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In the present paper the linear theory of thermoelasticity for isotropic
and homogeneous solids with macro-, meso- and microporosity is considered. In this
theory the independent variables are the displacement vector field, the changes of
the volume fractions of pore networks and the variation of temperature. The funda-
mental solution of the system of steady vibrations equations is constructed explicitly
by means of elementary functions. The basic internal and external boundary value
problems (BVPs) are formulated and the uniqueness theorems of these problems are
proved. The basic properties of the surface (single-layer and double-layer) and volume
potentials are established and finally, the existence theorems for regular (classical)
solutions of the internal and external BVPs of steady vibrations are proved by using
the potential method (boundary integral equation method) and the theory of singular
integral equations.
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1. Introduction

The construction of mathematical models of fluid flow through
porous media and the intensive investigation of the problems of porous continua
arise by the extensive use of porous materials into civil engineering, geotechni-
cal engineering, technology, hydrology, and recent years, medicine and biology
(for details see Bear [1], Coussy [2], Cowin [3], de Boer [4], Ichikawa and
Selvadurai [5], Wang [6]).

There are many different approaches to a theoretical formulation of linear
and nonlinear models for materials with single and multiple porosity. Wide in-
formation on the construction of mathematical models that describe phenomena
of flow and transport in porous media is given in the new books of Bear [1],
Das et al. [7] and Straughan [8]. Historically, mathematical models of single
porosity materials were the first models in the theory of porous media (see e.g.
de Boer [4]).
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There are a number of theories which describe mechanical properties of single
porosity materials (see de Boer [4], Cheng [9] and the references therein), and
the most well known of them are Biot [10] consolidation theory based on Darcy’s
law and Nunziato-Cowin [11] theory based on the volume fraction concept.

Indeed, Nunziato and Cowin [11] introduced a theory for the behavior of
single porous deformable materials in which the skeletal or matrix materials are
elastic and the interstices are voids. On the basis of this model the linear theory
of elastic materials with single voids is developed by the same authors in [12].
Then, Ieşan [13] presented a linear theory of thermoelastic materials with single
voids. In this theory the independent variables are the displacement vector field,
the change of the volume fraction of pores and the variation of temperature. The
basic results on the these theories may be found in the books of Ciarletta and
Ieşan [14], Ieşan [15], Straughan [16] and the references therein.

Moreover, Ieşan and Quintanilla [17] developed the theory of thermoelas-
ticity for deformable materials with double voids by using the volume fraction
concept. In this model the independent variables are the displacement vector,
the changes of the volume fractions of pores and fissures and the variation of
temperature. On the basis of this theory the elastodynamic problem of an in-
finite thermoelastic double voids body with a spherical cavity in the context
of Lord–Shulman theory of thermoelasticity with one relaxation time is exam-
ined and some numerical results are obtained by Kumar and Vohra [18, 19],
Kumar et al. [20]. The variational principle for Lord-Shulman theory of ther-
moelastic material with double voids is developed by Kumar et al. [21] and the
propagation of plane waves for thermoelastic material with double voids with
one relaxation time is studied. Exponential decay, existence and uniqueness of
the solutions in the one-dimensional version of thermoelasticity for solids with
double voids are established by Bazarra et al. [22].

Furthermore, plane waves, uniqueness theorems and existence of eigenfre-
quencies in the theory of rigid bodies with double voids are investigated by
Svanadze [23]. The existence of classical solutions in the external BVPs of
steady vibrations of this theory is established by the same author in [24]. The
basic three-dimensional BVPs of the equilibrium theory of elasticity for materials
with a double voids structure are studied by using the potential method and the
theory of singular integral equations by Ieşan [25]. The existence and unique-
ness of solutions of the BVPs of steady vibrations in the theories of elasticity
and thermoelasticity for materials with double voids are proved by Svanadze

[26, 27].
Recently, the micropolar model of thermoelasticity for solids with double

voids has been presented by Marin et al. [28] and the existence, uniqueness
and stability of the weak solutions are proved. The existence and stability re-
sults for thermoelastic dipolar bodies with double voids are obtained by Marin
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and Nicaise [29]. Spatial and temporal behavior of solutions of the dynamical
problems in the linear theory of thermoelasticity for solids with double voids are
studied by Arusoaie [30] and Florea [31]. A priori estimates for the ampli-
tude of a harmonic vibration in the linear thermoelasticity theory of anisotropic
materials with double voids are derived by Florea [32]. The generalized the-
ory of thermoelastic diffusion for materials with double voids based upon the
Lord-Shulman model are presented by Kansal [33]. Stability and uniqueness
in the double and triple porosity elasticity are studied by Straughan [34, 35].
The basic properties of the acceleration waves in the nonlinear double porosity
elasticity are established by Gentile and Straughan [36]. Several models of
the multi-porosity elasticity are presented by Straughan [37, 38].

More recently, the linear equilibrium and quasi static models of elasticity
and thermoelasticity for materials with triple voids have been developed by
Svanadze [39, 40] and the basic BVPs are investigated by using the poten-
tial method.

Most recent results in the linear theory of double porosity thermoelasticity
under local thermal non-equilibrium have been obtained by Franchi et al. [41]
and Svanadze [42]. Indeed, in [41], the uniqueness and decay of solutions for
anisotropic double porosity solids are established, and in [42], the basic BVPs of
steady vibrations for isotropic double porosity solids are investigated by using
the potential method.

The basic results in the theories of double and multiple porosity elasticity and
thermoelasticity may be found in the book of Straughan [8] and the references
therein.

It is well known (see e.g. Nowacki [43] and Kupradze et al. [44]) that
in solid mechanics one encounters two types of dynamical problems; on the one
hand, there are the problems in which the laws of motion as functions of time are
known in advance and usually have a sinusoidal character. The problems of this
type describe the steady-state or the steady vibrations. On the other hand, there
are the problems in which the character of the dependence of time is unknown
and has to be determined from the solution itself. The problems of the second
type describe the nonstationary motions, unrestricted with respect to the time.

In the present paper the linear theory of thermoelasticity for isotropic and
homogeneous elastic solids with macro-, meso- and microporosity is considered
and the steady vibrations problems are studied by using the potential method.
In this theory the independent variables are the displacement vector field, the
volume fractions of pore networks and the variation of temperature.

This work is articulated as follows. In Section 2, the governing field equa-
tions of steady vibrations of the considered theory are given. In Section 3, the
fundamental solution of the system of steady vibrations equations is constructed
explicitly by means of elementary functions and its basic properties are estab-
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lished. In Section 4, the radiation conditions are established and the basic in-
ternal and external BVPs are formulated. In Section 5, the uniqueness theorems
for these problems are proved. In Section 6, the basic properties of the surface
(single-layer and double-layer) and volume potentials are established and finally,
the existence theorems for regular (classical) solutions of the internal and exter-
nal BVPs of steady vibrations are proved by using the potential method and the
theory of singular integral equations.

2. Basic equations

Let x = (x1, x2, x3) be a point of the Euclidean three-dimensional space R
3.

In what follows we consider an isotropic and homogeneous thermoelastic solid
with macro-, meso- and microporosity (first, second and third porosity) structure
that occupies the region Ω of R

3. Let u = (u1, u2, u3) be the displacement vector
in solid, ϕ1(x), ϕ2(x) and ϕ3(x) are the changes of the volume fractions from
the reference configuration corresponding to macro-, meso- and microporosity,
respectively; θ is the temperature measured from some constant absolute tem-
perature T0 (T0 > 0).

We assume that repeated indices are summed over the range (1,2,3) and
subscripts preceded by a comma denote partial differentiation with respect to
the corresponding Cartesian coordinate.

Usually, as in the classical theory of thermoelasticity (see e.g. Nowacki [43]
and Kupradze et al. [44]), the steady vibrations case of the dynamic equations
means, that all the independent variables (displacement vector, temperature,
etc.) are postulated to have a harmonic time variation. In this connection, the
governing field equations of steady vibrations in the linear theory of thermoelas-
ticity for materials with triple voids are given by (see Svanadze [39, 40])

• the constitutive equations

(2.1)
tlj = λerrδlj + 2µelj + (brϕr − γ0θ)δlj ,

σ
(l)
j = alrϕr,j , ρη = γ0err + γjϕj + c θ;

• the equations of steady vibrations

(2.2)
tlj,j + ρω2ul = −ρFl,

σ
(l)
j,j + ξ(l) + ρlω

2ϕl = −ρFl+3 (no sum by l);

• Fourier’s law

(2.3) ql = kθ,l;

• and the equation of energy

(2.4) −iωρT0η = ql,l + ρF7.
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In these equations, tlj is the component of total stress tensor, ρ is the reference

mass density, ρ > 0, ql is the component of the heat flux vector, σ
(l)
j and ρl are

the component of the equilibrated stress and the coefficient of the equilibrated
inertia for l-th pore network, respectively; ρl > 0 (l = 1, 2, 3), η and F(1) =
(F1, F2, F3) are the entropy and the body force per unit mass, respectively; F(2) =
(F4, F5, F6) is the extrinsic equilibrated body force per unit mass associated to
pore networks, F7 is the heat supply per unit mass; λ, µ, bj , d, αlj , γ0, γl, alj , c, k
(l, j = 1, 2, 3) are constitutive coefficients, δlj is Kronecker’s delta, ω is the
oscillation frequency, ω > 0, elj are the components of the strain tensor,

(2.5) elj =
1

2
(ul,j + uj,l), l, j = 1, 2, 3,

the function ξ(l) is the intrinsic equilibrated body force for l-th pore network and
defined by

(2.6) ξ(l) = −blerr − αljϕj + γlθ.

Substituting Eqs. (2.1), (2.3), (2.5) and (2.6) into (2.2) and (2.4) we obtain
the following system of equations of steady vibrations in the linear theory of
thermoelasticity for materials with triple voids expressed in terms of the dis-
placement vector u, the changes of volume fractions vector ϕ = (ϕ1, ϕ2, ϕ3) and
the variation of temperature θ:

(2.7)

(µ∆ + ρω2)u + (λ + µ)∇ div u + bj∇ϕj − γ0 ∇θ = −ρF(1),

(alj∆ + βlj)ϕj − bl div u + γl θ = −ρ Fl+3,

(k∆ + c′) θ + γ′
0 div u + γ′

j ϕj = −ρ F7,

where ∆ is the Laplacian operator, βlj = ρlω
2δlj − αlj (no sum), c′ = iωcT0,

γ′
m = iωγmT0, l, j = 1, 2, 3, m = 0, 1, 2, 3.

We introduce the matrix differential operator A(Dx) = (Alj(Dx))7×7, where

Alj(Dx) = (µ∆ + ρω2)δlj + (λ + µ)
∂2

∂xl∂xj
, Al;j+3(Dx) = bj

∂

∂xl
,

Al7(Dx) = −γ0
∂

∂xl
, Al+3;j(Dx) = −bl

∂

∂xj
, Al+3;j+3(Dx) = alj∆ + βlj ,

Al+3;7(Dx) = −γl, A7l(Dx) = γ′
0

∂

∂xl
, A7;l+3(Dx) = γ′

l,

A77(Dx) = k∆ + c′, Dx =

(

∂

∂x1
,

∂

∂x2
,

∂

∂x3

)

, l, j = 1, 2, 3.
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It is easily seen that the system (2.7) can be rewritten in the following matrix
form

(2.8) A(Dx)U(x) = F(x),

where U = (u,ϕ, θ) and F = (−ρF1,−ρF2, . . . ,−ρF7) are seven-component
vector functions.

3. Fundamental solution

In this section the fundamental solution of the system (2.7) is constructed ex-
plicitly by means of elementary functions and its basic properties are established.

Definition 1. The fundamental solution of system (2.7) is the matrix Γ(x) =
(Γlj(x))7×7 satisfying the equation

(3.1) A(Dx)Γ(x) = δ(x)J

in the class of generalized functions, where δ(x) is the Dirac delta, J = (δlj)7×7

is the unit matrix, x ∈ R
3.

We introduce the notation:
1)

Λ1(∆) =
1

ka0µ0
detB(∆),

where a0 = det(alj)3×3, µ0 = λ + 2µ and

B(∆) =

















µ0∆ + ρω2 − b1∆ − b2∆ − b3∆ γ′
0∆

b1 a11∆ + β11 a12∆ + β12 a13∆ + β13 γ′
1

b2 a21∆ + β21 a22∆ + β22 a23∆ + β23 γ′
2

b3 a31∆ + β31 a32∆ + β32 a33∆ + β33 γ′
3

−γ0 −γ1 −γ2 −γ3 k∆ + c′

















5×5

.

We can consider Λ1(−ξ) = 0 as an algebraic equation of the fifth degree, which
admits five roots τ2

1 , τ2
2 , . . . , τ2

5 (with respect to ξ). Then we have

Λ1(∆) =
5

∏

j=1

(∆ + τ2
j ).

We assume that the values τ2
1 , τ2

2 , . . . , τ2
6 are distinct and different from zero,

where τ2
6 = ρω2/µ.
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2)

nj1(∆) = − 1

ka0µµ0
[(λ + µ)B∗

j1(∆) − brB
∗
j;r+1(∆) + γ′

0B
∗
j4(∆)],

njl(∆) =
1

ka0µ0
B∗

jl(∆), j = 1, 2, . . . , 5, l = 2, 3, 4, 5,

where B∗
lj is the cofactor of the element Blj of matrix B.

3)

(3.2)

L(Dx) = (Llj(Dx))7×7, Llj(Dx) =
1

µ
Λ1(∆) δlj + n11(∆)

∂2

∂xl∂xj
,

Ll;m+2(Dx) = n1m(∆)
∂

∂xl
, Lm+2;l(Dx) = nm1(∆)

∂

∂xl
,

Lm+2;p+2(Dx) = nmp(∆), l, j = 1, 2, 3, m, p = 2, 3, 4, 5.

4)

(3.3)

Y(x) = (Ylm(x))7×7, Y11(x) = Y22(x) = Y33(x) =
6

∑

j=1

η2jγ
(j)(x),

Y44(x) = Y55(x) = Y66(x) = Y77(x) =
5

∑

j=1

η1jγ
(j)(x),

Ylm(x) = 0, l 6= m, l, m = 1, 2, . . . , 7,

where

(3.4) γ(j)(x) = −eiτj |x|

4π|x|
and

η1m =
5

∏

l=1, l 6=m

(τ2
l − τ2

m)−1, η2j =
6

∏

l=1, l 6=j

(τ2
l − τ2

j )−1,

m = 1, 2, . . . , 5, j = 1, 2, . . . , 6.

We have the following

Theorem 1. If

(3.5) ka0µµ0 6= 0,

then the matrix Γ(x) defined by

(3.6) Γ(x) = L(Dx)Y(x)
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is the fundamental solution of system (2.7), where the matrices L(Dx) and Y(x)
are given by (3.2) and (3.3), respectively.

Proof. On the basis of (3.6) and identities

A(Dx)L(Dx) = Λ(∆), Λ(∆)Y(x) = δ(x)J,

where
Λ(∆) = (Λlj(∆))7×7,

Λ11(∆) = Λ22(∆) = Λ33(∆) = Λ1(∆)(∆ + τ2
6 ),

Λ44(∆) = Λ55(∆) = Λ66(∆) = Λ77(∆) = Λ1(∆),

Λlj(∆) = 0, l 6= j, l, j = 1, 2, . . . , 7,

we have

A(Dx)Γ(x) = A(Dx)L(Dx)Y(x) = Λ(∆)Y(x) = δ(x)J.

Hence, the matrix Γ(x) is a solution of (3.1). 2

Clearly, the matrix Γ(x) is constructed by 6 metaharmonic functions γ(j)

(j = 1, . . . , 6) (see (3.4)).
Theorem 1 directly leads to the following basic properties of Γ(x).

Theorem 2. Each column of the matrix Γ(x) is a solution of the homoge-
neous equation

(3.7) A(Dx)U(x) = 0

at every point x ∈ R
3 except the origin.

Theorem 3. If condition (3.5) is satisfied, then the fundamental solution of
the system

µ∆u + (λ + µ)∇ div u = 0,

alj∆ϕj = 0, k ∆θ = 0, l = 1, 2, 3

is the matrix Ψ(x) = (Ψlj(x))7×7, where

(3.8)

Ψlj(x) = λ′ δlj

|x| + µ′ xlxj

|x|3 , Ψl+3;j+3(x) =
a∗lj
a0

γ(0)(x),

Ψ77(x) =
1

k
γ(0)(x), Ψlm(x) = Ψml(x) = Ψl+3;7(x) = Ψ7;l+3(x) = 0,

γ(0)(x) = − 1

4π|x| , λ′ = −λ + 3µ

8πµµ0
, µ′ = − λ + µ

8πµµ0
,

l, j = 1, 2, 3, m = 4, 5, 6, 7

and a∗lj is the cofactor of the element alj of matrix a = (alj)3×3.
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Obviously, (3.6) and (3.8) imply the following results.

Corollary 1. The relations

(3.9) Ψlj(x) = O(|x|−1), Ψl+3;j+3(x) = O(|x|−1), Ψ77(x) = O(|x|−1)

hold in the neighborhood of the origin, where l, j = 1, 2, 3.

Theorem 4. The relations

Γlj(x) = O(|x|−1), Γl+3;j+3(x) = O(|x|−1),

Γ77(x) = O(|x|−1), Γlm(x) = O(1),

Γml(x) = O(1), Γl+3;7(x) = O(1), Γ7;l+3(x) = O(1)

hold in the neighborhood of the origin, where l, j = 1, 2, 3, m = 4, 5, 6, 7.

On the basis of Theorem 4 and Corollary 1 we can prove the following

Theorem 5. The relations

(3.10) Γlj(x) − Ψlj(x) = const + O(|x|)

hold in the neighborhood of the origin, where l, j = 1, . . . , 7.

Thus, in view of (3.9) and (3.10), the matrix Ψ(x) is the singular part of the
fundamental solution Γ(x) in the neighborhood of the origin.

4. Boundary value problems

In what follows we assume that Im τj ≥ 0 (j = 1, . . . , 5), τ6 > 0 and the consti-
tutive coefficients satisfy the conditions:

(i) a = (alj)3×3 and α = (αlj)3×3 are positive definite matrices;
(ii)

(4.1) µ > 0, 3λ + 2µ > 0, c > 0, k > 0.

Let S be the closed surface surrounding the finite domain Ω+ in R
3, S ∈

C1,ν , 0 < ν ≤ 1, Ω+ = Ω+ ∪ S, Ω− = R
3 \ Ω+; n(z) is the external unit

normal vector to S at z. The scalar product of two vectors U = (u1, . . . , u7)
and V = (v1, . . . , v7) is denoted by U ·V =

∑7
j=1 uj v̄j , where v̄j is the complex

conjugate of vj .

Definition 2. A vector function U = (u,ϕ, θ) = (U1, . . . , U7) is called
regular in Ω− (or Ω+) if

(i)
Ul ∈ C2(Ω−) ∩ C1(Ω−) (or Ul ∈ C2(Ω+) ∩ C1(Ω+)),
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(ii)

Ul =
6

∑

j=1

U
(j)
l , U

(j)
l ∈ C2(Ω−) ∩ C1(Ω̄−),

(iii) (∆ + τ2
j )U

(j)
l (x) = 0 and

(4.2)

(

∂

∂|x| − iτj

)

U
(j)
l (x) = eiτj |x|o(|x|−1) for |x| ≫ 1,

where U
(6)
m = 0, j = 1, . . . , 6, l = 1, . . . , 7, m = 4, 5, 6, 7.

Obviously, the relation (4.2) implies (for details see Vekua [45])

(4.3) U
(j)
l (x) = eiτj |x|O(|x|−1) for |x| ≫ 1,

where j = 1, . . . , 6, l = 1, · · · , 7.
Relations (4.2) and (4.3) are the radiation conditions in the linear theory of

thermoelasticity for materials with triple voids.
In the sequel, we use the matrix differential operator

P(Dx,n) = (Plj(Dx,n))7×7,

where

(4.4)

Plj(Dx,n) = µδlj
∂

∂n
+ µnj

∂

∂xl
+ λnl

∂

∂xj
, Pl;j+3(Dx,n) = bj nl,

Pl7(Dx,n) = −γ0 nl, Pl+3;j+3(Dx,n) = alj
∂

∂n
,

P77(Dx,n) = k
∂

∂n
, Pl+3;j(Dx,n) = Pl+3;7(Dx,n) = P7m(Dx,n) = 0,

l, j = 1, 2, 3, m = 1, . . . , 6

and ∂/∂n is the derivative along the vector n.
The basic internal and external BVPs of steady vibrations in the linear theory

of thermoelasticity for materials with triple voids are formulated as follows.
Find a regular (classical) solution to (2.8) for x ∈ Ω+ satisfying the boundary

condition

(4.5) lim
Ω+∋x→z∈S

U(x) ≡ {U(z)}+ = f(z)

in the internal Problem (I)+F,f ,

(4.6) lim
Ω+∋x→z∈S

P(Dx,n(z))U(x) ≡ {P(Dz,n(z))U(z)}+ = f(z)
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in the internal Problem (II)+F,f , where F and f are prescribed seven-component
vector functions.

Find a regular (classical) solution to (2.8) for x ∈ Ω− satisfying the boundary
condition

lim
Ω−∋x→z∈S

U(x) ≡ {U(z)}− = f(z)

in the external Problem (I)−F,f ,

(4.7) lim
Ω−∋x→z∈S

P(Dx,n(z))U(x) ≡ {P(Dz,n(z))U(z)}− = f(z)

in the external Problem (II)−F,f , where F and f are prescribed seven-component
vector functions, suppF is a finite domain in Ω−.

5. Uniqueness theorems

In this section the uniqueness of regular solutions of the BVPs (K)+F,f and

(K)−F,f is studied, where K = I, II . In the sequel we use the matrix differential
operators:

1)

A(0)(Dx) = (A
(0)
lj (Dx))3×3, A

(0)
lj (Dx) = µ∆δlj + (λ + µ)

∂2

∂xl∂xj
,

A(1)(Dx) = (A
(1)
lr (Dx))3×7, A

(1)
lr (Dx) = Alr(Dx),

A(2)(Dx) = (A
(2)
lr (Dx))3×7, A

(2)
lr (Dx) = Al+3;r(Dx),

A(3)(Dx) = (A
(3)
1r (Dx))1×7, A

(3)
1r (Dx) = A7r(Dx);

2)

P(0)(Dx,n) = (P
(0)
lj (Dx,n))3×3, P

(0)
lj (Dx,n) = Plj(Dx,n),

P(1)(Dx,n) = (P
(1)
lr (Dx,n))3×7, P

(1)
lr (Dx,n) = Plr(Dx,n),

where l, j = 1, 2, 3, m = 2, 3 and r = 1, . . . , 7.
We introduce the notation

(5.1)

W (0)(u) =
1

3
(3λ + 2µ) |div u|2

+
µ

2

3
∑

l,j=1; l 6=j

∣

∣

∣

∣

∂uj

∂xl
+

∂ul

∂xj

∣

∣

∣

∣

2

+
µ

3

3
∑

l,j=1

∣

∣

∣

∣

∂ul

∂xl
− ∂uj

∂xj

∣

∣

∣

∣

2

,

W (1)(U) = W (0)(u) − ρω2|u|2 + (bjϕj − γ0θ) div u,

W (2)(U) = alj∇ϕj · ∇ϕl − βljϕjϕl + blϕl div u − γlθ ϕl,

W (3)(U) = k|∇θ|2 − c′|θ|2 − (γ′
0 div u + γ′

lϕl) θ.
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We have the following

Lemma 1. If U = (u,ϕ, θ) is a regular vector in Ω+, then

(5.2)

∫

Ω+

[A(1)(Dx)U(x) · u(x) + W (1)(U)]dx

=

∫

S

P(1)(Dz,n)U(z) · u(z) dzS,

∫

Ω+

[A(2)(Dx)U(x) ·ϕ(x) + W (2)(U)]dx =

∫

S

a
∂ϕ(z)

∂n
·ϕ(z) dzS,

∫

Ω+

[A(3)(Dx)U(x)θ(x) + W (3)(U)]dx =

∫

S

k
∂θ(z)

∂n
θ(z) dzS.

Proof. It is well known (see e.g. [44]) that on the basis of the divergence
theorem the following identities hold

(5.3)

∫

Ω+

[A(0)(Dx)u(x) · u(x) + W (0)(u)]dx

=

∫

S

P(0)(Dz,n)u(z) · u(z) dzS,

∫

Ω+

[∆ϕj(x)ϕl(x) + ∇ϕj(x) · ∇ϕl(x)]dx =

∫

S

∂ϕj(z)

∂n(z)
ϕl(z) dzS,

∫

Ω+

[

∇ϕj(x) · u(x) + ϕj(x) div u(x)
]

dx =

∫

S

ϕj(z)n(z) · u(z) dzS.

Keeping in mind (5.1), from (5.3) we obtain the identities (5.2). 2

We are now in a position to study the uniqueness of regular solutions of the
BVPs (K)+F,f and (K)−F,f , where K = I, II . We have the following results.

Theorem 6. Two regular solutions of the internal BVP (I)+F,f , may differ
only for an additive vector U = (u,ϕ, θ), where

(5.4) θ(x) = 0 for x ∈ Ω+

and the six-component vector v = (u,ϕ) is a regular solution of the following
system

(5.5)

(µ∆ + ρω2)u + (λ + µ)∇ div u + bj∇ϕj = 0,

(alj∆ + βlj)ϕj − bl div u = 0,

γ0 div u + γj ϕj = 0, l = 1, 2, 3,
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satisfying the boundary condition

(5.6) {v(z)}+ = 0 for z ∈ S.

In addition, problems (I)+0,0 and (5.5), (5.6) have the same eigenfrequencies.

Proof. Suppose that there are two regular solutions of problem (I)+F,f . Then

their difference U is a regular solution of the internal homogeneous BVP (I)+0,0.
Hence, U is a regular solution of the homogeneous system of Eqs. (3.7) in Ω+

satisfying the homogeneous boundary condition

(5.7) {U(z)}+ = 0 for z ∈ S.

On the basis of (3.7) and (5.7), from (5.2) we obtain

(5.8)

∫

Ω+

W (j)(U)dx = 0, j = 1, 2, 3.

Clearly, from (5.1) we have

Im W (1)(U) = Im [bjϕj div u] − γ0 Im [θ div u],

Im W (2)(U) = −Im [bjϕj div u] − Im [γlθϕl],

Re W (3)(U) = k|∇θ|2 − ωT0γ0 Im [θ div u] − ωT0 Im [γlθϕl].

Consequently, we get

Re W (3)(U) − ωT0 Im [W (1)(U) + W (2)(U)] = k|∇θ|2

and from (5.8) it follows that
∫

Ω+

|∇θ(x)|2dx = 0.

Hence, ∇θ(x) ≡ 0 in Ω+ and we may derive

(5.9) θ(x) = const for x ∈ Ω+.

On the basis of homogeneous boundary condition (5.7) from (5.9) we obtain the
relation (5.4). By virtue of (5.4) from (3.7) we get the system (5.5). Obviously, in
view of conditions (5.4) and (5.7) the six-component vector v = (u,ϕ) satisfies
the boundary condition (5.6).

Finally, it is easy to see that the homogeneous boundary value problems
(I)+0,0 and (5.5), (5.6) have the same eigenfrequencies. 2
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Let R(Dz,n) be the following matrix differential operator

R(Dz,n) = (Rlj(Dz,n))6×6, Rlj = Plj , l, j = 1, . . . , 6,

where Plj is given by (4.4).

Theorem 7. Two regular solutions of the internal BVP (II )+F,f , may differ
only for an additive vector U = (u,ϕ, θ), where θ satisfies the condition (5.4),
the vector v = (u,ϕ) is a regular solution of the system (5.5) satisfying the
boundary condition

(5.10) {R(Dz,n(z))v(z)}+ = 0 for z ∈ S.

In addition, problems (II )+0,0 and (5.5), (5.10) have the same eigenfrequencies.

Proof. Suppose that there are two regular solutions of the problem (II )+F,f .
Then their difference U is a regular solution of the internal homogeneous BVP
(II )+0,0. Hence, U is a regular solution of the homogeneous system of Eqs. (3.7)
in Ω+ satisfying the homogeneous boundary condition

(5.11) {P(Dz,n(z))U(z)}+ = 0 for z ∈ S.

Quite similarly as in Theorem 6, we obtain the relation (5.9). On the other hand,
from (3.7) it follows that

(5.12) Λ1(∆)θ(x) = 0.

By virtue of (5.9) and the relation τj 6= 0 (j = 1, . . . , 5) from (5.12) we have (5.4)
and consequently, the system (3.7) implies (5.5). Obviously, in view of conditions
(5.4) and (5.11) the vector v satisfies the boundary condition (5.10).

Finally, it is easy to see that the homogeneous boundary value problems
(II)+0,0 and (5.5), (5.10) have the same eigenfrequencies. 2

Theorem 8. The external BVP (K)−F,f has one regular solution, where K =
I, II .

Theorem 8 can be proved similarly to Theorems 6 and 7 using the radiation
conditions (4.2) and (4.3).

6. Existence theorems

In the sequel we use the matrix differential operator

P̃(Dx,n) = (P̃lj(Dx,n))7×7,

where

P̃lm(Dx,n) = Plm(Dx,n), P̃l7(Dx,n) = −γ′
0 nl, P̃rj(Dx,n) = Prj(Dx,n),

l = 1, 2, 3, m = 1, . . . , 6, j = 1, . . . , 7, r = 4, 5, 6, 7.
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It is easy to verify that the operator P̃(Dx,n) may be obtained from the operator
P(Dx,n) by replacing γ0 by γ′

0 and vice versa.
We introduce the following notation:

1) Q(1)(x,g) =

∫

S

Γ(x − y)g(y)dyS is the single-layer potential,

2) Q(2)(x,g) =

∫

S

[P̃(Dy,n(y))Γ⊤(x − y)]⊤g(y)dyS is the double-layer po-

tential, and

3) Q(3)(x,φ, Ω±) =

∫

Ω±

Γ(x − y)φ(y)dy is the volume potential,

where Γ(x) is the fundamental matrix of the operator A(Dx) and defined by
(3.6), g and φ are seven-component vector functions, Γ⊤ is the transpose of the
matrix Γ.

On the basis of properties of the matrix Γ(x) we have the following results.

Theorem 9. If S ∈ Cm+1,ν , g ∈ Cm,ν′

(S), 0 < ν ′ < ν ≤ 1, and m is a
non-negative integer, then:

(a)
Q(1)(·,g) ∈ C0,ν′

(R3) ∩ Cm+1,ν′

(Ω±) ∩ C∞(Ω±),

(b)
A(Dx)Q(1)(x,g) = 0,

(c)

(6.1) {P(Dz,n(z))Q(1)(z,g)}± = ∓ 1

2
g(z) + P(Dz,n(z))Q(1)(z,g),

(d)
P(Dz,n(z))Q(1)(z,g)

is a singular integral, where z ∈ S, x ∈ Ω±.

Theorem 10. If S ∈ Cm+1,ν , g ∈ Cm,ν′

(S), 0 < ν ′ < ν ≤ 1, then:
(a)

Q(2)(·,g) ∈ Cm,ν′

(Ω±) ∩ C∞(Ω±),

(b)
A(Dx)Q(2)(x,g) = 0,

(c)

(6.2) {Q(2)(z,g)}± = ± 1

2
g(z) + Q(2)(z,g)

for the non-negative integer m,
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(d) Q(2)(z,g) is a singular integral, where z ∈ S,
(e)

{P(Dz,n(z))Q(2)(z,g)}+ = {P(Dz,n(z))Q(2)(z,g)}−,

for the natural number m, where z ∈ S, x ∈ Ω±.

Theorem 11. If S ∈ C1,ν , φ ∈ C0,ν′

(Ω+), 0 < ν ′ < ν ≤ 1, then:
(a)

Q(3)(·,φ, Ω+) ∈ C1,ν′

(R3) ∩ C2(Ω+) ∩ C2,ν′

(Ω+
0 ),

(b)

A(Dx)Q(3)(x,φ, Ω+) = φ(x),

where x ∈ Ω+, Ω+
0 is a domain in R

3 and Ω+
0 ⊂ Ω+.

Theorem 12. If S ∈ C1,ν , suppφ = Ω ⊂ Ω−, φ ∈ C0,ν′

(Ω−), 0<ν ′<ν≤1,
then:

(a)
Q(3)(·,φ, Ω−) ∈ C1,ν′

(R3) ∩ C2(Ω−) ∩ C2,ν′

(Ω−
0 ),

(b)
A(Dx)Q(3)(x,φ, Ω−) = φ(x),

where x ∈ Ω−, Ω is a finite domain in R
3 and Ω−

0 ⊂ Ω−.

We introduce the notation

(6.3)

K(1) g(z) ≡ 1
2 g(z) + Q(2)(z,g),

K(2) g(z) ≡ −1
2 g(z) + P(Dz,n(z))Q(1)(z,g),

K(3)g(z) ≡ −1
2 g(z) + Q(2)(z,g),

K(4)g(z) ≡ 1
2 g(z) + P(Dz,n(z))Q(1)(z,g),

Kχg(z) ≡ 1
2 g(z) + χQ(2)(z,g)

for z ∈ S, where χ is a complex number. Obviously, on the basis of Theorems 9
and 10, Kj and Kχ are the singular integral operators (j = 1, 2, 3, 4).

Let σ(j) = (σ
(j)
lm)7×7 be the symbol of the singular integral operator K(j)

(j = 1, 2, 3, 4) (see [44]). Taking into account (6.3) we find

det σ(1) = −det σ(2) = −det σ(3) = detσ(4)(6.4)

= − 1

128

[

1 − µ2

(λ + 2µ)2

]

= −(λ + µ)(λ + 3µ)

128(λ + 2µ)2
< 0.

Hence, the operator K(j) is of the normal type, where j = 1, 2, 3, 4.
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Let σχ and indKχ be the symbol and the index of the operator Kχ, respec-
tively. It may be easily shown that

det σχ = −(λ + 2µ)2 − µ2χ2

128(λ + 2µ)2

and detσχ vanishes only at two points χ1 and χ2 of the complex plane. By virtue
of (6.4) and detσ1 = detσ(1) we get χj 6= 1 (j = 1, 2) and

indK1 = indK(1) = indK0 = 0.

Quite similarly we obtain indK(2) = −indK(3) = 0 and indK(4) = −indK(1)

= 0.
Thus, the singular integral operator K(j) (j = 1, 2, 3, 4) is of the normal

type with an index equal to zero. Consequently, Fredholm’s theorems are valid
for K(j).

The definitions of a normal type singular integral operator, the symbol and
the index of operator, and Fredholm’s theorems for the singular integral equa-
tions are given in [44] and [46].

By theorems 11 and 12 the volume potential Q(3)(x,F, Ω±) is a regular
solution of (2.8), where F ∈ C0,ν′

(Ω±), 0 < ν ′ ≤ 1; suppF is a finite domain
in Ω−. Therefore, further we consider problems (K)+0,f and (K)−0,f , and we prove
the existence theorems of a regular (classical) solution of these BVPs, where
K = I, II .

Problem (I)+0,f . Let us assume that ω is not an eigenfrequency of the BVP

(I)+0,0. We seek a regular solution to this problem in the form of the double-layer
potential

(6.5) U(x) = Q(2)(x,g) for x ∈ Ω+,

where g is the required seven-component vector function.
Obviously, by Theorem 10 the vector function U is a solution of (3.7) for

x ∈ Ω+. Keeping in mind the boundary condition (4.5) and using (6.2), from
(6.5) we obtain, for determining the unknown vector g, a singular integral equa-
tion

(6.6) K(1) g(z) = f(z) for z ∈ S.

We prove that Eq. (6.6) is always solvable for an arbitrary vector f .
Let us consider the associate homogeneous equation

(6.7) K(4) h(z) = 0 for z ∈ S,

where h is the required seven-component vector function. Now, we prove that
(6.7) has only the trivial solution.
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Indeed, let h0 be a solution of the homogeneous equation (6.7). On the basis
of Theorem 9 and Eq. (6.1) the vector function V(x) = Q(1)(x,h0) is a regular
solution of the external homogeneous BVP (II )−0,0. Using Theorem 8, problem
(II )−0,0 has only the trivial solution, that is

(6.8) V(x) ≡ 0 for x ∈ Ω−.

On the other hand, by Theorem 9 and (6.8) we get

{V(z)}+ = {V(z)}− = 0 for z ∈ S,

i.e., on the basis of Theorem 9 the vector V(x) is a regular solution of the problem
(I)+0,0. Using Theorem 6 and the assumption that ω is not an eigenfrequency of
the BVP (I)+0,0, the problem (I)+0,0 has only the trivial solution, that is

(6.9) V(x) ≡ 0 for x ∈ Ω+.

By virtue of (6.8), (6.9) and identity (6.1) we obtain

h0(z) = {P(Dz,n)V(z)}− − {P(Dz,n)V(z)}+ = 0 for z ∈ S.

Thus, the homogeneous equation (6.7) has only the trivial solution and therefore
on the basis of Fredholm’s theorem the integral equation (6.6) is always solvable
for an arbitrary vector f . We have thereby proved

Theorem 13. If S ∈ C2,ν , f ∈ C1,ν′

(S), 0 < ν ′ < ν ≤ 1, and ω is not an
eigenfrequency of the BVP (I)+0,0, then a regular solution of the internal BVP

(I)+0,f exists, is unique and is represented by the double-layer potential (6.5),
where g is a solution of the singular integral equation (6.6) which is always
solvable for an arbitrary vector f .

Problem (II )+0,f . Let us assume that ω is not an eigenfrequency of the BVP

(II )+0,0. We seek a regular solution to this problem in the form of the single-layer
potential

(6.10) U(x) = Q(1)(x,g) for x ∈ Ω+,

where g is the required seven-component vector function.
Obviously, by Theorem 9 the vector function U is a solution of (3.7) for

x ∈ Ω+. Keeping in mind the boundary condition (4.6) and using (6.1), from
(6.10) we obtain, for determining the unknown vector g, a singular integral
equation

(6.11) K(2) g(z) = f(z) for z ∈ S.

We prove that Eq. (6.11) is always solvable for an arbitrary vector f .
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Let us consider the homogeneous equation

(6.12) −1

2
g0(z) + P(Dz,n)Q(1)(z,g0) = 0 for z ∈ S,

where g0 is the required seven-component vector function. Now, we prove that
(6.12) has only the trivial solution. On the basis of Theorem 9 and Eq. (6.12)
the vector function V(x) = Z(1)(x,g0) is a regular solution of the internal ho-
mogeneous BVP (II )+0,0. Using Theorem 7 and the assumption that ω is not an
eigenfrequency of the problem (II )+0,0, this problem has only the trivial solution,
that is

(6.13) V(x) ≡ 0 for x ∈ Ω+.

On the other hand, by Theorem 9 and (6.13) we get

{V(z)}− = {V(z)}+ = 0 for z ∈ S,

i.e., on the basis of Theorem 9 the vector V(x) is a regular solution of the problem
(I)−0,0. Using Theorem 8 the problem (I)−0,0 has only the trivial solution, that is

(6.14) V(x) ≡ 0 for x ∈ Ω−.

By virtue of (6.13), (6.14) and identity (6.1) we obtain

g0(z) = {P(Dz,n)V(z)}− − {P(Dz,n)V(z)}+ = 0 for z ∈ S.

Thus, the homogeneous equation (6.12) has only the trivial solution and therefore
on the basis of Fredholm’s theorem the integral equation (6.11) is always solvable
for an arbitrary vector f .

We have thereby proved

Theorem 14. If S ∈ C2,ν , f ∈ C0,ν′

(S), 0 < ν ′ < ν ≤ 1, and ω is not an
eigenfrequency of the BVP (II )+0,0, then a regular solution of the internal BVP

(II )+0,f exists, is unique and is represented by the single-layer potential (6.10),
where g is a solution of the singular integral equation (6.11) which is always
solvable for an arbitrary vector f .

Problem (I)−0,f . Quite similarly the following theorem is proved.

Theorem 15. If S ∈ C2,ν , f ∈ C1,ν′

(S), 0 < ν ′ < ν ≤ 1, then a regular
solution U of the external BVP (I)−0,f exists, is unique and is represented by
a sum of double-layer and single-layer potentials

U(x) = Q(2)(x,g) + (1 − i)Q(1)(x,g) for x ∈ Ω−,
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where g is a solution of the singular integral equation

K(3) g(z) + (1 − i)Q(1)(z,g) = f(z) for z ∈ S,

which is always solvable for an arbitrary vector f .

Problem (II )−0,f . We seek a regular solution to this problem in the form

(6.15) U(x) = Q(1)(x,h) + U∗(x) for x ∈ Ω−,

where h is the required seven-component vector function and the six-component
vector function U∗ is a regular solution of the equation

(6.16) A(Dx)U∗(x) = 0 for x ∈ Ω−.

Keeping in mind the boundary condition (4.7) and using (6.1), from (6.15)
we obtain the following singular integral equation for determining the unknown
vector h

(6.17) K(4) h(z) = f∗(z) for z ∈ S,

where

(6.18) f∗(z) = f(z) − {P(Dz,n)U∗(z)}−.

Now, we prove that Eq. (6.17) is always solvable for an arbitrary vector f .
We assume that the homogeneous equation

(6.19) K(4) h(z) = 0

has m linearly independent solutions {h(l)(z)}m
l=1 that are assumed to the or-

thonormal. By Fredholm’s theorem the solvability condition of Eq. (6.17) can be
written as

(6.20)

∫

S

{P(Dz,n)U∗(z)}− ·ψ(l)(z)dzS = Nl,

where

Nl =

∫

S

f(z) ·ψ(l)(z)dzS

and {ψ(l)(z)}m
l=1 is a complete system of solutions of the homogeneous associated

equation of (6.19), i.e.

K(1)ψ(l) = 0, l = 1, . . . , m.
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It is easy to see that the condition (6.20) takes the form (for details see [44])

(6.21)

∫

S

h(l)(z) · {U∗(z)}−dzS = −Nl, l = 1, . . . , m.

Let the vector U∗ be a solution of (6.16) and satisfies the boundary condition

(6.22) {U∗(z)}− = f̂(z),

where

(6.23) f̂(z) =
m

∑

l=1

Nlh
(l)(z).

By virtue of Theorem 15 the BVP (6.16), (6.22) is always solvable. Because of the
orthonormalization of {h(l)(z)}m

l=1, the condition (6.21) is fulfilled automatically
and the solvability of (6.17) is proved. Consequently, the existence of regular
solution of the problem (II )−0,f is proved too. Thus, the following theorem has
been proved.

Theorem 16. If S ∈ C2,ν , f ∈ C0,ν′

(S), 0 < ν ′ < ν ≤ 1, then a regular
solution U of the external BVP (II )−0,f exists, is unique and is represented by
the sum (6.15), where h is a solution of the singular integral equation (6.17)
which is always solvable, U∗ is the solution of BVP (6.16),(6.22) which is always
solvable; and the vector functions f∗ and f̂ are determined by (6.18) and (6.23),
respectively.

7. Concluding remarks

1. In the present paper the linear theory of thermoelasticity for materials
with triple voids is considered and the following results are obtained:

(i) the fundamental solution of the system of equations of steady vibrations is
constructed explicitly by means of elementary functions and its basic properties
are established;

(ii) the radiation conditions are established and the uniqueness theorems of
the basic internal and external BVPs of steady vibrations are proved;

(iii) the basic properties of the surface (single-layer and double-layer) and
volume potentials are established;

(iv) the existence theorems for regular (classical) solutions of the above men-
tioned BVPs are proved by using the potential method and the theory of singular
integral equations.

2. On the basis of results of this paper it is possible to investigate the non-
classical BVPs in the linear theories of elasticity and thermoelasticity for materi-
als with multiple voids by using the potential method and the theory of singular
integral equations.
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