
ARCHIVES OF MECHANICS

Arch. Mech. 71 (1), 3–21, 2019, DOI: 10.24423/aom.3031

Combined bending-tension/compression deformation of
micro-bars accounting for strain-driven long-range interactions

N. ZHANG1), J. W. YAN2), C. LI1,∗), J. X. ZHOU3)

1)Department of Vehicle Engineering, School of Rail Transportation,
Soochow University, Suzhou 215131, Jiangsu, China
∗e-mail: licheng@suda.edu.cn

2)Key Laboratory of Product Packaging and Logistics of Guangdong Higher
Education Institutes, Jinan University, Zhuhai, Guangdong, China

3)State Key Laboratory of Mechanics and Control of Mechanical Structures
and College of Aerospace Engineering, Nanjing University of Aeronautics
and Astronautics, Nanjing, 210016, China

The paper aims to investigate combined bending-tension/compression deforma-
tion of a micro-bar. The strain-driven nonlocal differential model which involves infor-
mation about long-range interactions between atoms is used to develop the mechan-
ical model and theoretical formulations. Subsequently, effects of internal long-range
scale parameter, length of micro-bar, external loads and bending rigidity on combined
deformation are shown and discussed. In particular, the upper bound of internal long-
range scale parameter and the buckling load are achieved during bending-compression
analyses. It is demonstrated that the existence of internal scale parameter or axial
tensile load decreases combined deformation. The deflection at the midpoint reduces
with increasing bending rigidity, while it rises with increasing length of the micro-
bar. Additionally, an effect of the acting position of transverse load on combined
deformation is discussed and deflection at the symmetry point of transverse acting
position is achieved. When the long-range interaction is taken into consideration, the
equivalent stiffness of the micro-bar subjected to combined bending-tension is stiffer
than that predicted by classical mechanics, and it validates the existing nonlocal
hardening model. The combined bending-compression of the micro-bar reveals that
the deflection may increase or decrease with an increase in the long-range scale or
structural length, which verifies both the nonlocal softening and hardening models.
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1. Introduction

The mechanical behaviors of materials and structures at micro/na-
no-scale are very different from those of classical counterparts at macro-scale
due to the intrinsic size effect. It is important to study the unique properties
of micro-materials/structures and thus forms a new subject of micro-mechanics.
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The micro-mechanics is attracting more and more interest and there is an in-
creasing number of publications on statics and dynamics or thermal dynamics
of micro-materials/structures including micro-tubes, micro-bars, micro-beams,
micro-plates and so on [1–4]. A micro-bar-like structure is one of the most famil-
iar components in micro-electro-mechanical-systems (MEMS) and the structure
is often subjected to the combined bending-tension/compression deformation
at work in micro-engineering. Hence it is necessary to understand and control
the mechanical properties of the combined deformation of micro-bars and the
related studies have been an indispensable part of micro/nano-mechanics and
micro/nano-technology during past years. In combined deformation, the bend-
ing deformation dominates remarkably due to the combined effects of axial and
transverse loads. Under such a condition, the axial load plays a significant role
and cannot be omitted.

For the traditional bar with a macro-length scale, the classical mechanics of
materials is useful to characterize its mechanical properties. However, the clas-
sical mechanics of materials fails to describe new properties of the micro-bar
because the internal characteristic length scale is almost at the same order of
magnitude as the external length scale and hence the long-range interactions
should be taken into consideration. Fortunately, the nonlocal theory initiated
by Eringen and Edelen [5] can be used to measure the long-range interac-
tions in stress-strain relation. Later on Eringen [6] rewrote the theory using
a differential constitutive relation in order to avoid basic mathematical difficul-
ties. In nonlocal theory, the micro-material/structure is treated as a continuum
and the stress at a reference point in a continuum is assumed to be a function
related to not only the strain at that point, but also depends on the strains
at all other points in the continuum. Such a definition and concept are in ac-
cordance with the atomic theory of lattice dynamics and phonon dispersion.
In fact, the nonlocal theory is one of the general continuum mechanics theo-
ries, and it is in the framework of viewpoint that the interaction force between
atoms belongs to the long-range pattern. During the development of the non-
local theory, two types of nonlocal constitution have been formed, namely the
strain-driven nonlocal constitution (cf. [7–23]) and the stress-driven nonlocal
constitution (cf. [24–32]). Firstly, the Eringen’s nonlocal elasticity formulated
by Eringen [6] considers an integral convolution whose input and output fields
are the elastic strain and stress, respectively. The kernel of the convolution was
chosen to be the fundamental solution of a differential problem in Euclidean
space, under the condition of vanishing at infinity. In this context, the integral
law can be conveniently substituted with the equivalent differential problem.
This is the strain-driven nonlocal constitution [6]. The strain-driven constitution
was resorted to in applications to continuous bounded micro/nano-structures
by Peddieson et al. [7]. Subsequently, the application of strain-driven nonlo-
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cal constitution was extended to two-dimensional nano-structures by Ansari
et al. [9] in which the free vibration of single-layered graphene was investigated
using a nonlocal plate model. Xu et al. [13] studied the mechanical behaviors
of cantilever nano-beams using the strain-driven nonlocal constitution and ob-
served the nano-structural softening phenomena. However, Lim et al. [18] con-
cluded some new predictions on stiffness strengthening effects for buckling in-
stability of nano-tubes. Huang [21] presented the longitudinal free vibration
of nano-rods and revealed the nonlocal scale effect by considering the internal
long-range interactions. On the other hand, the stress-driven nonlocal constitu-
tion has been proposed by Romano and Barretta [24] recently. Unlike the
strain-driven nonlocal constitution, the roles of stress and elastic strain fields are
swapped in the stress-driven nonlocal constitution. The constitutive boundary
conditions were derived from the stress-driven nonlocal relation. Under the condi-
tion of a special kernel function, the equivalence between stress-driven (integral)
and strain-driven (differential) constitutions was proven by Romano and Bar-
retta [24] successfully. Although the stress-driven model was developed only
one year ago, nano-structural applications of the stress-driven constitution espe-
cially the nano-beams have been extensively carried out. For example, Romano
et al. [25] developed the nonlocal integral model for elastic nano-beams based
on the stress-driven constitution. Some enlightening comparisons and discus-
sion between strain-driven, stress-driven and local/nonlocal hybrid models were
presented from theoretical and computational perspectives. Combining the non-
local strain gradient theory proposed by Lim et al. [32], Barretta et al. [27]
examined the vibration of functionally graded Timoshenko nano-beams using
the stress-driven constitution. Furthermore, Barretta and de Sciarra [31]
established the nonlocal strain gradient constitutive boundary conditions for the
first time. It was shown that the constitutive boundary conditions obey the non-
local equilibrium relation. Therefore, it provides a perfect complement to the
nonlocal strain gradient theory [32]. In short, the stress-driven model improves
the nonlocal theory and it is valid to investigate the mechanical properties of
nano-structures.

From the aforementioned analyses, it is shown that both the strain-driven
and stress-driven nonlocal constitutions have been investigated and applied in
micro-mechanics to reveal the long-range scale effect in a great number of re-
search articles. From vast literature, people were surprised to find two opposite
nonlocal elastic models based on the strain-driven nonlocal constitutions. One of
them concludes the equivalent micro-structural stiffness predicted by the nonlo-
cal theory is lower than that by the classical continuum theory, while the other
achieves a reversed summary. Consequently, the two models were named as the
nonlocal softening model [7–15] and nonlocal hardening model [16–23], respec-
tively. The nonlocal long-range effect is characterized by the dimensionless scale
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parameter τ = e0a/L where the product e0a is a nonlocal parameter representing
the internal long-range scale and L is the corresponding external characteristic
length scale. Afterwards, both nonlocal models were verified [33–36] and they
were proved to be surface-property-related phenomena in strain-driven nonlocal
mechanics. The attractive and repulsive interactions among atoms on the sur-
face result in the nonlocal softening and hardening models, respectively. In fact,
the two reversed strain-driven based models can also be explained by the stress-
driven model. This is because the structural rigidity predicted in a stress-driven
model is stiffer [24], which is consistent with the new prediction that the stiffness
is strengthened with increasing the nonlocal parameter [16–23].

In the present work, the strain-driven nonlocal elastic model is employed to
describe the combined bending-tension/compression deformation of micro-bars.
Regarding the micro-bar, it usually acts as a basic element in MEMS including
micro-sensor, micro-oscillator and drug micro-screening, where the element fre-
quently generates the combined bending-tension/compression deformation. For
this purpose, the nonlocal long-range differential constitution for the bending
moment of bars at micro-scale is derived and applied to the bending formulation
in a classical equilibrium equation. Subsequently, the deflection at the midpoint
and deflection at the symmetry point of acting point of transverse load are re-
spectively obtained by solving the strain-driven nonlocal differential equation.
The effects of the internal long-range scale, length, bending rigidity, axial and
transverse loads, and acting point of transverse load on combined deformation
are exhibited in detail. The upper bound of the internal long-range scale parame-
ter and the buckling load are determined accordingly. The strain-driven nonlocal
results are compared with the corresponding classical solutions in order to reveal
the long-range scale effect. In particular, both the nonlocal softening and hard-
ening models were validated again from the observations of the present combined
bending-tension/compression deformation of micro-bars. The work can provide
useful reference for designing a micro-bar since it is a commonly seen element
in MEMS.

2. Combined bending-tension deformation

The nonlocal theory was firstly introduced by Eringen and Edelen [5] using
the vehicles of global balance laws and the second law of thermodynamics. After
the derivation of the nonlocal theory using an integro-partial-differential equa-
tion, Eringen [6] proposed a nonlocal differential constitutive relation that con-
nects the nonlocal stress with the classical counterpart clearly, which is called the
strain-driven nonlocal model. The strain-driven nonlocal differential constitution
provides a great deal of simplicity over the integro-partial-differential relation.
The analytical solutions of screw dislocation and surface waves were easily ob-
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tained via the strain-driven differential constitutive relation by Eringen [6]. The
strain-driven nonlocal model includes a differential relation with an explicit scale
parameter, and that scale parameter plays a remarkable role in predicting the
distinctive performances of micro/nano-structures. As a result, it has been ap-
plied extensively to micro/nano-mechanics during past decades. The well-known
strain-driven nonlocal differential equation incorporating a small scale effect and
long-range interactions between atoms/molecules is expressed by [6]

(2.1) σnonl − (e0a)
2∇2

σnonl = σcla = C : ε

where σnonl and σcla are the nonlocal and classical stress tensors, respectively;
ε is the strain tensor; C is the elastic tensor and e0a is the nonlocal scale parame-
ter denoting the long-range interactions at micro/nano-scale; ∇2 is the Laplacian
operator. In fact, e0 is the nonlocal material constant depending on different ma-
terial properties, while a is the internal characteristic length scale such as lattice
parameter, granular distance and so on [6]. The combination of e0a was intro-
duced to the nonlocal theory to characterize the inter-atomic long-range forces,
which should be taken into account when the external characteristic length scale
(e.g. wavelength, crack size) is almost at the same level as the internal charac-
teristic length scale. It is noticed that the strain-driven nonlocal model can also
be treated as a gradient type of a nonlocal model. This is because the solution
to Eq. (2.1) can be expressed as a summation of classical strain and the strain
gradients, as [22]

(2.2) σ = C :
∞

∑

m=0

(e0a)
2m∇2m

ε.

On the other hand, for a micro-bar with a length l bearing an axial tensile
or compressive load P and transverse load Q, we assume the distance from the
point of transverse load Q to the right end of micro-bar is d, as illustrated in
Fig. 1. Because the deformation is small, we can suppose the axial load is still
horizontal after deformation in Fig. 1.

Fig. 1. Sketch of a micro-bar subjected to combined bending-tension deformation.
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First we consider the combined bending-tension deformation. Denoting de-
flection at the position x in the axial direction coordinate is w, one can obtain
the bending moments for both segments of the micro-bar, shown as

(2.3) M =
Qd

l
x+ Pw1

when 0 ≤ x ≤ l − d;

(2.4) M =
Q(l − d)(l − x)

l
+ Pw2

when l − d ≤ x ≤ l.
In the present article, the strain-driven nonlocal theory is utilized to capture

the long-range interactions occurring in combined bending-tension/compression
deformation of micro-bar. Consequently, the one-dimensional simplified form of
nonlocal differential Eq. (2.1) is required. After that, we further consider the
relation between bending moment and bending stress defined in classical me-
chanics of materials M = −

∫

A zσdA in which z is the thickness coordinate and
A is the area of the cross section. Note that the minus sign in bending moment-
stress relation is caused by the directions of the transverse load and z-axis. The
deformation is shown in Fig. 1 according to the direction of the transverse load.
In such a situation of deformation shape, the directions of stress σ and thick-
ness axis (z-coordinate) are opposite, that is, the stress σ is negative and the
z-coordinate is positive above the neutral layer of micro-bars, while the stress
σ is positive and the z-coordinate is negative below the neutral layer. Hence,
one can arrive at the expression of the nonlocal bending moment versus bending
deflection, as

(2.5) M − (e0a)
2d

2M

dx2
= EI

d2w

dx2

where I =
∫

A z
2dA is the area moment of inertia, E is Young’s modulus and

σcla = Eεcla = −Ez d2w
dx2 is adopted. Obviously, if e0a is zero in Eq. (2.5), or

the intrinsic length scale representing the long-range interactions is negligible
compared to external characteristic scale (e.g. for a bulk material or structure
with macro-scale), the bending moment-deflection relation (2.5) becomes the
counterpart of classical continuum mechanics.

Inserting Eqs. (2.3) and (2.4) into (2.5) yields, respectively

[EI + (e0a)
2P ]

d2w1

dx2
− Pw1 −

Qd

l
x = 0,(2.6)

[EI + (e0a)
2P ]

d2w2

dx2
− Pw2 −

Q(l − d)(l − x)

l
= 0.(2.7)
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The general solutions to Eqs. (2.6) and (2.7) can be written respectively as

w1 = A exp
[

√

P

EI + (e0a)2P
x

]

+B exp

[

−
√

P

EI + (e0a)2P
x

]

− Qd

Pl
x,(2.8)

w2 = C exp

[

√

P

EI + (e0a)2P
x

]

+D exp

[

−
√

P

EI + (e0a)2P
x

]

(2.9)

− Q(l − d)(l − x)

Pl

where A, B, C and D are undetermined coefficients. In static analysis, only
the boundary conditions are needed for finding these coefficients. Taking the
fixed-fixed ends as an example, the boundary constraints require the deflections
of both ends are zero, or w1 = 0 at x = 0; w2 = 0 at x = l. In addition to
the boundary conditions, the continuity condition should also be considered as
w1 = w2 and dw1/dx = dw2/dx at x = l − d, which means the deflection and
rotation angle of the left segment of micro-bar must coincide with those of the
right segment. Based on the boundary and continuity conditions one arrives at

A =
e−m(l−d)(e2ml − e2m(l−d))ξ

2m(e2ml − 1)
, B = −e

−m(l−d)(e2ml − e2m(l−d))ξ

2m(e2ml − 1)
,

(2.10)

C = −e
−m(l−d)(e2m(l−d) − 1)ξ

2m(e2ml − 1)
, D =

em(l+d)(e2m(l−d) − 1)ξ

2m(e2ml − 1)

where m =
√

P/(EI + (e0a)2P ) and a dimensionless factor ξ = Q/P is defined.
Consequently, the nonlocal bending deflections accounting for the long-range
interactions are thus determined, respectively:

w1 =
e−m(l−d)(e2ml − e2m(l−d))ξ

2m(e2ml − 1)
emx(2.11)

− e−m(l−d)(e2ml − e2m(l−d))ξ

2m(e2ml − 1)
e−mx − ξd

l
x,

w2 = − e−m(l−d)(e2m(l−d)−1)ξ

2m(e2ml − 1)
emx(2.12)

+
em(l+d)(e2m(l−d) − 1)ξ

2m(e2ml − 1)
e−mx − ξ(l − d)(l − x)

l
.

In fact, we can check the solutions expressed in Eqs. (2.11) and (2.12) via
a simple way. Suppose d=0 which means the transverse load acts at the right
fixed end, we can predict the deflection should be zero. It can be confirmed
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from Eq. (2.11) since its interval is 0 ≤ x ≤ l − d. On the other hand, suppose
d = l which means the transverse load acts at the left fixed end, we can predict
the deflection should also be zero. It can be confirmed from Eq. (2.12) since its
interval is l − d ≤ x ≤ l. Hence, the correctness of solutions (2.11) and (2.12) is
achieved. Furthermore, the deflection at the midpoint of the micro-bars is

wmidpoint =
e−m(l−d)(e2ml − e2m(l−d))ξ

2m(e2ml − 1)
eml/2(2.13)

− e−m(l−d)(e2ml − e2m(l−d))ξ

2m(e2ml − 1)
e−ml/2 − ξd

2

when l ≥2d,

wmidpoint = − e−m(l−d)(e2m(l−d) − 1)ξ

2m(e2ml − 1)
eml/2(2.14)

+
em(l+d)(e2m(l−d) − 1)ξ

2m(e2ml − 1)
e−ml/2 − ξ(l − d)

2

when l ≤ 2d.
In particular, when the action position of the transverse load Q is at the

middle of the micro-bar, i.e. d = l/2, the deflection at the midpoint of the micro-
bar can be reduced via either Eq. (2.13) or (2.14) as

(2.15) wmidpoint =
(eml − 1)2ξ

2m(e2ml − 1)
− ξl

4
.

It is obvious that the deflection at the midpoint is proportional to the trans-
verse load Q, which is the simplest correlation among various variables in this
study. It is easy to understand from the basic viewpoint of classical mechanics of
materials and is unnecessary to discuss. However, it is not inversely proportional
to the axial tensile load P because not only the expression of ξ but also m con-
tains P . In order to illustrate effects of the internal long-range scale parameter,
length of the micro-bar, bending rigidity and external loads on the deflection at
the midpoint, we present some numerical studies in Figs. 2–6 as follows. Note
that the deflection is negative because of the directions of coordinate system
and deformation shown in Fig. 1. It is observed that the deflection declines with
increasing the internal long-range scale parameter from Fig. 2, hence the de-
flection containing long-range interactions is slightly lower than that predicted
by classical continuum mechanics. For example, the nonlocal deflection reduces
3.44% or so when e0a increases from 0 to 2 nm. Therefore, the equivalent stiffness
of micro-structure is enhanced by the internal long-range scale effect, which is
consistent with the prediction of the nonlocal hardening model [16–23] including
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Fig. 2. The deflection at midpoint versus internal long-range scale parameter with different
bending rigidity for combined bending-tension of micro-bars, where P = Q = 5 N,

l = 100 nm.

Fig. 3. The deflection at midpoint versus bending rigidity for combined bending-tension of
micro-bars, where P = Q = 10 N. e0a = 1 nm.

the previous work on long-range interactions [20, 21], that is, smaller is stiffer.
So the validity of the present study is confirmed. On the other hand, the nonlo-
cal deflection decreases with an increase in bending rigidity from Fig. 3, which
resembles the classical mechanics of materials. A larger tensile load results in
a smaller deflection from Fig. 4, and this is because the tensile load enhances
the micro-structural stiffness. The deflection at the midpoint grows with increas-
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Fig. 4. The deflection at midpoint versus internal long-range scale parameter with different
tensile load for combined bending-tension of micro-bars, where Q = 5 N, l = 100 nm,

EI = 10−18 Nm2.

Fig. 5. The deflection at midpoint versus length with different internal long-range scale
parameter for combined bending-tension of micro-bars, where P = Q = 5 N, EI = 10−18 Nm2.

ing the length of micro-bars from Fig. 5, and this is because a longer micro-bar
means a higher flexibility. A nonlinear relationship between the deflection at the
midpoint and a tensile load is shown in Fig. 6. Additionally, with the tensile load
rising, a couple effect of bending rigidity and a tensile load is observed in Fig. 6.
For a sufficient large tensile load, the results obtained from different bending
rigidity are very close to each other, which implies the larger tensile load domi-
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Fig. 6. The deflection at midpoint versus axial tensile load with different bending rigidity
for combined bending-tension of micro-bars, where Q = 5 N, e0a = 1 nm, l = 150 nm.

nates the stiffness otherwise the stiffness is influenced predominantly by bending
rigidity if the tensile load becomes smaller.

3. Combined bending-compression deformation

Next we consider the combined bending-compression deformation via the
strain-driven nonlocal constitutive relation. According to the opposite directions
of tensile and compressive loads, the nonlocal deflection equations can be written
directly by replacing P by −P in Eqs. (2.6) and (2.7), but one cannot do the same
actions on Eqs. (2.8) and (2.9) since the characteristic roots of the new differential
equations are complex numbers (conjugated imaginary roots). The solutions for
deflections of combined bending-compression deformation are resolved as

w1 = A cos

√

P

EI − (e0a)2P
x+B sin

√

P

EI − (e0a)2P
x+

ξd

l
x,(3.1)

w2 = C cos

√

P

EI − (e0a)2P
x+D sin

√

P

EI − (e0a)2P
x(3.2)

+
ξ(l − d)(l − x)

l
.

It is worth mentioning that the upper bound of internal long-range scale
parameter can be determined for the combined bending-compression deformation
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of micro-bars in order to ensure the existence of meaningful solutions, namely,
the solutions for axial combined bending-compression deformation must include
the terms with regard to nonlocal long-range interactions, or

(3.3) (e0a)
up =

√

EI

P
.

The relationship between the upper bound of the internal long-range scale
parameter and the bending rigidity, the axial compressive load is shown in Fig. 7.
It is implied that the upper bound of the internal long-range scale parameter
changes significantly with the variations of bending rigidity and the axial com-
pressive load. The upper bound decreases with an increase in the axial com-
pressive load, while increases with an increase in bending rigidity. We can also
conclude that the upper bound of internal long-range scale increases with in-
creasing the axial tensile load. This can be explained as follows: (i) the axial
tensile load is opposite to the axial compressive load; (ii) the existence of the ax-
ial tensile load contributes to strengthening the bending rigidity. Therefore, the
axial compressive load reduces the bending rigidity. When increasing the bend-
ing rigidity or decreasing the axial compressive load, the upper bound of internal
long-range scale increases. Of course, the upper bound may be different for dif-
ferent materials subjected to different loads or deformations. The result shown
in Fig. 7 only suits for the special case of micro-bars with combined bending-
compression deformation. Even so, it makes sense to determine the peak value
of internal long-range scale because it is an unclear issue in vast literature.

Fig. 7. Variations of the upper bound of internal long-range scale with respect to the
bending rigidity and axial compressive load.



Combined bending-tension/compression deformation. . . 15

In addition to the upper bound of internal long-range scale, we can also inves-
tigate the buckling load from Eqs. (3.1) and (3.2) in such a bending-compression
deformation. Because the expression under the radical sign in Eqs. (3.1) and
(3.2) should be non-negative, the buckling load can be determined and the re-
sults are shown in Fig. 8. It is indicated that the buckling load increases with
increasing the bending rigidity, which is easily understood since a larger bend-
ing rigidity means a stronger deformation resistant capability. Moreover, the
buckling load decreases with an increase in the internal long-range scale param-
eter, which means the existence of a scale parameter makes the buckling load
reduce. Hence, the buckling load predicted by the strain-driven nonlocal differ-
ential model is lower than that predicted by the classical continuum model. Such
a conclusion is consistent with the nonlocal softening model since it deems the
nano-structural stiffness is reduced.

Fig. 8. Variations of the buckling load with respect to the bending rigidity and internal
long-range scale parameter.

Still considering the boundary and continuity conditions for a doubly fixed
micro-bar, that is w1 = 0 at x = 0; w2 = 0 at x = l; w1 = w2 and dw1/dx =
dw2/dx at x = l − d. The unknown coefficients can be determined from the
general solutions shown in Eqs. (3.1) and (3.2) as well as the boundary and
continuity conditions as:

(3.4)

A = 0, B =
ξ{cot(nl) − cot[n(l − d)]} sin[n(l − d)]

n
,

C = −ξ sin[n(l − d)]

n
, D =

ξ cot(nl) sin[n(l − d)]

n
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where n =
√

P/(EI − (e0a)2P ). Therefore, we have

w1 =
ξ{cot(nl) − cot[n(l − d)]} sin[n(l − d)]

n
sinnx+

ξd

l
x,(3.5)

w2 = − ξ sin[n(l − d)]

n
cosnx+

ξ cot(nl) sin[n(l − d)]

n
sinnx(3.6)

+
ξ(l − d)(l − x)

l
.

The correctness of solutions (3.5) and (3.6) can also be testified using two
special cases. One is d = 0 or the transverse load acts at the right fixed end,
we should use solution (3.5) to prove that the deflection is zero, which accords
with the special force status. Another is d = l or the transverse load acts at the
left fixed end, we should use solution (3.6) to prove that the deflection is indeed
zero and that it is a reasonable result based on the force status. Considering the
deflection at the action position of the transverse load Q, i.e. let x = l − d, and
one can use either Eq. (3.5) or (3.6) due to the continuity of deflection, expressed
as

(3.7) wQ =
ξ{cot(nl) − cot[n(l − d)]} sin2[n(l − d)]

n
+
ξd(l − d)

l
.

The relation between the deflection at the action position of Q, the internal
long-range scale parameter and the action position of Q (i.e. d from the right
end of the micro-bar) is plotted in Fig. 9. Unlike the combined bending-tension
deformation, the deflection of combined bending-compression reveals a remark-
able feature of jumping up and down. It is noticed that the classical solution is
recovered with e0a = 0 from the nonlocal theory, i.e. the left-most value in Fig.
9 represents the classical solution for each case (d = l/4, d = l/3 and d = l/2).
Consequently, the nonlocal deflection containing long-range interactions with
e0a 6= 0 may be higher or lower than the classical deflection with e0a = 0.
The ratio of the nonlocal deflection to classical deflection being greater than
one corresponds to the nonlocal softening model, while the ratio of the nonlocal
to classical deflections being less than one corresponds to the nonlocal harden-
ing model. As a result, although the non-monotonic performances of deflection
wQ with respect to e0a is mainly caused by the particularity of trigonometric
functions in solution (3.7) mathematically, Fig. 9 validates both the nonlocal
softening and hardening models physically, which is consistent with the previous
work [33–36]. In addition, the most significant effect of the action position on
the deflection appears at e0a = 0.35, namely the maximum differences of the
deflection for the different action position d occur when e0a = 0.35, and the
deflections at this point are −4.78 nm, 0.019 nm and −10.06 nm for d = l/4,
d = l/3 and d = l/2, respectively. Considering the structural symmetry, we only
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examine three cases for d = l/4, d = l/3 and d = l/2. That is, we only choose
three different positions on the right half segment of the micro-bar. It is shown
that when the transverse load acts on the position of d = l/3, the amplitude of
change for the deflection at the action position is relatively non-intense, while
when the transverse load acts on the positions of d = l/4 and d = l/2, the
deflection at the action position changes more sharply.

Fig. 9. Effects of the internal long-range scale and action position of transverse load on
deflection at action position, where P = Q = 10 N, EI = 10−17 Nm2, l = 150 nm.

As the last case study, we calculate that when the transverse load acts at
d = l/4, the deflection at its symmetry point (the symmetry point of the acting
point of the transverse load, i.e. x = l/4 on the micro-bar). Because the symmetry
point is on the left of the transverse load, we should use Eq. (3.5) to calculate
the deflection. Substituting d = l/4 and x = l/4 into Eq. (3.5) yields

(3.8) wl/4 =
ξ

n

[

cot(nl) − cot
3nl

4

]

sin
nl

4
sin

3nl

4
+
ξl

16
.

The relation between the deflection at the symmetry point and the length
of the micro-bar is shown in Fig. 10. It is demonstrated that the deflection at
the symmetry point increases overall with an increase in length l. It is equiva-
lent to the conclusion summarized in Fig. 2, where the deflection decreases with
an increase in the internal long-range scale e0a. This is because the internal
long-range scale and the length of the micro-bar can represent the internal and
external characteristic scales, respectively. In most previous studies, one used
a dimensionless nonlocal scale quantity τ = e0a/l in which the inverse rela-
tion between e0a and l is seen. Moreover, the variations of deflection are not
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Fig. 10. Deflection at the symmetry point of acting point of transverse load when d = l/4,
where P = Q = 2 N, EI = 10−18 Nm2, e0a = 0.5 nm.

always up with respect to length. At some particular values (e.g. l = 300 nm)
the deflection may decrease. Such observation recalls the existence of nonlocal
softening and hardening models again. Of course, the different performances be-
tween the combined bending-compression and bending-tension deformations are
the combined bending-compression that contains the jumping phenomenon. The
physical cause is that the micro-bar may become instable when the axial tension
is replaced by axial compression. Consequently, the mechanical quantities may
lose stability as shown in the numerical results.

4. Conclusions

The combined bending-tension and bending-compression deformations of
micro-bars are examined by considering the nonlocal long-range interactions be-
tween atoms. The nonlocal bending moment relation is gained and the equilib-
rium equations of combined bending-tension/compression are developed, respec-
tively. The analytical solutions for deflection are determined from the strain-

driven nonlocal differential equations. It concludes that: (i) The deflection of
combined bending-tension is influenced by the internal long-range scale, axial
tensile load, bending rigidity and length of the micro-bar. It decreases with in-
creasing the internal long-range scale, axial tensile load and bending rigidity,
while increases with an increasing length of the micro-bar; (ii) The linear rela-
tion between the deflection and the transverse load, and the nonlinear relation
between the deflection and the axial load are observed. The effect of both loads
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cannot be neglected in combined deformations; (iii) The upper bound of internal
long-range scale and the buckling load are obtained. The upper bound is related
to the bending rigidity and the compressive load, while the other is related to
the bending rigidity and internal long-range scale; (iv) The acting position of the
transverse load has a significant influence on the deflection, and the deflection
may increase or decrease with respect to the internal long-range scale or the
length of the micro-bar for combined bending-compression. The major contribu-
tion of this paper is to reveal the mechanical properties of micro-bars subjected
to combined deformations. In addition, both nonlocal softening and hardening
performances are observed and validated.
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