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The fractional plasticity was proposed to model the stress-strain be-
haviour of granular soils, but only within the scope of classical triaxial loading
condition. In this study an attempt is made to develop a 3D fractional plasticity
model for granular soils subjected to true triaxial loads by using characteristic stress,
where all the fractional-order and integer-order derivatives can be easily obtained.
Without using a plastic potential, the non-associated plastic flow rule is achieved by
performing fractional derivatives of the yielding function in the characteristic stress
space. The obtained plastic flow direction is found to be influenced by the fractional
order, characteristic stress parameter and intermediate stress ratio. To further val-
idate the proposed model, a series of true triaxial test results of different granular
soils are simulated, from which good agreement between the model predictions and
the corresponding test results is found.
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1. Introduction

Granular soils, such as the rockfill materials used in hydraulic
engineering and unbound materials in pavement engineering, usually suffer
from complex loading conditions where the three principal stresses are distinct
from each other. In these engineering practices, the plastic deformation behaviour
of granular soil is usually considered as one of the most important mechanical
properties that needs to be investigated thoroughly. However, due to the limita-
tions of the laboratory techniques, classical triaxial test [1–4], biaxial test [5–7]
and plain strain test [8] were usually used to study the strength and deforma-
tion behaviour of granular soil. However, the stress conditions in those tests were
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usually axial-symmetric or two-dimensional, which was different from the actual
stress state in the field [9]. Constitutive models [4, 10–14] based on the above test
results are thus only appropriate to model the stress-strain behaviour of materi-
als subjected to a simple stress path. For example, considering the pressure and
density dependence of aggregates deformation, Li and Dafalias [15] proposed
a generalised state-dependent constitutive model for sand subjected to drained
and undrained triaxial loads. By taking into account the effect of particle break-
age on the critical state or phase transformation behaviour of aggregates during
triaxial tests [16, 17], a variety of elastoplastic constitutive models for granular
soils were proposed by Russell and Khalili [18], and Yao et al. [19], etc. It
can be found that the testing and constitutive modelling of geomaterials under
axisymmetric loading conditions were significantly developed. However, the cor-
rect representation of the stress-strain behaviour of granular soils subjected to
3D loading conditions is still a challenge.

To gain insight into the strength and deformation behaviour of granular soils
under 3D loading, true triaxial tests [20, 21] and the associated development of
3D constitutive models [9, 22–24] were often suggested. It was observed from
the experimental results [25, 26] that the stress-strain behaviour of granular
soil was non-associated and dependent on the applied intermediate stress ra-
tio or Lode’s angle (θ). Traditional plasticity models [13, 15, 18] developed for
triaxial loading conditions often intrinsically assumed as the Von-Mises crite-
rion in the π-plane, which cannot capture the actual yielding/failure behaviour
of granular soils in general stress space. To solve this problem, a straightfor-
ward method by formulating the deviator stress as a function (g(θ)) of the
Lode’s angle (θ) was widely suggested. Even though the idea was simple, g(θ)
sometimes resulted in a singularity problem during calculation [27, 28] which
made the derived model not easy for some practical engineering conditions. To
develop a simple and yet efficient approach, Lu et al. [29] proposed a non-
linear unified strength criterion by assuming a frictional failure of the octa-
hedral plane represented by the characteristic stress. The characteristic stress
was defined as a power function of the traditional stress [29]. Based on this
strength criterion, Ma et al. [30] proposed a 3D constitutive model for geomate-
rials. However, like other existing models [15, 31–33], an additional assumption
of the plastic potential surface in addition to the yielding surface was neces-
sarily used to simulate the non-associated plastic flow of granular soil, which
resulted in relatively more model parameters. To solve this limitation, Sun
and Shen [34], and Lu et al. [35] developed a non-associated fractional plas-
ticity model for soils by using the concept of fractional plastic flow [36–38],
where the non-associated plastic flow behaviour was captured by using the
fractional-order derivatives of the yielding function. However, their model did
not consider the dependence of strength and deformation on material state and
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hence cannot simulate the 3D state-dependent stress-strain behaviour of granu-
lar soils.

Therefore, in this study, an attempt is made to extend the author’s previous
stress-fractional plasticity model [34, 39] for axisymmetric loading to simulate
the state-dependent 3D stress-strain behaviour of granular soil by incorporating
the concept of characteristic stress. The paper is structured as follows: Section 2
presents the basic stress and strain notation as well as the definitions of the
fractional derivatives, characteristic stress and state parameters; Section 3 intro-
duces the constitutive equations used in this study while Section 4 presents the
yielding surface as well as the loading and plastic flow directions. The hardening
modulus is given in Section 5. Model parameter identification and validations
are shown in Section 6. Section 7 concludes the study.

2. Notations and definitions

2.1. Notation

All the materials discussed in this study are assumed to be homogeneous
and isotropic. Compression is considered as positive and tension is negative. In
general stress or strain space, totally six independent stress components with
the corresponding six strain components are usually needed for a complete de-
scription of the stress and strain states of a material [40]. However, the general
stress or strain state represented by six components can be easily transformed
into an equivalent state represented by three principal stresses or strains. There-
fore, for the sake of simplicity, constitutive equations are usually formulated in
the multiaxial stress space represented by the first (σ′1), second (σ′2) and third
(σ′3) effective principal stresses. Accordingly, the increment of the effective stress
tensor (σ̇′) is expressed as:

(2.1) σ̇
′ = [σ̇′1, σ̇

′

2, σ̇
′

3]
T ,

while in this study, the increment of the total strain is attributed to the in-
crements of the elastic and plastic strains. Therefore, the total strain tensor (ε̇)
under the small strains assumption can be decomposed into two parts, i.e., elastic
(ε̇e) and plastic (ε̇p) strain tensors, as

(2.2) ε̇ = ε̇
e + ε̇

p,

where the incremental elastic tensor ε̇
e = [ε̇e1, ε̇

e
2, ε̇

e
3]
T and the incremental plastic

strain tensor ε̇
p = [ε̇p1, ε̇

p
2, ε̇

p
3]
T , the superscripts, e and p, indicate the elastic and

plastic components. σ′1, σ
′

2 and ε3 are the first, second and third principal strains,
respectively.
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In addition to the principal stresses and strains, the mean effective principal
stress (p′), deviator stress (q) and intermediate principal stress ratio (b) are also
used in the model derivation:

p′ =
1

3
(σ′1 + σ′2 + σ′3),(2.3)

q =
1√
2
[(σ′1 − σ′2)

2 + (σ′2 − σ′3)
2 + (σ′1 − σ′3)

2]1/2,(2.4)

b =
σ′2 − σ′3
σ′1 − σ′3

.(2.5)

2.2. Definitions

In this section, three important definitions, i.e., the left-sided Caputo’s frac-
tional derivative [41], characteristic stress [29] and state parameter [42], are in-
troduced.

(a) Caputo’s fractional derivative
Historically, fractional derivative has been applied to many theoretical analyses
of different physical phenomena, as reviewed by Zhang et al. [43]. It was found
that different definitions of the fractional derivative were usually suggested when
dealing with different physical problems. However, for the sake of simplicity, the
well-known Caputo’s fractional derivative where the derivation of a constant
equals to zero is used in this study. To model the positive and negative dilatancy
behaviour of granular soil, the following Caputo’s fractional derivative with the
fractional order, α, ranging between n−1 and n (n > 0, is an integer) is suggested:

0+Dα
σ′f(σ′) =

1

Γ (n− α)

σ′

∫

0+

f (n)(χ)dχ

(σ′ − χ)α+1−n
, σ′ > 0,(2.6a)

σ′Dα
0−f(σ′) =

(−1)n

Γ (n− α)

′0−
∫

σ

f (n)(χ)dχ

(χ− σ′)α+1−n
, σ′ < 0,(2.6b)

where D (= ∂α/∂σ′α) denotes derivation while σ′ is the effective loading stress
in this study; f is the yielding function in this study and Γ is the the gamma
function. A clear integral definition of the Caputo’s fractional derivative is ob-
served in Eq. (2.6) where the stress memory from load onset to current load state
can be intrinsically considered.

It should be noted that there are only the limited number of analytical so-
lutions of the fractional derivatives. Most mathematical functions can only be
solved by a numerical method, for example, the finite difference method and the
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finite element method [44]. Fortunately, the explicit solution of a power function
((x − a)ς) that is often encountered in plastic yielding or potential functions
exists. By substituting (x− a)ς into Eq. (2.6), one has

(2.7) aD
α
x (x− a)ς =

Γ (1 + ς)

Γ (1 + ς − α)
(x− a)ς−α,

where ς > −1, is the power index, ensuring the integrability of Eq. (2.7). In
this study, a = 0. Hence, the modified Cam-clay yielding surface with power-law
functions is used in this study to facilitate further model implementation.

(b) Characteristic stress
To develop an unified strength criterion for geomaterials in a simple way, Lu
et al. [29] proposed a concept of characteristic stress, which is denoted as σ̄′i =
σ̄′i(σ

′

i). σ̄
′

i is obtained by combining the classical stress notation, σ′i, with a char-
acteristic parameter, β, as

(2.8) σ̄′i = pa

(

σ′i
pa

)β

,

where i = 1, 2, 3; pa = 100 kPa, is the atmospheric pressure for the purpose of
parameter nondimensionalization; β ranges from 0 to 1 and is used to reflect the
effect of intermediate principal stress on the yielding behaviour of granular soil.
As proved by Lu et al. [29] and Ma et al. [30], the value of β is constant and
independent of the density and pressure of a certain material. The relevant char-
acteristic effective mean principal and deviator stresses can be further defined
respectively as:

p̄′ =
1

3
(σ̄′1 + σ̄′2 + σ̄′3),(2.9)

q̄ =
1√
2
[(σ̄′1 − σ̄′2)

2 + (σ̄′2 − σ̄′3)
2 + (σ̄′1 − σ̄′3)

2]1/2.(2.10)

(c) State parameter
It has been widely recognised that the stress-strain and dilatancy behaviour of
granular soil is significantly dependent on its density and pressure [1, 12, 42]. To
model such dependence of material state (density and pressure), various state
parameters have been suggested, for example, the state ratio of the difference
between the threshold and current void ratios to the difference between the
threshold and critical void ratios proposed by Ishihara [45], the ratio of the
current to critical void ratios suggested by Wan and Guo [46], and the ratio
of the current to critical mean effective stresses suggested by Wang et al. [47].
However, the most widely used state parameter (ψ) was proposed by Been and
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Jefferies [42] as

(2.11) ψ = e− ec,

where e is the current void ratio; ec is the critical state void ratio, which can be
defined as [48]

(2.12) ec = eΓ − λ

(

p′

pa

)ξ

,

where eΓ , λ, and ξ are the critical state parameters in the e − p′ plane. ψ is
positive when the material is consolidated at the ‘wet’ side of the critical state
line, and is negative for materials at the ‘dry’ side. Due to its simplicity, the
state parameter, ψ, is used in this study for further constitutive modelling.

3. Constitutive equations

As the total strain can be decomposed into the elastic and plastic compo-
nents, the following elastoplastic constitutive relationship can be given [49]:

(3.1) ε̇i = (Ceij + Cpij)σ̇
′
j ,

where the elastic compliance matrix can be expressed as:

Ceij =
1

2G(1 + ν)
for i = j,(3.2)

Ceij =
−ν

2G(1 + ν)
for i 6= j,(3.3)

where ν is the Poisson’s ratio; the shear modulus G can be expressed as [15]:

(3.4) G = G0
(2.97 − e)2

1 + e
pa

√

p′

pa
,

in which G0 is the dimensionless elastic parameter of the material. The value
of 2.97 in Eq. (3.4) was proposed by Hardin and Richart [50] based on a
comprehensive laboratory evaluation of a variety of granular soils. The plastic
compliance matrix is formulated as

(3.5) Cpij =
1

H
minj ,

where H is the hardening modulus and is defined later; i, j = 1, 2 and 3; mi and
nj are components of the plastic flow and loading tensors, respectively, related
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to the effective principal stress σ′i. Therefore, the loading and plastic flow com-
ponents can be further obtained, respectively, as:

ni =
Li
L
,(3.6)

mj =
Fj
F
,(3.7)

where the loading related component Li can be obtained by using the chain rule
as

(3.8) Li =
∂f

∂p̄′
∂p̄′

∂σ̄′i
+
∂f

∂q̄

∂q̄

∂σ̄′i
,

while L is defined as

(3.9) L =
√

L2
1 + L2

2 + L2
3.

The plastic flow related component Fj is obtained by performing the frac-
tional order derivative of the yielding surface as [39]. However, it is noted that
the chain rule may not be able to be used in conducting fractional order deriva-
tives [51] of a certain function. Therefore, to avoid confusion, the plastic flow
tensor is obtained by directly conducting derivative with respect to the principal
characteristic stress:

Fj =
∂αf

∂σ̄′αj
,(3.10)

F =
√

F 2
1 + F 2

2 + F 2
3 .(3.11)

As detailly elucidated in [39] and [34], different plastic flow directions can be
obtained by changing the value of the fractional order. The larger the value of
α is, the more non-coaxial the directions of stress and strain increments are.

4. Loading and plastic flow tensors

4.1. Yielding surface

Following Lu et al. [29] and Ma et al. [30], the modified Cam-clay yielding
function is expressed in the characteristic stress space as:

(4.1) f = M̄2p̄′2 + q̄2 − M̄2p̄′0p̄
′ = 0,

where p̄′0 represents the intercept of the yielding surface with the p̄′-axis and it
controls the size of the yielding surface; M̄ is the critical state stress ratio in the
characteristic stress space and can be determined by:

(4.2) M̄ =
q̄c
p̄′c

= 3
(1 + sinφc)

β − (1 − sinφc)
β

(1 + sinφc)β + 2(1 − sinφc)β
,
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where the subscript c indicates critical state; φc is the critical state friction an-
gle at b = 0. As shown in Fig. 1, the 3D yielding surface generated by using
the characteristic stress approach is orthogonal to the p′-axis. Unlike classical

Fig. 1. 3D yielding surface in the effective principal stress space.

Fig. 2. Yielding curve in the π plane.
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yielding surfaces, a triaxial axisymmetric surface in the σ′i space can be achieved
even without the use of a g(θ) function, as shown in Fig. 2. With the increase
of β, the yielding/failure curve in the π plane becomes less triangle and approach
the circle resented by the Drucker–Prager criterion [52]. Therefore, the 3D yield-
ing/failure properties can be characterised by using Eqs. (2.8)–(2.10) and (4.1).
It is noted that when β = 1, M̄ equals M (= 6 sinφc/(3− sinφc)), the proposed
model reduces to the classical Drucker–Prager one.

4.2. Loading tensor

The loading direction should be perpendicular to the yielding surface. There-
fore, it can be obtained by substituting Eq. (4.1) into Eqs. (3.6), (3.8) and (3.9)

(4.3) ni =
1

L

[

1

3
(M2p̄′ − q̄2/p̄′) + 3(σ̄′i − p̄′)

]

,

where the loading amplitude L is formulated as:

(4.4) L =

√

√

√

√

3
∑

i=1

[

1

3
(M2p̄′ − q̄2/p̄′) + 3(σ̄′i − p̄′)

]2

.

4.3. Plastic flow tensor

The plastic flow direction should be non-perpendicular to the yielding sur-
face, which can be obtained by performing fractional derivative on the yielding
surface [36]. Accordingly, substituting Eq. (4.1) into Eqs. (3.7), (3.10) and (3.11)

(4.5) mj =
1

F

[

σ̄1−α
j

Γ (2 − α)
(Aσ̄−j 3p̄′ +B/3)

]

,

where

A = 2

(

M̄

3

)2α− 1

2 − α
+

4 − α

2 − α
,(4.6)

B = M̄2p̄′ − q̄2

p̄′
,(4.7)

F =

√

√

√

√

3
∑

j=1

[

σ̄1−α
j

Γ (2 − α)
(Aσ̄−j 3p̄′ +B/3)

]2

.(4.8)

Comparing Eq. (4.5) with Eq. (4.3), it can be easily found that mj = ni
when α = 1. A non-associated plastic flow rule can be considered by using

(4.9) α = e∆ψ
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where ∆ > 0, is a material constant. By correlating α with the state parame-
ter ψ, the state-dependent plastic flow which is commonly observed in granular
soils, can be considered. For dense materials with ψ < 0, they experience strain
softening and volume dilation which can be modelled by using 0 < α < 1. Dur-
ing shearing, ψ and the associated α increase; materials gradually approach the
critical state where ψ = 0 and α = 1. For loose materials with ψ > 0 they
experience strain hardening and volume contraction which is characterised by
α > 1.

The stress-dilatancy ratio (d) can be further obtained as:

(4.10) d =
mv

ms
=
M̄2 − (1 − α/2)[η̄2 + M̄2]

η̄2−α
,

where mv and ms are the plastic flow components with regard to p̄′ and q̄, re-
spectively; and the characteristic stress ratio is η̄ = q̄/p̄′. Figure 3 represents
the relationship between the dilatancy ratio d and stress ratio η (= q/p′) under
different intermediate stress ratios. As can be observed, by using a proper value
of α or β, stress-dilatancy behaviours under different b-values are simulated. For
example, a downward shifting of the stress-dilatancy curve with the increase

Fig. 3. Characteristic fractional stress-dilatancy relationship.
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of b can be found in Fig. 3(a). With the decrease of η, the stress-dilatancy
curves in Fig. 3(a) approach more with each other, indicating no plastic shear
strain occurs at isotropic stress states. Similar observations were also reported
by Ma et al. [30]. Figure 3(b) shows the effect of α on the stress-dilatancy
behaviour, where an upward shifting of the stress-dilatancy curve with an in-
crease of α is observed. More details of the effect of α can be found in [14].
Figure 3(c) shows the effect of β on the stress-dilatancy curve, from which
an upward shifting of the stress-dilatancy curve with the increasing β is ob-
served.

5. Hardening modulus

The hardening modulus used for modelling granular soils under triaxial load-
ing conditions (b = 0) is modified here to account for the 3D strength and
deformation characteristics. According to Li and Dafalias [15], the harden-
ing modulus H should satisfy the following conditions: (i) H = +∞ at η̄ = 0,
(ii) H = 0 at the critical state stress points and (iii) H = 0 at the drained peak
stress points. Therefore, the hardening modulus H can be expressed as:

(5.1) H = hG

(

M̄p

η̄
− 1

)

exp(kψ),

where the peak stress ratio M̄p is defined as

(5.2) M̄p = M̄ exp(−kψ),

where k is a material constant, describing the influence of ψ on M̄p and H.
M̄p = M̄ when ψ = 0. The hardening parameter h can be expressed as:

(5.3) h = (h1 − h2e)

whereh1 and h2 are material constants. The expression of h in Eq. (5.3) is dif-
ferent from that in [14]. Following the suggestions by Li and Dafalias [15], the
current void ratio (e) instead of the initial void ratio (e0) is used. It should be
noted that the different definitions of h using e or e0 could result in the dif-
ferent performances in model simulation, as shown in Figs. 4–5. Figures 4(a)
and 5(a) show the improved model predictions of the constitutive behaviour of
Toyoura sand [53] using e while Figs. 4(b) and 5(b) represent the original model
predictions using e. It can be found that the use of e0 instead of e would make
the model underestimate the deviator stress. With the increase of e0, the extent
of such underestimation increases. For example, the original model prediction
with e0 = 0.996 reported a significant lower deviator stress than the corre-
sponding experimental result. However, it should be noted that: such prediction
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Fig. 4. Stress-strain behaviour of Toyoura sand predicted by using (a) e and
(b) e0 (σ′

3 = 100 kPa).

Fig. 5. Stress-strain behaviour of Toyoura sand predicted by using (a) e and
(b) e0 (σ′

3 = 500 kPa).
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difference can be remedied by tuning the hardening parameters, h1 and h2, as
shown in [15]. Nevertheless, this kind of modification shown in Eq. (5.3) at-
tempts to make the model more reasonable for practical engineering. This is
owing to the consideration that e0 should be unknown for samples that have
already been sheared where only e can be evaluated. As can be expected from
Eqs. (5.1)–(5.3), the value of H depends on several factors, such as the pres-
sure and density (e, e0, p̄

′, ψ), shear modulus (G), and the difference between the
characteristic stress ratios (M̄p − η̄). H can be positive with M̄p > η̄ where the
states of strain hardening and volume contraction can be modelled. H can be
also positive with M̄p < η̄ where the state of strain softening and volume dilation
can be captured.

6. Model validation

6.1. Parameter identification

This model has eleven parameters to simulate the 3D stress-strain behaviour
of granular soil. There are four critical state parameters (φc, λ, eΓ , ξ), three hard-
ening parameters (k, h1, h2), two elastic constants (G0, ν), one characteristic
stress parameter (β) and one fractional parameter (∆). Most parameters can
be determined from compression test results at b = 0. Detailed discussions on
how to determine these parameters are presented as follows.

The four critical state parameters (φc, λ, eΓ , ξ) determine the critical state
behaviour of granular soil. The critical state friction angle, φc, can be determined
through triaxial compression test. It is related to the gradient (M) of the critical
state line in the p′ − q plane as

(6.1) φc = arcsin

(

3M

6 +M

)

,

The other three parameters (λ, eΓ , ξ) can be determined by fitting the critical
state data points in the e− p′ planes, as shown in [48].

The parameter k defines the peak stress state of the material. It can be de-
termined by the peak stress points of materials subjected to triaxial compression
where H = 0, i.e.

(6.2) k =
1

2ψp
ln
M̄

ηp
,

where ψp and ηp are two values of ψ and η at the peak stress state. The hardening
parameters, h1 and h2, determine the hardening and softening behaviour of the
material. h1 and h2 can be obtained by fitting the ε1−q relationship at different
material states, as illustrated in [34].
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The characteristic parameter, β, controls the failure shape of the yielding
function in the π plane. According to Lu et al [29] and Ma et al. [30], it can be
determined by the critical state friction angles (φc, φe) at triaxial compression
and extension states, i.e.

(6.3)
(1 + sinφc)

β − (1 − sinφc)
β

(1 + sinφc)β + 2(1 − sinφc)β
=

(1 + sinφe)
β − (1 − sinφe)

β

2(1 + sinφe)β + (1 − sinφe)β
.

However, it could be also simply determined by fitting the failure data of
granular soil in the π plane. According to Ma et al. [30], the strength curves
by using the characteristic stress method almost coincide with each other and
resemble the Matsuoka–Nakai criterion [54] when β ≤ 0.1; β = 0.1, was suggested
to model the 3D strength characteristic of granular soils [29, 30] for simplicity.
The fractional parameter, ∆, controls the plastic flow of granular soil. It can be
obtained by using Eq. (4.10) at the phase transformation state in triaxial tests
where d = 0. Hence,

(6.4) ∆ =
1

ψd
ln

2

1 + (M̄/η̄d)2
,

where η̄d is the value of η̄ and ψd = ed − ec at the phase transformation state,
measured from the drained or undrained test.

The elastic constants (G0, ν) can be obtained from the ε1 − q relationship
during the initial loading stage. By using Eq. (3.4),G0 can be determined as:

G0 =
(1 + e)G

(2.97 − e)2
√
p′pa

,(6.5)

ν ≈ 3εs − 2εv
6εs + 2εv

.(6.6)

The detailed values of the model parameters for different granular soils are
listed in Table 1.

Table 1. Model parameters.

Soil type G0 ν φc(
◦) λ eΓ ξ β ∆ k h1 h2

Toyoura sand [53] 125 0.05 31.2 0.019 0.934 0.7 0.1 0.01 1.1 4.5 4.5

Rockfill G1 [9] 90 0.25 46 0.110 0.404 0.1 0.1 0.2 0.1 1.2 0.3

Rockfill G2 [9] 90 0.25 51 0.024 0.314 0.3 0.1 0.5 10 1.0 1.0

6.2. Model prediction

A series of true triaxial tests on the granite rockfill reported by Xiao et al. [9]
are used in this study to validate the proposed model. The rockfill aggregates
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were collected from the construction site of the Shuangjiangkou core-wall rock-
fill dam. Two different gradings were used for the test. Grading No. 1 (G1) had
a maximum particle size (dM ) of 5 mm and a minimum particle size (dm) of
2 mm while grading No. 2 (G2) had a dM of 10 mm and a dm of 0.075 mm.
The initial sample size for G1 was 70 mm × 70 mm × 35 mm while the one
for G2 was 120 mm × 120 mm × 60 mm. The initial void ratios were 0.68 and
0.26 for G1 and G2, respectively. The true triaxial apparatus (TTA) designed
and built in Hohai University was used to conduct the test. It was reported
that the TTA possessed a stress-controlled flexible boundary in the lateral direc-
tion (σ′3-axis) and two strain-controlled rigid boundaries in lateral (σ′2-axis) and
vertical (σ′1-axis) directions. Detailed descriptions of the TTA, specimen prepa-
ration and test procedures can be found in [55] and thus not repeated here for
simplicity.

Figures 6–9 show the model simulations of the 3D stress strain behaviour
of the rockfill G1 subjected to different true triaxial test conditions. Five dif-
ferent intermediate principal stress ratios of 0, 0.25, 0.5, 0.75 and 1.0 with four
different third effective principal stresses of 100 kPa, 125 kPa, 150 kPa and
200 kPa were used for the true triaxial tests on rockfill G1. It can be observed

Fig. 6. Model predictions of the 3D stress strain behaviour of rockfill G1 at σ′

3 = 100 kPa.
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Fig. 7. Model predictions of the 3D stress strain behaviour of rockfill G1 at σ′

3 = 125 kPa.

Fig. 8. Model predictions of the 3D stress strain behaviour of rockfill G1 at σ′

3 = 150 kPa.
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Fig. 9. Model predictions of the 3D stress strain behaviour of rockfill G1 at σ′

3 = 200 kPa.

that the characteristic stress-based fractional plasticity model can well capture
the 3D stress-strain behaviour of the rockfill G1 under different loading condi-
tions. Specifically, the first and third principal strains during the entire shearing
process were positive and negative, respectively, irrespective of the intermedi-
ate principal stress ratio and the third effective principal stress, which can be
accurately predicted by the proposed model. Moreover, the model can also rea-
sonably characterise the negative second principal strain with b = 0 and the
positive one with b larger than 0.25, which highlights the rationality of the de-
veloped state-dependent fractional plastic flow rule. By using the extended 3D
hardening modulus shown in Eq. (5.1), the decreasing stress ratio of rockfill G1
with the increase of the intermediate stress ratio and third effective principal
stress is also captured by the model.

Figures 10–15 show the model predictions of the 3D stress-strain behaviour
of the rockfill G2 subjected to different true triaxial loading conditions. Five
different intermediate principal stress ratios of 0, 0.25, 0.5, 0.75 and 1.0 with
six different third effective principal stresses of 150 kPa, 200 kPa, 250 kPa,
300 kPa, 350 kPa and 400 kPa were used for the tests on the rockfill G2. Figures
10(a)–15(a) show the model simulations of the test results represented by the
first principal strain v.s. stress ratio while Figs. 10(b)–15(b) show the model
simulations of the test results represented by the second principal strain v.s.
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Fig. 10. Model predictions of the 3D stress strain behaviour of rockfill G2 at σ′

3 = 150 kPa.

Fig. 11. Model predictions of the 3D stress strain behaviour of rockfill G2 at σ′

3 = 200 kPa.
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Fig. 12. Model predictions of the 3D stress strain behaviour of rockfill G2 at σ′

3 = 250 kPa.

Fig. 13. Model predictions of the 3D stress strain behaviour of rockfill G2 at σ′

3 = 300 kPa.
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Fig. 14. Model predictions of the 3D stress strain behaviour of rockfill G2 at σ′

3 = 350 kPa.

Fig. 15. Model predictions of the 3D stress strain behaviour of rockfill G2 at σ′

3 = 400 kPa.
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stress ratio. The evolutions of the third principal strain v.s. stress ratio are shown
in Figs. 10(c)–15(c). As it can be observed, by using the concept of characteristic
stress, the developed 3D state-dependent fractional plasticity model can also well
simulate the stress-strain behaviour of the rockfill G2 under different initial and
loading states in the 3D stress-strain space.

7. Conclusions

The stress-strain behaviour of granular soil depends on the material state
and loading condition. However, most constitutive models developed for triaxial
loading did not consider the 3D strength characteristic of granular soil and thus
cannot capture its 3D stress-strain behaviour. To solve this problem, a state-
dependent stress-fractional plasticity model based on the concept of character-
istic stress was proposed in this study. There were eleven parameters of the
proposed model, which can be all determined from the true triaxial test results.
Sensitive analysis of some model parameters and detailed approaches on how to
obtain parameter values were presented and discussed. Model validations were
then carried out by simulating a series of true triaxial test results of two different
rockfills. The main conclusions are summarised as follows:

(1) By simply incorporating the characteristic stress into the modified Cam-
clay yielding function, a 3D yielding surface in the effective principal stress space
was obtained. It was found that a curved triangular shape of the yielding curve
in the π plane was achieved. With the increase of the characteristic parameter,
the yielding curve in the π plane resembled more a circle as represented by
the Drucker-Prager criterion. Insignificant differences were observed between the
yielding curves with the characteristic parameter less than 0.1.

(2) Without using any additional assumption of the plastic potential surface,
a generalised non-associated fractional plastic flow rule for granular soils sub-
jected to 3D loading condition was proposed by using the fractional derivative
and characteristic stress. Unlike previous models developed under triaxial loads,
the derived plastic flow rule was significantly influenced by the intermediate prin-
cipal stress ratio. With the increase of the intermediate principal stress ratio, the
stress-dilatancy curve shifted downwards. For soils subjected to fixed interme-
diate principal stress ratio, the stress-dilatancy curve shifted upwards with the
increasing fractional order and characteristic parameter.

(3) The original hardening modulus for triaxial loads was extended for 3D
stress conditions by incorporating the characteristic stress. The derived 3D hard-
ening modulus considered the influences of material density and stress condition.
It can reproduce the hardening and softening phenomenon of granular soil. The
use of the current void ratio instead of the initial void ratio would improve model
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performance. A lower deviator stress would be predicted if the initial void ratio
was used.

(4) The established 3D fractional plasticity model was able to capture the
stress-strain behaviour of granular soils subjected to different true triaxial test
conditions. The predicted stresses and principal strains matched well with the
corresponding test results.
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