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We present an analytical solution to the problem of a screw dislocation
in a four-phase piezoelectric laminate composed of two piezoelectric layers of equal
thickness sandwiched between two semi-infinite piezoelectric media. A new version
of the complex variable formulation is proposed such that the 2 × 2 real symmetric
matrix appearing in the formulation becomes dimensionless. Using analytic continu-
ation, the original boundary value problem is reduced to the identification of a single
2D analytic vector function which is completely determined following rigorous solu-
tion of the resulting linear recurrence relations in matrix form. An explicit expression
for the image force acting on the piezoelectric screw dislocation is obtained once
the single 2 × 2 real matrix function is identified. We also discuss the solution for
a screw dislocation in an N -phase piezoelectric laminate composed of N − 2 piezo-
electric layers of equal thickness sandwiched between two semi-infinite piezoelectric
media.
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1. Introduction

Studies of dislocations in multilayered media are extremely challeng-
ing mainly because of the presence of multiple interfaces and surfaces (see, for
example, [1–9]). Even more difficulties are encountered if this type of interac-
tion problem is discussed in the context of piezoelectric laminated materials
exhibiting the well-known electromechanical coupling phenomenon. This may
explain why theoretical investigations into the influence of dislocations in multi-
layered piezoelectric laminates are few and far between. Most recently, however,
using the technique of analytic continuation, Wang and Schiavone [10] de-
rived analytical solutions for a screw dislocation or a two-dimensional Eshelby
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inclusion of arbitrary shape in a three-phase piezoelectric laminate composed of
two semi-infinite piezoelectric media bonded together via an intermediate piezo-
electric layer of finite thickness. Given the importance of layered models in the
design and optimization of piezoelectric devices (Layered geometry enjoys high
sensitivity, excellent bandwidth and enhanced reception characteristics: see for
example, Guo et al. [11] and the references therein. Related studies on multilay-
ered piezoelectric laminates (which are used widely in smart structure design)
with the objectives of active shape control, structural vibration and noise con-
trol can also be found in [12–14]), it is of great interest to extend this most
recent study to piezoelectric laminates containing four or more phases. We can
see from the present investigation that this extension is highly non-trivial and
quite challenging.

In this paper, we consider the interaction problem associated with a screw
dislocation in a four-phase piezoelectric laminate composed of two piezoelectric
layers of equal thickness encased in two semi-infinite piezoelectric media. The
screw dislocation, which suffers discontinuities in anti-plane displacement and in
electric potential across the slip plane and which is also subjected to a line force
and a line charge at its core, is located in the upper semi-infinite piezoelectric
medium. A full-field analytical solution is derived using: (i) a new version of
the complex variable formulation involving a 2× 2 dimensionless real symmetric
matrix; (ii) analytic continuation [15, 16]; (iii) a rigorous solution of the resulting
linear recurrence relations in matrix form. A concise and elegant expression for
the image force acting on the screw dislocation containing a single 2 × 2 real
matrix function is obtained using the extended version of the Peach–Koehler
formula [17, 18]. It is shown via a specific example that the proposed theory can
be implemented quite expediently. Finally, we also obtain the solution structure
for a screw dislocation in an N -phase piezoelectric laminate composed of N − 2
piezoelectric layers of equal thickness encased in two semi-infinite piezoelectric
media. Here N is an integer equal to or greater than 5. We also obtain the image
force acting on the screw dislocation which is found to be completely controlled
by a single 2 × 2 real matrix function. Specific results are presented for each of
the two cases of N = 5, 6 to demonstrate the derived general solution.

2. New version of the complex variable formulation

For the anti-plane shear deformations of a hexagonal piezoelectric material
exhibiting 6 mm symmetry with its poling direction along the x3-axis, we propose
the following new version of the complex variable formulation:

[

u3

φ
√

ǫ0/C0

]

= Im{f(z)},(2.1)
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[

2ε32 + 2iε31

−(E2 + iE1)
√

ǫ0/C0

]

= f ′(z),

[

(σ32 + iσ31)/C0

(D2 + iD1)/
√

C0ǫ0

]

= Cf ′(z),(2.2)

where u3 and φ are the anti-plane displacement and electric potential, respec-
tively; σ31 and σ32 are the Cartesian anti-plane shear stresses; D1 and D2 are the
electric displacements; E1 and E2 are the in-plane electric fields; ε31 and ε32 are
strain components; C0 is a reference stiffness and ǫ0 is a reference dielectric con-
stant; f(z) is a 2D analytic vector function of the complex variable z = x1 + ix2;
the 2 × 2 dimensionless real symmetric matrix C is defined by

(2.3) C = CT =







C44

C0

e15√
C0ǫ0

e15√
C0ǫ0

−ǫ11
ǫ0






.

where C44, e15 and ǫ11 are the elastic stiffness, the piezoelectric constant and the
dielectric constant, respectively.

It is seen that the left-hand side of Eq. (2.1) has the dimension of length,
whilst the left-hand sides of the two expressions in Eq. (2.2) are both dimension-
less. In addition, C0 and ǫ0 are taken to be the same for different phases.

3. Analytical solution

Consider an entire z-plane composed of four piezoelectric phases:

S1 : Im{z} ≤ 0, S2 : 0 ≤ Im{z} ≤ h, S3 : h ≤ Im{z} ≤ 2h, S4 : Im{z} ≥ 2h,

where h (> 0) is the common thickness for each of the two intermediate layers.
Each piezoelectric phase is hexagonal with its poling direction along the x3-axis.
All of the four phases are perfectly bonded across the three planar interfaces.
The piezoelectric composite is subjected to a screw dislocation at z = id, d > 2h
in S4. The screw dislocation suffers a jump b3 in anti-plane displacement and
a jump ∆φ in electric potential across the slip plane. Meanwhile, it is subjected
to a line force p and a line charge q at its core. Throughout what follows, the
subscripts 1, 2, 3 and 4 are used to identify the respective quantities in S1, S2,
S3 and S4.

The boundary value problem for the four-phase piezoelectric laminate takes
the form

fj+1(z) + fj+1(z) = Γjfj(z) + Γjfj(z),

fj+1(z) − fj+1(z) = fj(z) − fj(z), Im{z} = h(j − 1), j = 1, 2, 3;
(3.1)

f4(z) ∼= 1

2π
(b̂ − iC−1

4 f̂) ln(z − id) + O(1), z → id,(3.2)
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where

Γj = C−1
j+1Cj ,(3.3)

b̂ =

[

b3

√

ǫ0
C0

∆φ

]T

, f̂ =

[

p

C0
− q√

C0ǫ0

]T

.(3.4)

It is seen from the above definition that both b̂ and f̂ have the dimension of
length. It is assumed that the analytic vector function f1(z) defined in the lower
semi-infinite piezoelectric medium takes the following general form:

(3.5) f1(z) = Ω(z), Im{z} ≤ 0,

where Ω(z) is to be determined.
By enforcing the continuity conditions of displacement, electric potential,

traction and normal electric displacement across the three perfect interfaces in
Eq. (3.1), we arrive at the following general expressions for f2(z), f3(z) and f4(z)

f2(z) =
1

2
(Γ1 + I)Ω(z) +

1

2
(Γ1 − I)Ω̄(z), 0 ≤ Im{z} ≤ h;(3.6)

f3(z) =
1

4
(Γ2 + I)(Γ1 + I)Ω(z) +

1

4
(Γ2 − I)(Γ1 − I)Ω(z − 2ih)(3.7)

+
1

4
(Γ2 + I)(Γ1 − I)Ω̄(z)

+
1

4
(Γ2 − I)(Γ1 + I)Ω̄(z − 2ih), h ≤ Im{z} ≤ 2h;

f4(z) =
1

8
(Γ3 + I)(Γ2 + I)(Γ1 + I)Ω(z)(3.8)

+
1

8
[(Γ3 + I)(Γ2 − I)(Γ1 − I)

+ (Γ3 − I)(Γ2 − I)(Γ1 + I)]Ω(z − 2ih)

+
1

8
(Γ3 − I)(Γ2 + I)(Γ1 − I)Ω(z − 4ih)

+
1

8
(Γ3 + I)(Γ2 + I)(Γ1 − I)Ω̄(z)

+
1

8
[(Γ3 + I)(Γ2 − I)(Γ1 + I)

+ (Γ3 − I)(Γ2 − I)(Γ1 − I)]Ω̄(z − 2ih)

+
1

8
(Γ3 − I)(Γ2 + I)(Γ1 + I)Ω̄(z − 4ih), Im{z} ≥ 2h,

where I is a 2×2 identity matrix. The technique of analytic continuation [15, 16]
has been applied in deriving Eqs. (3.6)–(3.8).
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An examination of Eq. (3.8) suggests that Ω(z) should take the following
specified form

(3.9) Ω(z) =
4

π

+∞
∑

j=1

Qj(b̂ − iC−1
4 f̂) ln[z − i(d + 2h(j − 1))],

where Qj , j = 1, 2, . . . ,∞ are 2 × 2 constant matrices to be determined.
Substituting the above expression into Eq. (3.8) and noting that f4(z) exhibits

the logarithmic singularity at z = id in Eq. (3.2) and is regular at the points
z = i(d+2jh), j = 1, 2, . . . ,∞, we obtain the following linear recurrence relations
in matrix form:

A1Q3+m + A2Q2+m + A3Q1+m = 0, m = 0, 1, 2, . . . ,∞,(3.10)

A1Q2 + A2Q1 = 0,

A1Q1 = I,
(3.11)

where the three 2× 2 dimensionless real matrices A1, A2 and A3 are defined by

(3.12)

A1 = (Γ3 + I)(Γ2 + I)(Γ1 + I),

A2 = (Γ3 + I)(Γ2 − I)(Γ1 − I) + (Γ3 − I)(Γ2 − I)(Γ1 + I),

A3 = (Γ3 − I)(Γ2 + I)(Γ1 − I).

The general solution to Eq. (3.10) can be written in the form

(3.13) Qj = Λ
j
1P1 + Λ

j
2P2, j = 1, 2, . . . ,∞,

where

(3.14) Λ1,2 =
1

2

[

−A−1
1 A2 ±

√

(A−1
1 A2)2 − 4A−1

1 A3

]

,

and the two 2×2 constant matrices P1 and P2 can be uniquely determined from
Eq. (3.11) as

(3.15)

[

P1

P2

]

=

[

Λ1 Λ2

Λ2
1 Λ2

2

]

−1 [

A−1
1

−A−1
1 A2A

−1
1

]

.

It is seen from Eqs. (3.10)–(3.12) that all of the 2 × 2 constant matrices Qj ,
j = 1, 2, . . . ,∞ are real-valued and dimensionless and are in fact independent
of the nature of the singularity at z = id. Now, the analytic vector functions
defined in all of the four phases can be determined explicitly as

f1(z) =
4

π

+∞
∑

j=1

(Λj
1P1 + Λ

j
2P2)(b̂ − iC−1

4 f̂) ln[z − i(d + 2h(j − 1))],(3.16)

Im{z} ≤ 0;
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f2(z) =
2

π
(Γ1 + I)(3.17)

×
∞

∑

j=1

(Λj
1P1 + Λ

j
2P2)(b̂ − iC−1

4 f̂) ln[z − i(d + 2h(j − 1))]

+
2

π
(Γ1 − I)

∞
∑

j=1

(Λj
1P1 + Λ

j
2P2)(b̂ + iC−1

4 f̂)

× ln[z + i(d + 2h(j − 1))], 0 ≤ Im{z} ≤ h;

f3(z) =
1

π
(Γ2 + I)(Γ1 + I)(3.18)

×
∞

∑

j=1

(Λj
1P1 + Λ

j
2P2)(b̂ − iC−1

4 f̂) ln[z − i(d + 2h(j − 1))]

+
1

π
(Γ2 − I)(Γ1 − I)

×
∞

∑

j=1

(Λj
1P1 + Λ

j
2P2)(b̂ − iC−1

4 f̂) ln[z − i(d + 2jh)]

+
1

π
(Γ2 + I)(Γ1 − I)

×
∞

∑

j=1

(Λj
1P1 + Λ

j
2P2)(b̂ + iC−1

4 f̂) ln[z + i(d + 2h(j − 1))]

+
1

π
(Γ2 − I)(Γ1 + I)

×
∞

∑

j=1

(Λj
1P1 + Λ

j
2P2)(b̂ + iC−1

4 f̂) ln[z + i(d + 2h(j − 2))],

h ≤ Im{z} ≤ 2h;

f4(z) =
1

2π
(b̂ − iC−1

4 f̂) ln(z − id)(3.19)

+
1

2π
(Γ3 + I)(Γ2 + I)(Γ1 − I)

×
∞

∑

j=1

(Λj
1P1 + Λ

j
2P2)(b̂ + iC−1

4 f̂) ln[z + i(d + 2h(j − 1))]

+
1

2π
[(Γ3 + I)(Γ2 − I)(Γ1 + I) + (Γ3 − I)(Γ2 − I)(Γ1 − I)]

×
∞

∑

j=1

(Λj
1P1 + Λ

j
2P2)(b̂ + iC−1

4 f̂) ln[z + i(d + 2h(j − 2))]
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+
1

2π
(Γ3 − I)(Γ2 + I)(Γ1 + I)

×
∞

∑

j=1

(Λj
1P1 + Λ

j
2P2)(b̂ + iC−1

4 f̂) ln[z + i(d + 2h(j − 3))],

Im{z} ≥ 2h.

Using the extended version of the Peach-Koehler formula [17, 18], the image
force acting on the piezoelectric screw dislocation is finally derived as

(3.20) F1 = 0, F2 =
C0

4πh
(b̂TC4Mb̂ + f̂TMC−1

4 f̂),

where F1 and F2 are, respectively, the force components along the x1 and x2

directions and the 2 × 2 dimensionless real matrix M is defined by

(3.21) M = B1G(d̃) + B2G(d̃ − 1) + B3G(d̃ − 2), d̃ =
d

h
> 2,

where the three 2× 2 dimensionless real matrices B1, B2 and B3 are defined by

(3.22)

B1 = (Γ3 + I)(Γ2 + I)(Γ1 − I),

B2 = (Γ3 + I)(Γ2 − I)(Γ1 + I) + (Γ3 − I)(Γ2 − I)(Γ1 − I),

B3 = (Γ3 − I)(Γ2 + I)(Γ1 + I),

and the 2 × 2 dimensionless real matrix function G(x) is given by

(3.23) G(x) =
∞

∑

j=1

1

x + j − 1
(Λj

1P1 + Λ
j
2P2), x > 0.

It is clear that the image force in Eq. (3.20) can be completely determined
once the single 2×2 real matrix function G(x) is known. It is rigorously verified
that: (i) when C3 = C4 (i.e., the electroelastic constants for S3 and S4 are the
same), the present solution simply reduces to that by Wang and Schiavone [10]
for a three-phase piezoelectric laminate; (ii) when all four phases are elastic
dielectric with the piezoelectric constants being zero for all phases and when
b̂ = [b3 0]T , f̂ = 0, the image force in Eq. (3.20) reduces to Eq. (3.24) by Wang
and Schiavone [9]. Thus the correctness of the present solution is partially
verified.

We emphasize here that our method remains valid for a singularity of arbi-
trary type (e.g., an Eshelby inclusion of arbitrary shape). If the principal (or
singular) part of f4(z) is f0(z), which is simply the analytic vector function for
the singularity in an infinite homogeneous piezoelectric medium, then

(3.24) Ω(z) = 8
∞

∑

j=1

Qjf0[z − 2ih(j − 1)],
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where Qj , j = 1, 2, . . . ,∞ are again determined by Eq. (3.13). Substituting the
above into Eqs. (3.5)–(3.8) will yield the explicit expressions for the analytic
vector functions defined in each of the four phases.

4. An illustrative example

In this section, a specific example is presented to demonstrate the theory
developed in the previous section. In this example, phases 1 and 3 are composed
of BaTiO3 whose electroelastic constants are given by

(4.1) C44 = 4.4× 1010 N/m2, e15 = 11.4 C/m2, ǫ11 = 9.8722× 10−9 F/m,

and phases 2 and 4 are PZT-5 with electroelastic constants given by

(4.2) C44 = 2.11× 1010 N/m2, e15 = 12.3 C/m2, ǫ11 = 8.1103× 10−9 F/m.

In addition, we choose C0 = 2.11× 1010 N/m2 and ǫ0 = 8.1103× 10−9 F/m, the
elastic and dielectric constants for PZT-5.

After normalization, we obtain

(4.3) C1 = C3 =

[

2.0853 0.8715
0.8715 −1.2172

]

, C2 = C4 =

[

1 0.9403
0.9403 −1

]

.

We calculate:

(4.4)

Λ1 =

[

−0.0803 0.1000
−0.3990 0.2377

]

, Λ2 =

[

0.1587 −0.1302
0.5192 −0.2551

]

,

P1 = −P2 =

[

0.5687 −0.2489
0.9928 −0.2225

]

.

The solution thus obtained is convergent since the eigenvalues of the two
roots Λ1 and Λ2 in Eq. (4.4) are strictly inside the unit circle. Consequently, we
can find the 2 × 2 real matrices Qj , j = 1, 2, . . . ,∞ given by Eq. (3.13). It is
verified numerically that the recurrence relations in Eqs. (3.10) and (3.11) are
indeed satisfied. The variation of the 2 × 2 matrix function G(x) is illustrated
in Fig. 1. The variations of the two 2 × 2 matrices U = C4M and V = MC−1

4 ,
which are fundamental to the image force expression in Eq. (3.20), as functions
of d̃ − 2 are illustrated in Figs. 2 and 3. It is sufficient to truncate the series in
Eq. (3.23) at j = 10 to arrive at highly accurate results as shown in Figs. 1–3.
It is observed from Figs. 2 and 3 that:

(i) Each of the two matrices U and V is symmetric and thus the quadratic
forms in Eq. (3.20) are standard;

(ii) Both U and V are not positive definite or negative definite;
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Fig. 1. Variation of the 2 × 2 matrix function G(x) =
h

G11 G12

G21 G22

i

.

Fig. 2. Variation of the 2 × 2 matrix C4M = U =
h

U11 U12

U21 U22

i

as a function of d̃ − 2.

(iii) U12 = U21 < 0 and V12 = V21 > 0 are nonzero due to the piezoelectric
effect;
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Fig. 3. Variation of the 2 × 2 matrix MC
−1
4 = V =

h

V11 V12

V21 V22

i

as a function of d̃ − 2.

(iv) As d̃ − 2 → 0,

U ∼= 1

d̃ − 2
C4(Γ3 − I)(Γ3 + I)−1,

V ∼= 1

d̃ − 2
(Γ3 − I)(Γ3 + I)−1C−1

4 ,

which are independent of the properties of phases 1 and 2;
(v) As d̃ → ∞,

U ∼= 1

d̃
C4(Γ3Γ2Γ1 − I)(Γ3Γ2Γ1 + I)−1,

V ∼=1

d̃
(Γ3Γ2Γ1 − I)(Γ3Γ2Γ1 + I)−1C−1

4 ,

which are independent of the properties of the two intermediate layers.
Observations (iv) and (v) are in agreement with the results for a piezoelectric

bi-material [19, 20]. Observation (ii) can be more clearly seen from the distribu-
tions of the two eigenvalues of U in Fig. 4 and those of V in Fig. 5. In Figs. 4
and 5, one eigenvalue is positive, whilst the other one is negative. This fact sug-
gests that it is always possible to make any position in S4 an equilibrium position
(i.e., F2 ≡ 0) using a judicious choice of the two ratios α = b̂2/b̂1 and β = f̂2/f̂1

where b̂ = [b̂1 b̂2]
T and f̂ = [f̂1 f̂2]

T . Figures 6 and 7 illustrate the two critical
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Fig. 4. Distributions of the two eigenvalues of U as functions of d̃ − 2.

Fig. 5. Distributions of the two eigenvalues of V as functions of d̃ − 2.

values of α and β, as functions of d̃ − 2, at which F2 ≡ 0. It is observed from
these two figures that the two critical values of either α or β are almost constant
for different values of d̃ − 2. More specifically,
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Fig. 6. The two critical values αL and αU of α, at which F2 ≡ 0, as functions of d̃ − 2.

Fig. 7. The two critical values βL and βU of β, at which F2 ≡ 0, as functions of d̃ − 2.

min{αL} = −2.0605, max{αL} = −2.0535,

min{αU} = 1.9902, max{αU} = 1.9910,

min{βL} = −3.2163, {βL} = −3.2012,

min{βU} = −0.3658, max{βU} = −0.3657,

for 0 < d̃ − 2 < ∞.(4.5)
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5. Discussion of an N -phase piezoelectric laminate

Consider an entire z-plane composed of N (≥ 5) iezoelectric phases:

S1 : Im{z} ≤ 0; Sj : h(j − 2) ≤ Im{z} ≤ h(j − 1), j = 2, 3, . . . , N − 1;

SN : Im{z} ≥ h(N − 2),

where h (> 0) is the common thickness for each one of the N − 2 intermediate
layers. Each piezoelectric phase is hexagonal with its poling direction along the
x3-axis. All of the N phases are perfectly bonded across the N − 1 planar inter-
faces. The piezoelectric screw dislocation is located at z = id, d > h(N−2) in SN .
The subscript j is used to identify the associated quantities in the phase Sj .

The analytic vector function f1(z) defined in the lower semi-infinite piezoelec-
tric medium continues to take the general form in Eq. (3.5). By satisfying the
continuity conditions across the N − 1 perfect interfaces and applying analytic
continuation, the analytic vector function fN (z) defined in the upper semi-infinite
piezoelectric medium can be finally derived as

(5.1) 2N−1fN (z) =
N−1
∑

j=1

AjΩ[z − 2ih(j − 1)] +
N−1
∑

j=1

BjΩ̄[z − 2ih(j − 1)],

Im{z} ≥ h(N − 2),

where Aj , Bj , j = 1, 2, . . . , N − 1 are 2 × 2 dimensionless real matrices which
can be completely determined by Γj = C−1

j+1Cj , j = 1, 2, . . . , N − 1. It is seen
that Aj and Bj are fundamental to our solution.

An examination of Eq. (5.1) suggests that Ω(z) should take the following
specified form

(5.2) Ω(z) =
2N−2

π

∞
∑

j=1

Qj(b̂ − iC−1
N f̂) ln[z − i(d + 2h(j − 1))],

where b̂ and f̂ have been defined in Eq. (3.4), and Qj , j = 1, 2, . . . ,∞ are 2 × 2
constant matrices to be determined.

Substitution of the above expression into Eq. (5.1) yields the following linear
recurrence relations in matrix form:

N−1
∑

j=1

AN−jQj+m = 0, m = 0, 1, 2, . . . ,∞,(5.3)

N−1
∑

j=m+1

AN−jQj−m = 0, m = 1, 2, . . . , N − 3,

A1Q1 = I,

(5.4)
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in order to ensure that fN (z) exhibits the logarithmic singularity

fN (z) ∼= 1
2π (b̂ − iC−1

N f̂) ln(z − id) + O(1) as z → id

and remains regular at the points

z = i(d + 2jh), j = 1, 2, . . . ,∞.

The general solution to the linear recurrence relationship in matrix form in
Eq. (5.3) can be derived as

(5.5) Qj =
N−2
∑

m=1

Λj
mPm, j = 1, 2, . . . ,∞,

where Λm are the N − 2 roots of the following algebraic equation of order N − 2
of matrix form in Λ

(5.6) A1Λ
N−2 + A2Λ

N−3 + · · · + AN−2Λ + AN−1 = 0,

and the N − 2 coefficients Pm can be uniquely determined from the set of the
linear algebraic equations in Eq. (5.4).

It is difficult to find an analytical solution of the algebraic equation in matrix
form in Eq. (5.6) for N ≥ 5. In fact, even an analytical solution to the cubic
equation of matrix form for N = 5 in Eq. (5.6) is unavailable. However, all
of the N − 2 roots of Eq. (5.6) can be obtained via iteration. Another more
direct solution method is based on the fact that the constant matrices Qj , j =
1, 2, . . . ,∞, all of which are real and dimensionless and independent of the nature
of the singularity at z = id, can be easily determined from Eqs. (5.3) and (5.4)
in a recursive manner once the N − 1 matrices Aj , j = 1, 2, . . . , N − 1 are given.

The image force acting on the screw dislocation can also be derived as

(5.7) F1 = 0, F2 =
C0

4πh
(b̂TCNMb̂ + f̂TMC−1

N f̂),

where the 2 × 2 dimensionless real matrix M is defined as follows

(5.8) M =
N−1
∑

j=1

BjG[d̃ − (j − 1)], d̃ =
d

h
> N − 2,

where the 2 × 2 dimensionless real matrix function G(x) is given by

(5.9) G(x) =
∞

∑

j=1

Qj

x + j − 1
, x > 0,
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which is, in fact, consistent with Eq. (3.23). The image force in Eq. (5.7) can be
arrived at once the single real matrix function G(x) is known.

Our method remains valid for a singularity of arbitrary type. If the principal
(or singular) part of fN (z) is f0(z), then

(5.10) Ω(z) = 2N−1
∞

∑

j=1

Qjf0[z − 2ih(j − 1)],

where Qj , j = 1, 2, . . . ,∞ are determined from Eq. (5.5) or from the recursive
solution of Eqs. (5.3) and (5.4).

Below, we present specific results for N = 5, 6.
For a five-phase piezoelectric laminate (N = 5), the explicit expressions of

the matrices Aj , Bj , j = 1, 2, 3, 4 are

A1 = (Γ4 + I)(Γ3 + I)(Γ2 + I)(Γ1 + I),

A2 = (Γ4 + I)(Γ3 + I)(Γ2 − I)(Γ1 − I)

+ (Γ4 + I)(Γ3 − I)(Γ2 − I)(Γ1 + I)

+ (Γ4 − I)(Γ3 − I)(Γ2 + I)(Γ1 + I),

A3 = (Γ4 + I)(Γ3 − I)(Γ2 + I)(Γ1 − I)

+ (Γ4 − I)(Γ3 + I)(Γ2 − I)(Γ1 + I)

+ (Γ4 − I)(Γ3 − I)(Γ2 − I)(Γ1 − I),

A4 = (Γ4 − I)(Γ3 + I)(Γ2 + I)(Γ1 − I),

(5.11)

B1 = (Γ4 + I)(Γ3 + I)(Γ2 + I)(Γ1 − I),

B2 = (Γ4 + I)(Γ3 + I)(Γ2 − I)(Γ1 + I)

+ (Γ4 + I)(Γ3 − I)(Γ2 − I)(Γ1 − I)

+ (Γ4 − I)(Γ3 − I)(Γ2 + I)(Γ1 − I),

B3 = (Γ4 + I)(Γ3 − I)(Γ2 + I)(Γ1 + I)

+ (Γ4 − I)(Γ3 + I)(Γ2 − I)(Γ1 − I)

+ (Γ4 − I)(Γ3 − I)(Γ2 − I)(Γ1 + I),

B4 = (Γ4 − I)(Γ3 + I)(Γ2 + I)(Γ1 + I).

(5.12)

Furthermore, phases 1, 3 and 5 are taken as BaTiO3 with its electroelastic
constants given by Eq. (4.1), phases 2 and 4 are taken as PZT-5 with its
electroelastic constants given by Eq. (4.2), and C0 = 2.11 × 1010 N/m2, and
ǫ0 = 8.1103 × 10−9F/m. We calculate:
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(5.13)

Λ1 =

[

0.3318 −0.0558
0.2225 0.1545

]

, Λ2 =

[

−0.3769 0.2343
−0.9346 0.3679

]

, Λ3 =

[

0.1627 −0.2237
0.8924 −0.5485

]

,

P1 =

[

0.0435 0.0173
−0.0691 0.0986

]

, P2 =

[

0.0716 −0.0550
0.2194 −0.1033

]

, P3 =

[

−0.1151 0.0377
−0.1504 0.0047

]

.

The three roots Λ1, Λ2 and Λ3 are determined in the following manner: First,
the root Λ1 is iteratively determined from the cubic equation in Eq. (5.6) with
N = 5. Second, the cubic equation in Eq. (5.6) can be reduced to a quadratic
equation. Third, the other two roots Λ2 and Λ3 can be determined by rigorously
solving the quadratic equation. The resulting solution is convergent since the
eigenvalues of the three roots Λ1, Λ2 and Λ3 in Eq. (5.13) lie strictly inside the
unit circle. The matrices Qj , j = 1, 2, . . . ,∞ can be determined from Eq. (5.5)
and they indeed satisfy the recurrence relations in Eqs. (5.3) and (5.4). The
variation of the 2×2 matrix function G(x) obtained from Eqs. (5.5) and (5.9) is
illustrated in Fig. 8. The variations of the two 2×2 matrices U = C5M and V =
MC−1

5 as functions of d̃− 3 are illustrated in Figs. 9 and 10. It is also sufficient
to truncate the series in Eq. (5.9) at j = 10 to arrive at highly accurate results
in Figs. 8-10. In this example, the two matrices U and V are also symmetric.

For a six-phase piezoelectric laminate (N = 6), the explicit expressions of
the matrices Aj , Bj , j = 1, 2, 3, 4, 5 are given by

A1 = (Γ5 + I)(Γ4 + I)(Γ3 + I)(Γ2 + I)(Γ1 + I),

A2 = (Γ5 + I)(Γ4 + I)(Γ3 + I)(Γ2 − I)(Γ1 − I)

+ (Γ5 + I)(Γ4 + I)(Γ3 − I)(Γ2 − I)(Γ1 + I)

+ (Γ5 + I)(Γ4 − I)(Γ3 − I)(Γ2 + I)(Γ1 + I)

+ (Γ5 − I)(Γ4 − I)(Γ3 + I)(Γ2 + I)(Γ1 + I),

A3 = (Γ5 + I)(Γ4 + I)(Γ3 − I)(Γ2 + I)(Γ1 − I)

+ (Γ5 + I)(Γ4 − I)(Γ3 + I)(Γ2 − I)(Γ1 + I)

+ (Γ5 − I)(Γ4 + I)(Γ3 − I)(Γ2 + I)(Γ1 + I)

+ (Γ5 + I)(Γ4 − I)(Γ3 − I)(Γ2 − I)(Γ1 − I)

+ (Γ5 − I)(Γ4 − I)(Γ3 + I)(Γ2 − I)(Γ1 − I)

+ (Γ5 − I)(Γ4 − I)(Γ3 − I)(Γ2 − I)(Γ1 + I),

A4 = (Γ5 + I)(Γ4 − I)(Γ3 + I)(Γ2 + I)(Γ1 − I)

+ (Γ5 − I)(Γ4 + I)(Γ3 + I)(Γ2 − I)(Γ1 + I)

+ (Γ5 − I)(Γ4 + I)(Γ3 − I)(Γ2 − I)(Γ1 − I)

+ (Γ5 − I)(Γ4 − I)(Γ3 − I)(Γ2 + I)(Γ1 − I),

A5 = (Γ5 − I)(Γ4 + I)(Γ3 + I)(Γ2 + I)(Γ1 − I),

(5.14)
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B1 = (Γ5 + I)(Γ4 + I)(Γ3 + I)(Γ2 + I)(Γ1 − I),

B2 = (Γ5 + I)(Γ4 + I)(Γ3 + I)(Γ2 − I)(Γ1 + I)

+ (Γ5 + I)(Γ4 + I)(Γ3 − I)(Γ2 − I)(Γ1 − I)

+ (Γ5 + I)(Γ4 − I)(Γ3 − I)(Γ2 + I)(Γ1 − I)

+ (Γ5 − I)(Γ4 − I)(Γ3 + I)(Γ2 + I)(Γ1 − I),

B3 = (Γ5 + I)(Γ4 + I)(Γ3 − I)(Γ2 + I)(Γ1 + I)

+ (Γ5 + I)(Γ4 − I)(Γ3 + I)(Γ2 − I)(Γ1 − I)

+ (Γ5 − I)(Γ4 + I)(Γ3 − I)(Γ2 + I)(Γ1 − I)

+ (Γ5 + I)(Γ4 − I)(Γ3 − I)(Γ2 − I)(Γ1 + I)

+ (Γ5 − I)(Γ4 − I)(Γ3 + I)(Γ2 − I)(Γ1 + I)

+ (Γ5 − I)(Γ4 − I)(Γ3 − I)(Γ2 − I)(Γ1 − I),

B4 = (Γ5 + I)(Γ4 − I)(Γ3 + I)(Γ2 + I)(Γ1 + I)

+ (Γ5 − I)(Γ4 + I)(Γ3 + I)(Γ2 − I)(Γ1 − I)

+ (Γ5 − I)(Γ4 + I)(Γ3 − I)(Γ2 − I)(Γ1 + I)

+ (Γ5 − I)(Γ4 − I)(Γ3 − I)(Γ2 + I)(Γ1 + I),

B5 = (Γ5 − I)(Γ4 + I)(Γ3 + I)(Γ2 + I)(Γ1 + I).

(5.15)

In addition, phases 1, 3 and 5 are taken as PZT-5 with its electroelastic
constants given by Eq. (4.2), phases 2, 4 and 6 are taken as BaTiO3 with its

Fig. 8. Variation of the 2 × 2 matrix function G(x) =
h

G11 G12

G21 G22

i

for a five-phase

piezoelectric laminate.
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Fig. 9. Variation of the 2 × 2 matrix C5M = U =
h

U11 U12

U21 U22

i

as a function of d̃ − 3 for a

five-phase piezoelectric laminate.

Fig. 10. Variation of the 2×2 matrix MC
−1
5 = V =

h

V11 V12

V21 V22

i

as a function of d̃ − 3 for a

five-phase piezoelectric laminate.
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electroelastic constants given by Eq. (4.1), and C0 = 2.11 × 1010 N/m2, and
ǫ0 = 8.1103 × 10−9 F/m. We calculate:

(5.16)

Λ1 =

[

0.0919 0.1338
−0.5337 0.5173

]

, Λ2 =

[

0.1059 −0.2790
1.1131 −0.7811

]

,

Λ3 =

[

0.5903 −0.2316
0.9237 −0.1459

]

, Λ4 =

[

−0.6313 0.3165
−1.2626 0.3749

]

,

P1 =

[

0.0365 −0.0111
0.0443 0.0012

]

, P2 =

[

−0.0346 0.0091
−0.0364 −0.0057

]

,

P3 =

[

−0.0102 0.0153
−0.0611 0.0385

]

, P4 =

[

0.0082 −0.0133
0.0531 −0.0341

]

.

Thus, the matrices Qj , j = 1, 2, . . . ,∞ can be determined from Eq. (5.5) and
they indeed satisfy the recurrence relations in Eqs. (5.3) and (5.4). The resulting
solution is convergent because the eigenvalues of the four roots Λ1, Λ2, Λ3 and
Λ4 in Eq. (5.16) lie strictly inside the unit circle.

6. Conclusions

We first propose a new version of the complex variable formulation of the
interaction problem associated with a screw dislocation in a layered piezoelec-
tric laminate in which the real symmetric matrix C defined in Eq. (2.3) becomes
dimensionless. Using this complex variable formulation and the technique of ana-
lytic continuation, the original boundary value problem for the four-phase piezo-
electric laminate is reduced to the determination of the single analytic vector
function Ω(z). After rigorously solving the linear recurrence relations in matrix
form in Eqs. (3.10) and (3.11), an elementary expression for Ω(z) is obtained in
Eq. (3.9). Explicit expressions of the four analytic vector functions f1(z), f2(z),
f3(z) and f4(z) characterizing the electroelastic field in the four-phase piezoelec-
tric laminate are presented in Eqs. (3.16)–(3.19). By using the extended version
of the Peach–Koehler formula, the image force acting on the screw dislocation is
given by Eq. (3.20) containing the single real matrix function G(x). The image
force in Eq. (3.20) becomes relatively simple to interpret since the 2×2 matrices
C4 and M are dimensionless, whilst the 2D vectors b̂ and f̂ have the dimension
of length. An example is presented to illustrate the proposed theory. Finally,
the more general situation of a screw dislocation in an N -phase piezoelectric
laminate is discussed and numerical results are presented for the cases N = 5, 6.

The present solutions can be conveniently employed as Green’s functions to
further study crack problems in piezoelectric laminates (the crack problem in
a homogeneous piezoelectric plane can be found in [21, 22]).
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