopted by Milton

and Serkov [8] in the absence of the screw dislocation dipole. In all of these
figures, the plus sign “+” indicates the position of the screw dislocation at z = z1
whilst the star “∗” indicates that of the other screw dislocation with the opposite
Burgers vector at z = z2. It is observed from Figs. 3 and 4 that the neutral coated
hole is no longer a confocal ellipse construction [26, 27] when a screw dislocation
dipole is present in the coating although only a1 is nonzero in Eq. (3.6). By
comparing Fig. 5 with Fig. 1c in [8], Fig. 7 with Fig. 2b in [8], Fig. 9 with Fig. 3c
in [8], one can conclude that the existence of the screw dislocation dipole in
the thick coating will significantly alter the shapes of the neutral coated holes,
especially those portions in the neighborhood of the screw dislocation dipole. As
the index n of the nonzero coefficient an increases, the shape of the coated hole
becomes more complicated (see Figs. 11 and 12).

We show in Fig. 13 neutral coated holes which are symmetric with respect to
both the x1- and x2-axes. The positions of the two screw dislocations comprising
the screw dislocation dipole are also symmetric with respect to the x2-axis.
It is seen that the outer boundary of the thick coating has been significantly
influenced by the nearby screw dislocation dipole. In all the neutral coated holes
shown in Figs. 3–13, the coating is always stiffer than the surrounding matrix
(i.e., Γ < 1) in order to achieve neutrality.
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Fig. 13. Neutral coated holes when choosing Im C = 0, Γ = 1/3, r = 0.8, q = 0.5,
ξ1 = −0.98, ξ2 = 0.98. In addition, a1 = 1 or a1 = 1, a3 = 0.2 or a1 = 1, a5 = 0.1 or a1 = 1,

a7 = 0.03 in Eq. (3.6).

4. Neutral coated holes in the presence
of circular thermal inclusions

As shown in Fig. 14, we consider a domain in ℜ2, infinite in extent, containing
a hole occupying a simply connected region Ω. The hole is surrounded by a thick
coating occupying a doubly connected region S2 with the coating assumed to be
perfectly bonded to the surrounding matrix occupying the region S1. The region
occupying the coating-matrix interface is denoted by L1 whilst the traction-free
boundary of the hole is denoted by L2. The matrix is subjected to uniform
remote hydrostatic stresses σ∞11 = σ∞22 = σ0, σ∞12 = 0. In addition, a circular
region |z − z0| ≤ R in the coating undergoes uniform stress-free eigenstrains
ε∗11 = ε∗22 = ε∗, ε∗12 = 0. We again adopt the convention that the subscripts 1
and 2 identify the respective quantities in S1 and S2. Our objective is to design
the shape of the thick coating such that the coated hole will not disturb the
original uniform hydrostatic stress field in the surrounding matrix.
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Fig. 14. A neutral coated hole with a circular thermal inclusion in the coating.

The boundary value problem for the two-phase composite takes the following
form:

φ2(z) + zφ′2(z) + ψ2(z) = φ1(z) + zφ′1(z) + ψ1(z),

κ2φ2(z) − zφ′2(z) − ψ2(z) = Γκ1φ1(z) − Γzφ′1(z) − Γψ1(z), z ∈ L1;
(4.1a)

φ2(z) + zφ′2(z) + ψ2(z) = 0, z ∈ L2;(4.1b)

φ2(z) ∼= O(1), ψ2(z) ∼= − 4µ2ε
∗

1 + κ2

R2

z − z0
+O(1), z → z0;(4.1c)

φ1(z) = Az, ψ1(z) = 0, z ∈ S1,(4.1d)

where Γ = µ2/µ1, and the real constant A is related to remote loading through

(4.2) A =
σ∞11 + σ∞22

4
=
σ0

2
.

In writing the asymptotic behavior in Eq. (4.1c), we have used the result
given by Suo [28] and Ru [29]. A detailed explanation of Eq. (4.1c) is given
in the Appendix. We emphasize that the definition of Γ used here for plane
elasticity differs from that used in the case anti-plane elasticity discussed in the
previous section.
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Consider the following conformal mapping function for the thick coating

(4.3) z = ω(ξ) =
q

ξ − ξ̄−1
0

+
+∞
∑

n=1

(anξ
n + a−nξ

−n), ξ = ω−1(z), r ≤ |ξ| ≤ 1,

where q is a complex constant, an, a−n, n = 1, 2, . . . ,+∞ are unknown complex
constants to be determined and ξ0 = ω−1(z0). Using the mapping function in
Eq. (4.3), the thick coating in the z-plane is mapped onto an annulus r ≤ |ξ| ≤ 1
in the ξ-plane, the coating-matrix interface L1 in the z-plane is mapped onto
|ξ| = 1 in the ξ-plane, the traction-free boundary of the hole L2 in the z-plane
is mapped onto |ξ| = r in the ξ-plane and the point z = z0 is mapped onto
ξ = ξ0 (see Fig. 15). The appearance in Eq. (4.3) of the first-order pole at
ξ = ξ

−1
0 outside the annulus is to account for the existence of the circular thermal

inclusion in the thick coating.

|ξ|=1

|ξ|=r

ξ=ξ
0

Reξ

Imξ

Fig. 15. The problem in the image ξ-plane.

By enforcing the continuity conditions of displacement and traction across
the coating-matrix interface L1 (Eq. (4.1a)) we arrive at

(4.4)

φ2(ξ) = φ2(ω(ξ)) =
A[Γ (κ1 − 1) + 2]

κ2 + 1

[

q

ξ − ξ̄−1
0

+
+∞
∑

n=1

(anξ
n + a−nξ

−n)

]

,

ψ2(ξ) = ψ2(ω(ξ)) =
2A[κ2 − 1 − Γ (κ1 − 1)]

κ2 + 1

×
[

− q̄ξ20
ξ − ξ0

+
+∞
∑

n=1

(ānξ
−n + ā−nξ

n)

]

, r ≤ |ξ| ≤ 1.
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The traction-free boundary condition along the hole boundary L2 (Eq. (4.1b))
allows us to determine the complex coefficients an, a−n, n = 1, 2, . . . ,+∞
uniquely as follows

(4.5) an =
qξ̄n+1

0

1 + βr−2n
, a−n = −qβr

2nξ̄1−n
0

1 + βr2n
, n = 1, 2, . . . ,+∞,

where

(4.6) β =
κ2 − 1 − Γ (κ1 − 1)

Γ (κ1 − 1) + 2
.

A comparison of Eq. (4.4) with Eq. (4.1c) leads to the following relationship

(4.7) q =
4R2µ2ε

∗

σ0[κ2 − 1 − Γ (κ1 − 1)]

1

ξ20ω
′(ξ0)

.

Inserting Eq. (4.5) into Eq. (4.3), we obtain the following expression for
ω′(ξ0):

(4.8) ω′(ξ0) = − qξ̄20
(|ξ0|2 − 1)2

+ qξ̄20

+∞
∑

n=1

n

( |ξ0|2n−2

1 + βr−2n
+
βr2n|ξ0|−2n−2

1 + βr2n

)

.

Consequently, ω′(ξ0) is uniquely determined from Eq. (4.8) for given values of
Γ , κ1, κ2, r, ξ0 and q. Accordingly, the ratioR2µ2ε

∗/σ0 can be further determined
from Eq. (4.7) as follows

R2µ2ε
∗

σ0
=

1

4
|q|2|ξ0|2[κ2 − 1 − Γ (κ1 − 1)](4.9)

×
[

− |ξ0|2
(|ξ0|2 − 1)2

+
+∞
∑

n=1

n

( |ξ0|2n

1 + βr−2n
+
βr2n|ξ0|−2n

1 + βr2n

)]

.

Note that the right-hand side of Eq. (4.9) is always real-valued.
In addition, we see from Eqs. (4.2)–(4.4) and the Appendix that the mean

stress is uniform in the region S′
2 occupied by the thick coating outside the

circular thermal inclusion and is given by

(4.10) σ11 + σ22 =
2σ0[Γ (κ1 − 1) + 2]

κ2 + 1
, z ∈ S′

2.

It then follows from Eq. (4.10) that the hoop stress is constant along either
L1 or L2 on the coating side as follows

(4.11)
σtt =

σ0[2Γ (κ1 − 1) + 3 − κ2]

κ2 + 1
, z ∈ L1;

σtt =
2σ0[Γ (κ1 − 1) + 2]

κ2 + 1
, z ∈ L2.
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Fig. 16. A neutral coated hole when choosing Γ = 1.2582, κ1 = κ2 = 2, r = 0.3, ξ0 = 0.65,
q = 1.

Fig. 17. A neutral coated hole when choosing Γ = 2, κ1 = κ2 = 2, r = 0.3, ξ0 = 0.65, q = 1.

Thus the “equal strength” design criterion advanced by Cherepanov [30]
has also been achieved.
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Fig. 18. A neutral coated hole when choosing Γ = 2.5922, κ1 = κ2 = 2, r = 0.6, ξ0 = 0.8,
q = 1.

Fig. 19. A neutral coated hole when choosing Γ = 3, κ1 = κ2 = 2, r = 0.6, ξ0 = 0.8, q = 1.

Illustrated in Figs. 16 to 21 are the resulting neutral coated holes for three
typical values of the coating thickness parameter r = 0.3, 0.6, 0.9. The star in
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Fig. 20. A neutral coated hole when choosing Γ = 13.6492, κ1 = κ2 = 2, r = 0.9, ξ0 = 0.95,
q = 1.

Fig. 21. A neutral coated hole when choosing Γ = 16, κ1 = κ2 = 2, r = 0.9, ξ0 = 0.95, q = 1.

each figure indicates the position of z = z0, the center of the circular thermal
inclusion. In all the six figures, the coating is always stiffer than the surrounding
matrix (i.e., Γ > 1) in order to achieve neutrality. In addition, in Figs. 16 and 18,
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the hole boundary L2 is convex whereas the coating-matrix interface L1 becomes
non-convex and has a sharp corner; in Fig. 17, the coating-matrix interface L1 is
convex whereas the hole boundary L2 becomes non-convex; in Figs. 19–21, both
the coating-matrix interface L1 and the hole boundary L2 become non-convex.
We observe the general trend that as the value of the parameter r increases,
the minimum value of Γ (> 1) must increase in order to ensure that there is
no self-intersecting boundary for L1 and L2 (see Figs. 16, 18, 20). On the other
hand, the value of Γ cannot be set arbitrarily large. The above trend can be
more clearly observed in Fig. 22. The pair (r, Γ ) must lie between the two curves
in Fig. 22. We further note that the results in Fig. 22 are valid for any value
of q.

Fig. 22. The range of permissible Γ for different values of the parameter r with
ξ0 = (1 + r)/2, κ1 = κ2 = 2.

Furthermore, by using the parameters used in Figs. 16–21, from Eq. (4.9) we
calculate that, respectively

(4.12)
R2µ2ε

∗

σ0
= −0.06, 0.1695, −2.7231, 3.9898, −659.7846, 779.8345.

We can see from the above that ε∗ and σ0 may have either the same or
opposite signs.
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5. Conclusions

Using conformal mapping techniques, we demonstrate that neutral coated
holes in anti-plane elasticity continue to be available even in the presence of
a screw dislocation dipole in the thick coating. A logarithmic function is intro-
duced into the mapping function (3.3) to account for the existence of the screw
dislocation dipole. Numerical examples demonstrate the feasibility of the design
method. The present method can be easily modified to study the more general
case in which the thick coating is under the action of an arbitrary number of
screw dislocations with the sum of the Burgers vectors of these dislocations being
zero.

Also by means of conformal mapping, we have successfully designed neutral
coated holes when a circular thermal inclusion is present in the thick coating and
when the matrix is subjected to uniform hydrostatic stresses at infinity. All the
unknown coefficients appearing in the mapping function (4.3) are determined
quite simply by Eq. (4.5). Numerical results demonstrate the feasibility of our
design method. Finally, our results support the conjecture that when a thermal
inclusion of arbitrary shape is present in the thick coating, the coated hole can
still be made neutral to an isotropic field.

Appendix

The continuity conditions of traction and displacement across the perfect
circular interface L3 : |z − z0| = R can be expressed as follows

(A.1)
φ2(z)+zφ′2(z)+ψ2(z) = φ3(z)+zφ′3(z)+ψ3(z),

κ2φ2(z)−zφ′2(z)−ψ2(z) = κ2φ3(z)−zφ′3(z)−ψ3(z)+2µ2ε
∗z, z ∈ L3,

where φ3(z) and ψ3(z) are the two complex potentials defined in the circular
thermal inclusion whilst φ2(z) and ψ2(z) are the two complex potentials defined
in the region occupied by the thick coating outside the circular thermal inclusion,
here denoted by S′

2.
After some simple operations, Eq. (A.1) can be rewritten as

(A.2)
φ2(z) = φ3(z)+

2µ2ε
∗z

κ2+1
,

ψ2(z)+
4µ2ε

∗

κ2+1

R2

z−z0
= ψ3(z)−

4µ2ε
∗z̄0

κ2+1
, z ∈ L3.
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By considering the above, we construct the following two auxiliary functions

(A.3)

Φ(z) =







φ2(z), z ∈ S′
2,

φ3(z)+
2µ2ε

∗z

κ2+1
, |z−z0| ≤ R,

Ψ(z) =











ψ2(z)+
4µ2ε

∗

κ2+1

R2

z−z0
, z ∈ S′

2,

ψ3(z)−
4µ2ε

∗z̄0
κ2+1

, |z−z0| ≤ R.

It is seen from Eqs. (A.2) and (A.3) that Φ(z) and Ψ(z) are continuous across
L3 and then analytic in S2, the region occupied by the thick coating.

The definitions in Eq. (A.3) also suggest that the region of definition of the
two analytic functions φ2(z) and ψ2(z) can be extended by analytic continuation
to the circular domain |z−z0| ≤ R through the following:

(A.4) φ2(z) = Φ(z), ψ2(z) = Ψ(z)−4µ2ε
∗

κ2+1

R2

z−z0
, z ∈ S2,

which indicates that φ2(z) is analytic in S2 whereas ψ2(z) is meromorphic in S2

(there is a first-order pole at z = z0).
Equation (4.1c) then follows accordingly. Here we point out that this tech-

nique has been adopted by Suo [28]. We can also use the relationship in Eq.
(A.3) to arrive at φ3(ξ) = φ3(ω(ξ)) and ψ3(ξ) = ψ3(ω(ξ)) once φ2(ξ) and ψ2(ξ)
have been determined.
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