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This paper analyzes stochastic vibrations of a viscoelastic nanobeam un-
der axial loadings. Based on the higher-order nonlocal strain gradient theory and
the Liapunov functional method, bounds of the almost sure asymptotic stability of
a nanobeam are obtained as a function of retardation time, variance of the stochas-
tic force, higher-order and lower-order scale coefficients, strain gradient length scale,
and intensity of the deterministic component of axial loading. Analytical results from
this study are first compared with those obtained from the Monte Carlo simulation.
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1. Introduction

The behavior of nanosystems is a major subject of scientific re-

search in various fields. Vibration and stability of a single-walled carbon nan-
otube conveying nanoflow was analyzed in [1]. According to the viscoelastic be-
havior of biological soft tissues, the single-walled carbon nanotube was assumed
to be embedded in a Kelvin–Voigt foundation. The critical point instability of mi-
cro or nanobeams under a distributed variable-pressure force was studied in [2].
For this purpose, the inhomogeneous nonlocal theory was introduced based on
conformable fractional derivatives.

Within the framework of integral formulation of Eringen’s theory, Oskouie

et al. [3] developed a novel numerical approach for the bending analysis of Euler–
Bernoulli nanobeams in the context of strain- and stress-driven integral nonlo-
cal models. The dynamic problems of single beams based on various theories
have been studied by many researchers. A unified approach to field theories
for elastic solids, viscous fluids, and heat-conducting electromagnetic solids and
fluids that include nonlocal effects in both space and time is presented in [4].
Atanasov et al. [5] investigated the free vibration and buckling problem of the
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Euler-Bernoulli double-microbeam system under compressive axial loading with
a temperature change effect. By using various nonlocal beam theories, analyti-
cal solutions of bending, vibration and buckling were presented by Reddy [6].
The natural frequencies of the bending vibrations of a nanocantilever with a lin-
early changed cross-section were obtained by Aranda-Ruiz et al. [7]. Based on
the nonlinear Timoshenko beam theory, the governing equations for functionally
graded porous (FGP) beams are presented in [8]. Based on Euler–Bernoulli and
Timoshenko beam theories in conjunction with the nonlocal elasticity theory of
Eringen, the static analysis of nanobeams was performed in the work of Behera

and Chakraverty [9]. In this work, the Rayleigh–Ritz method is used to con-
vert the problem into a system of linear equations. Mobki et al. [10] investigated
the size-dependent behavior of an electrostatically-actuated nanobeam consider-
ing VdW and Casimir forces. The comparison of the pull-in voltage, detachment
length and natural frequency is presented in both classic and modified couple
stress theories for aluminum nano-beams.

By using the Liapunov functional method the almost sure stability of the sym-
metrically laminated cross-ply viscoelastic plates was investigated in [11]. The
dynamic stability of a viscoelastic nanobeam subjected to compressive stochastic
loading, where rotary inertia is taken into account is investigated by Pavlović

et al. [12]. The same author in works of [13] and [14] studied dynamic stability
and instability of coupled nanobeams and multi-nanobeam systems.

In [15], using the nonlocal elasticity and strain gradient theories, the higher-
order nonlocal strain gradient theory was presented. The author established the
fact that the length scales presented in the nonlocal elasticity and strain gra-
dient theory describe two entirely different physical characteristics of materials
and structures at the nanoscale. The nonlocal elasticity theory does not include
nonlocality of higher-order stresses while the common strain gradient theory only
considers local higher-order strain gradients without nonlocal effects in a global
sense.

Based on the higher-order nonlocal strain gradient theory a new size-depen-
dent plate model was developed in [16]. Using the nonlocal strain gradient elas-
ticity theory and the Euler–Bernoulli beam model, surface and thermal effects on
the vibration characteristics of viscoelastic functionally graded (FG) nanobeams
embedded in a viscoelastic foundation were investigated by Ebrahimi and
Barati [17]. This paper shows the effects of surface stress, length scale pa-
rameter, nonlocal parameter, viscoelastic medium, internal damping constant,
thermal loading, power-law index, and boundary conditions on the vibration
frequencies of viscoelastic FGM nanobeams.

To avoid localization problems, a nonlocal model of strain damage was for-
mulated in [18], in which the stress decomposition consistently follows from the
thermodynamic analysis. Starting from the nonlocal elastic constitutive model
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proposed by Eringen and co-workers, Sciarra [19] formulated the thermody-
namic framework and the boundary-value problem for nonlocal elasticity by the
recourse to convex analysis and provided the complete set of nonlocal mixed vari-
ational principles. An innovative stress-driven integral model for size-dependent
structural behavior of inflected elastic Timoshenko nanobeams was proposed by
Baretta et al. [20] to overcome the inconsistencies of Eringen’s strain-driven
theory.

The present paper deals with stochastic vibrations of the Euler–Bernoulli
viscoelastic nanobeam. Using the higher-order strain gradient theory, stabil-
ity analysis was performed in the function of the retardation time, variance
of the stochastic force, higher-order and lower-order scale coefficients, strain
gradient length scale, and intensity of the deterministic component of axial
loading. According to the tensor notation, the nonlocal constitutive relations
are given in Section 2 by using the higher-order strain gradient theory. A par-
tial differential equation of transverse motion of the Euler–Bernoulli nanobeam
based on Eringen’s nonlocal elasticity theory and higher-order strain gradient
theory is derived in Section 3. For the governing differential equation of the
nanobeam, the definition of the almost-sure stability problem is given in Sec-
tion 4. For non-white excitation by using the Liapunov functional method,
the conditions of almost-sure stability are obtained in Section 5. The numer-
ical procedure of determining the boundaries of stability, as well as the anal-
ysis of obtained results, is given in Section 6. In this section analytical re-
sults are firstly validated by comparing them with the numerical results ob-
tained from the Monte Carlo simulation. Finally, the conclusion is given in
Section 7.

2. Higher-order nonlocal strain gradient theory

In [12] the case of a viscoelastic nanobeam was considered where the nonlocal
stress in a certain point depends on the deformations of all points of the body.
Thus, the nonlocal internal energy density potential is

(2.1) U0 = (εij , ε
′
ijα0) =

1

2
Cijklεij

∫

V

α0(|x − x′|, e0a)ε′kl dV ′,

where εij and ε′ij are the Cartesian components of the strain tensors at point x

and point x′, respectively, Cijkl is the elastic modulus tensor of classical elastic-
ity, e0 is the nonlocal material constant, a is the internal characteristic length,
and is the principal attenuation kernel related to the nonlocality effect in terms
of the Euclidean distance between point x and neighbouring points x′ within
a domain V .
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Unlike the classical nonlocal theory used in reference [12], in this study we
use the higher-order strain gradient theory where the internal energy density
potential U0 can be written as [15]

(2.2) U0(εij , ε
′
ij , εij,m, ε′ij,m, α1)

=
1

2
Cijklεij

∫

V

α0(|x−x′|, e0a)ε′kl dV ′ +
l2

2
Cijklεij,m

∫

V

α1(|x−x′|, e1a)ε′kl,m dV ′,

where l is the material length scale introduced to determine the significance of the
higher-order strain gradient field, α1(|x − x′|, e1a) is the additional attenuation
kernel function introduced to describe the nonlocal effect of the first-order strain
gradient field, and e1 is the related material constant.

Based on Eq. (2.2), the classical stress tensor σ, the higher-order stress tensor
σ

(1) and the total stress of the nonlocal strain gradient theory t are [15]

σ =

∫

V ′

α0(x
′,x, e0a)C : ε

′ dV ′,(2.3)

σ
(1) = l2

∫

V ′

α1(x
′,x, e1a)C : ∇ε

′ dV ′,(2.4)

t = σ −∇σ
(1).(2.5)

In Eqs. (2.3) and (2.4) the symbol “:” is used to denote the double-dot prod-
uct. Romano et al. [21] showed that the nonlocal integral elastic low is equivalent
to a problem composed of constitutive differential and boundary conditions. Ac-
cording to [22], the constitutive boundary conditions do not conflict with the
equilibrium and provide a viable approach to study size-dependent phenomena
in nanobeams.

According to the higher-order nonlocal strain gradient theory, the general and
extended constitutive equation in a differential form is proposed in the following
form [15]

(2.6) [1 − (e1a)2∇2][1 − (e0a)2∇2]tij

= Cijkl[1 − (e1a)2∇2]εkl − Cijkll
2
0[1 − (e0a)2∇2]∇2εkl,

where ∇2 is the Laplacian operator. For e0 = e1 = e Eq. (2.6) obtains a simpler
form where the lower-order nonlocal strain gradient constitutive equation can be
written as

(2.7) [1 − (ea)2∇2]tij = Cijkl[1 − l20∇2]εkl,
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and for e = 0, the constitutive equation of the pure strain gradient model is
obtained

(2.8) tij = Cijkl[1 − l20∇2]εkl.

Also, for l0 = e1 = 0 in Eq. (2.6) the constitutive equation of Eringen’s
nonlocal theory [4] is

(2.9) [1 − (e0a)2∇2]tij = Cijklεkl.

3. Governing equations for a viscoelastic Euler–Bernoulli nanobeam

Let us consider an axially compressed beam of the length and transverse
loading per unit length q. Dynamic equations according to the typical beam
element are

(3.1)
ρA

∂2W

∂T 2
=

∂V

∂X
+ q,

∂M

∂X
= V + H

∂W

∂X
,

where ρ is the mass density, A is the cross-sectional area, W = W (X, T ) is the
transverse displacement, T is the time, V is the shear force due to bending, and
M is the bending moment.

According to the Euler–Benoulli beam theory and higher-order nonlocal
strain gradient theory

(3.2) εXX = −Z
∂2W

∂X2
, M =

∫

A

Ztxx dA,

(3.3)

[

1 − (e1a)2
∂2

∂X2

][

1 − (e0a)2
∂2

∂X2

]

tXX =

EI

[

1−(e1a)2
∂2

∂X2

](

εXX+τd
∂εXX

∂T

)

−El20

[

1−(e1a)2
∂2

∂X2

](

∂2εXX

∂X2
+τd

∂3εXX

∂X2∂T

)

,

where εXX is the normal strain and E is the Young modulus.
A combination of Eqs. (3.2) and (3.3) further gives

(3.4)

[

1 − (e1a)2
∂2

∂X2

][

1 − (e0a)2
∂2

∂X2

]

M

= −EI

{[

1 − (e1a)2
∂2

∂X2

](

1 + τd
∂

∂T

)

− l20

[

1 − (e0a)2
∂2

∂X2

](

∂2

∂X2
+ τd

∂3

∂X2∂T

)}

∂2W

∂X2
.
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Finally, after eliminating V and M from Eqs. (3.1) and (3.4), one obtains
the partial differential equation for transverse displacement W

(3.5)

[

1 − (e1a)2
∂2

∂X2

][

1 − (e0a)2
∂2

∂X2

][

ρA
∂2W

∂T 2
+

∂

∂X

(

∂H

∂X

)

− q

]

+EI

{[

1 − (e1a)2
∂2

∂X2

]

− l20

[

1 − (e0a)2
∂2

∂X2

]

∂2

∂X2

}(

1 + τd
∂

∂T

)

∂4W

∂X4
= 0.

4. Problem formulation

According to relations (3.5), taking q = 0, the eighth order differential equa-
tion for transverse vibrations of the nanobeam in terms of the spatial variable
can be written as

(4.1)

[

1 − (e1a)2
∂2

∂X2

][

1 − (e0a)2
∂2

∂X2

][

ρA
∂2W

∂T 2
+ F (T )

∂2W

∂X2

]

+ EI

{[

1 − (e1a)2
∂2

∂X2

]

− l20

[

1 − (e0a)2
∂2

∂X2

]

∂2

∂X2

}(

1 + τd
∂

∂T

)

∂4W

∂X4
= 0,

where F (T ) presents the beam axial load.
For the simply supported edges, by using classical and non-classical boundary

conditions, and the procedure given by Li et al. [23], we can formulate our
boundary conditions

(4.2)
X = 0
X = L

}

W = 0, M = 0 ⇒ W = 0,
∂2W

∂X2
= 0,

∂4W

∂X4
= 0,

∂6W

∂X6
= 0.

Now, the following parameters are used to non-dimensionalize Eq. (4.1)

(4.3)

T = ktt, W = Lw, X = Lx,

kt = L2

√

ρA

EI
, 2η =

τd

kt
, f0 + f(t) =

F (ktt)L
2

EI
, l =

l0
L

,

where η is the reduced retardation time, f0 and f(t) are the reduced constant
and stochastic component of the axial force. After replacing (4.3) in (4.1) the
following non-dimensionalized form of Eq. (4.1) is obtained

(4.4) Lσ

[

∂2w

∂t2
+ (f0 + f(t))

∂2w

∂x2

]

+ Lε

(

∂4w

∂x4
+ 2η

∂5w

∂x4∂t

)

= 0,

where

(4.5)
Lσ =

(

1 − µ2
1

∂2

∂x2

)(

1 − µ2
0

∂2

∂x2

)

,

Lε =

(

1 − µ2
1

∂2

∂x2

)

− l2
(

1 − µ2
0

∂2

∂x2

)

∂2

∂x2
, µi =

eia

L
, i = 0, 1.
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5. Liapunov functional method

The Liapunov functional method is an efficient tool for the analysis of the
behavior of stochastic systems. This method is explained in detail in the authors’
previous works [11–13]. According to the procedure performed in these studies,
for the viscoelastic nanobeam given by (4.4) the appropriate expressions for the
functional and its time derivative are determined.

So, the functional V gets the following form

V =

1
∫

0

{(

Lσ
∂w

∂t
+ ηLε

∂4w

∂x4

)2

+ η2

(

Lε
∂4w

∂x4

)2

(5.1)

− f0

(

Lε
∂w

∂x

)2

+

(

∂2w

∂x2

)2

+ (µ2
0 + 2µ2

1 + l2)

(

∂3w

∂x3

)2

+ [µ2
0µ

2
1 + (µ2

0 + µ2
1)(µ

2
1 + l2) + µ2

0l
2]

(

∂4w

∂x4

)2

+ µ2
0[µ

2
1(µ

2
1 + l2) + l2(µ2

0 + µ2
1)]

(

∂5w

∂x5

)2

+ µ4
0µ

2
1l

2

(

∂6w

∂x6

)2}

dx,

and the time derivative of the functional is

dV

dt
= 2

1
∫

0

{

ηLσ

(

∂w

∂t

)

Lε

(

∂5w

∂x4∂t

)

+ ηf0Lσ

(

∂2w

∂x2

)

Lε
∂4w

∂x4
(5.2)

+ f(t)Lσ

(

∂2w

∂x2

)(

Lσ
∂w

∂t
+ ηLε

∂4w

∂x4

)

+ η

(

Lε
∂4w

∂x4

)2}

dx.

The measure of the solution may be taken as ‖w‖ =
√

V and the functional V
must be positive definite. It will be fulfilled if

(5.3)

1
∫

0

{

−f0

(

Lσ
∂w

∂x

)2

+

(

∂2w

∂x2

)2

+ (µ2
0 + 2µ2

1 + l2)

(

∂3w

∂x3

)2

+ [µ2
0µ

2
1 + (µ2

0 + µ2
1)(µ

2
1 + l2) + µ2

0l
2]

(

∂4w

∂x4

)2

+ µ2
0[µ

2
1(µ

2
1 + l2) + l2(µ2

o + µ2
1)]

(

∂5w

∂x5

)2

+ µ4
0µ

2
1l

2

(

∂6w

∂x6

)2}

dx ≥ 0.

According to (4.2), the solutions can be written in the following form

(5.4) w(x, t) =
∞

∑

m=1

Tm(t) sin αmx,
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where αm = mπ, and relation (5.3) is reduced to

(5.5) f0 ≤ α2
m

1 + µ2
1α

2
m + l2α2

m(1 + µ2
0α

2
m)

(1 + µ2
1α

2
m)(1 + µ2

0α
2
m)

,

which presents the static stability condition of a nanobeam.
For the lower-order nonlocal strain gradient theory, e0 =e1 =e, (µ0 =µ1 =µ),

the condition of static stability of a nanobeam is

(5.6) f0 ≤ α2
m

1 + l2α2
m

1 + µ2α2
m

,

and for the pure strain gradient model e0 = e1 = 0, (µ0 = µ1 = 0)

(5.7) f0 ≤ α2
m(1 + l2α2

m).

The Liapunov functional is positive definite if the deterministic component of
axial loading is smaller than the critical static buckling load which is equivalent
to relation (5.5).

Now, let define us a scalar function λ(t) as

(5.8)
1

V

V

dt
≤ λ(t).

Since the maximum point is a particular case of the stationary point, we may
write

(5.9) δ(V̇ − λV) = 0.

Using the associated Euler’s equations leads to the following expression

(5.10)

(

λL(2)
σ + 2ηLσLε

∂4

∂x4

)

ν +

(

ληLσLε
∂4

∂x4
+ f(t)L(2)

σ

∂2

∂x2

)

w = 0,

(

ληLσLε
∂4

∂x4
+ f(t)L(2)

σ

∂2

∂x2

)

ν +

{

λ

[

2η2L(2)
ε

∂8

∂x8
+ f0L(2)

σ

∂2

∂x2
+

∂4

∂x4

− (µ2
0 + 2µ2

1 + l2)
∂6

∂x6
+ [µ2

0µ
2
1 + (µ2

0 + µ2
1)(µ

2
1 + l2) + µ2

0l
2]

]

∂8

∂x8

− µ2
0[µ

2
1(µ

2
1 + l2) + l2(µ2

0 + µ2
1)]

∂10

∂x10
+ µ4

0µ
2
1l

2 ∂12

∂x12
+ 2ηf0LσLε

∂6

∂x6

+ 2ηf(t)LσLε
∂6

∂x6
+ 2ηL(2)

ε

∂8

∂x8

}

w = 0,

where ν = ∂w/∂t.
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According to the boundary condition (4.2), and solution (5.4), from (5.10)
we obtain

(5.11) λ2
m + bmλm − cm = 0,

where

(5.12)

bm = 4η
α4

mL2m

L1m
,

cm = α4
m

L4
1mf(t)2+4η2α4

mL1mL2
2m[f0α

2
mL1m+f(t)α2

mL1m−α4
mL2m]

L2
1m(η2α8

mL2
2m−f0α2

mL2
1m+α4

mL1mL2m)
,

L1m = (1+µ2
1α

2
m)(1+µ2

0α
2
m), L2m = 1+µ2

1α
2
m+l2α2

m(1+µ2
0α

2
m).

Now, solving Eq. (5.11) gives the function in the form

(5.13) λm = −2η
α4

mL2m

L1m
+

α2
m

L1m

|2η2α6
mL2

2m + f(t)L2
1m|

√

η2α8
mL2

2m − f0α2
mL2

1m + α4
mL1mL2m

.

According to the Schwarz inequality and Eq. (5.13), the following expression
is obtained

(5.14) σ2 ≤ 4η2α2
m

L2
2m

L2
1m

(α2
mL1mL2m − f0α

2
m).

By solving the differential inequality (5.8), we can estimate the values of the
functional V

(5.15)
dV

dt
≤ (max

m
λm)V,

and after integrating relation (5.15) with respect to time, we obtain

(5.16) V ≤ V0 exp

[

1

t

t
∫

0

max
m

λm(τ) dτ

]

t.

When the process f(t) is ergodic and stationary, it can be concluded that
the trivial solution of Eq. (4.1) is almost surely asymptotically stable if

(5.17) E{max
m

λm(t)} < 0,

where E{·} is the mathematical expectation operator.
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6. Numerical results and discussion

Firstly, the comparison between analytical and numerical results is given with
the aim of approving the Liapunov functional method for this system. For that
purpose, the analytically obtained results using the Liapunov functional method,
the approximate results given by (5.14) and the numerical results obtained from
the Monte Carlo simulation [24, 25] are compared. The numerically determined
results are very important in assessing the validity and the ranges of applicability
of the approximate analytical results.

In order to perform the Monte Carlo simulation for the observed system,
Eq. (4.4) is first discreetizated. Thus, by substituting relation (5.4) in (4.4), the
following discreetizated form of Eq. (4.4) is obtained and schematically presented
in Fig. 1.

(6.1) T̈m + 2η
α4

mL2m

L1m
Ṫm +

[

α4
mL2m

L1m
− α2

m(f0 + f(t))

]

Tm = 0.

Fig. 1. Simulation scheme according to Eq. (6.1).

According to Eq. (6.1), the gains g1, g2 and g3 in Fig. 1 are α2
m, 2η α4

mL2m

L1m

and α4
mL2m

L1m
, respectively.

Similarly, by substituting (5.4) in (5.2), the time derivative of the functional
becomes

(6.2) ηL1mL2mα4
mṪ 2

m − f(t)α2
mL2

1mṪmTm

+ ηα6
mL2m[α2

mL2m − L1m(f0 + f(t))]T 2
m ≥ 0.

Now, according to the simulation scheme presented in Fig. 1, the Monte Carlo
simulation was performed where the number of simulations and step size were
N = 10000 and ∆t = 0.01 s. After replacing the estimated states obtained from
the simulation in Eq. (6.2) the new pairs of variances and damping coefficients
were numerically obtained and compared with the analytical results.
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The comparison between the analytical results (solid line), the approximated
results (dash line) and the results obtained by the Monte Carlo simulation (dots)
is presented in Fig. 2. As it is shown in this figure, the results from the Monte
Carlo simulation properly match the analytical results, which justifies the use of
the direct Liapunov method for the stochastic stability analysis of a viscoelastic
nanobeam. Figure 2 also presents the approximated results obtained from the
Schwarz inequality and (5.14) and provides an initial approximate insight into
the boundary of almost sure stability, being valid for any stochastic process.
The knowledge of the probability density function of the stochastic process gives
larger stability regions (e.g. solid and dotted lines in Fig. 2 are calculated for the
Gaussian process). Although there is a great distance between the approximate,
on the one hand, and the analytic and numerical results, on the other, the results
from relation (5.14) can be very helpful when numerical computation cannot be
performed.

Fig. 2. A comparison of analytical, numerical and approximated results.

Relation (5.16) yields the possibility to obtain the almost sure stability do-
mains of the nanobeam by using the higher-order strain gradient theory. The
stability domains of the nanobeam are obtained for the Gaussian process and
the harmonic process given by

(6.3) fh(t) = Ah cos(ωt + θ),

where the phase θ is a random variable and the amplitude Ah is used to calculate
the process variance A2

h/2.
The solid line present the almost sure asymptotic stability boundaries for the

Gaussian, while the dash line presents the boundaries for the harmonic process.
Calculations are made by using Gauss-Christoffel quadratures; the parameters
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of Gauss–Hermitequadratures are used for the Gaussian process, and Gauss–
Chebyshev quadratures for the harmonic process.

Numerical determination of stability regions according to relation (5.17) is
not a simple task. The algebraic equation in which the unknown is in a subin-
tegral expression should be solved, and at the same time one should calculate
the maximum of the function λm(τ) for each iteration on the integer values of
the mode m. To rapidly converge integrals to the accurate solution, the Gauss–
Christoffel quadratures were used, and they are known to be fully accurate for
all polynomials to a level equal to twice the number of the used nodes. In ad-
dition, for all functions that have limited derivatives on the observed interval,
the Gauss–Christoffel quadratures give the most approximate integral value of
all the quadrature formulas. The algebraic equation is solved with the secant
method, whose convergence order is (1+

√
5)2, where convergence to the correct

solution is guaranteed for all continuous functions.
In Fig. 3 stability regions are plotted in the plane of variance and the damping

coefficient for identical scale coefficients.

Fig. 3. Stability regions of a nanobeam for the Gaussian and harmonic process as a function
of scale coefficients.

It is clear that the regions of the almost sure stability are greater when
the scale parameter decreases. In general, nonlocal effects significantly reduce
instability regions of the viscoelastic nanobeam.

Figures 4 and 5 present the stability surfaces for the Gaussian and harmonic
process, respectively. The plot is given for the constant scale coefficient µ0 =
µ1 = 0.289.
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Fig. 4. Stability surface of a nanobeam for the Gaussian process in the function of the
constant component of axial force.

Fig. 5. Stability surface of a nanobeam for the harmonic process in the function of the
constant component of axial force.

In both of these figures, stability areas are given in the function of the con-
stant component of an axial force. As it can be seen, stability regions increase
when the constant component of axial loading is changed from compression
(f0 = 3) to tension (f0 = −3).



150 I. R. Pavlović, R. Pavlović, G. Janevski

Fig. 6. Stability surface of a nanobeam for the Gaussian process in the function of the strain
gradient parameter.

Fig. 7. Stability surface of a nanobeam for the harmonic process in the function of the
strain gradient parameter.

Similarly, Figs. 6 and 7 present the stability surfaces for the Gaussian and
harmonic process in the function of the strain gradient parameter l. As it is
shown in these figures, this parameter has a great impact on the almost sure
stability regions. It is notable that the growth of this parameter reduces the
instability area.
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7. Conclusions

By means of the direct Liapunov method, based on the higher-order strain
gradient elasticity theory, the almost sure stability of a viscoelastic nanobeam
subjected to compressive axial loadings is studied. The axial forces acting on its
ends consist of a constant part and a time-dependent stochastic function. For
“non-white” excitation modeled as Gausian and harmonic processes, the regions
of almost sure stability are derived using the direct Liapunov method which is
previously verified with the results obtained from the Monte Carlo simulation.

Bounds of almost sure stability are given in the function of the most impor-
tant system parameters such as the deterministic components of axial loading,
variance of the stochastic force, nanoscale coefficients and the strain gradient
scale parameter.

It is shown that the scale parameter significantly enlarges instability regions
for both of the observed processes, which can be reduced with the growth of
the viscoelastic parameter. The almost sure stability regions increase when the
constant component of axial loading is changed from compression to tension.
Finally, the viscous damping coefficient and the strain gradient scale parameter
increase the stability regions remarkably.
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