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This paper has the goal of defining a class of uncertain structural sys-
tems for which it is possible to consider an approach able to give the exact response in
terms of the probability density function (PDF). The uncertain structures have been
identified in the discretized statically determined ones and the approach has been
identified in the coupling of the approximated principal deformation modes method
(APDM) and of the probability transformation method (PTM). The first one gives
the explicit relationships between the response variables and the uncertainty ones,
that are exact when the structures are statically determined. The second method al-
lows to determine the explicit relationship between the PDFs of the response and of
the uncertainty variables. The results of some applications have confirmed the good-
ness of these choices and that the proposed approach gives always exact results for
both correlated and uncorrelated uncertainty random variables.
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1. Introduction

It is well known that the analysis of structural systems is always
affected by the uncertainties due to the characterization of materials and of ge-
ometric quantities, in addition to the external actions. In many cases the level
of these uncertainties is so crucial that the use of deterministic methods for
the structural response analyses may lead to unacceptable approximations. In
these cases the uncertainties, and consequently, the structural response, must be
adequately represented as random quantities. Moreover, an assessment of the re-
sponse in terms of PDF is highly recommended, above all if reliability analysis
is a required field, as well as the use of advanced specific analysis approaches, as
the probabilistic methods.

In the literature there are several papers related to the application of prob-
abilistic methods and, in the last fifty years, many significant results have been
obtained in this field. An useful overview of the various probabilistic methods in
the literature treating systems with uncertainties can be found in some books
and review papers [1–8].
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Some of the oldest methods for the evaluation of the response PDF of systems
subjected to uncertainties are based on truncating the series expansions of the re-
sponse PDF, its characteristic function, which is the Fourier transform of the PDF,
and its log-characteristic function [7]. These truncations are carried out by neglect-
ing the response moments, cumulants or quasi-moments [7, 9]. These approaches
can provide sufficiently good results if the response is characterized by a rela-
tively low level of non-Gaussianity. When the response is strongly non-Gaussian,
the number of terms of the series may be particularly high and the convergence,
that is not guaranteed, can be particularly slow. In addition, the direct evaluation
of the terms of the series may not be simple. For this reason, this method is often
associated with the Monte Carlo Simulation (MCS) method [2, 10, 11].

Widely used methods are those based on the perturbation approaches, based
on a Taylor series expansion in terms of a set of zero mean random variables.
The perturbation approaches provide accurate results for relatively low levels of
uncertainty, for which only few terms of the series are used (usually the first or
the first and second order are considered). On the contrary, when the level of un-
certainty of the structural parameters increases the approach loses its precision
and, if a high number of terms of the series is taken into account, the computa-
tional effort increases remarkably. In any case, the convergence of the approach
is not guaranteed by the augmented order of the retained series terms. Major
details on this method can be found in [9, 12–16].

Recently, the so-called projection approaches have been largely used for solv-
ing uncertain structural systems. They are essentially based on the projection of
the structural response solution on a complete stochastic basis. Two of the most
used projection approaches are those based on the Karhunen–Loève expansion [3]
and on the polynomial chaos expansion. This last one is a Galerkin projection
scheme based on the Wiener integral representation [3, 8]. It requires the nu-
merical evaluation of the series expansion terms [17, 18] and can be particularly
onerous if the terms of the series are not limited to a relatively small number.
For this reason recently, several efforts have been made to improve the approach
[19, 20]. A comparison of different projection schemes for the stochastic finite
element analysis is given in [21].

Another class of methods dealing with an uncertain system is that related
to the use of the random matrix expansion of the structural stiffness matrix
in order to perform explicitly its inversion through an iterative approach; for
example the Neumann approach is one of them [22, 23]. Once that the explicit
inverse stiffness matrix is obtained, it is possible to evaluate the statistics of
the response, or to perform a MCS to obtain the response PDF. The advantage
of these procedures of giving the explicit relationship between the structural
uncertainties and the output response is balanced by the fact that their accuracy
is satisfactory only for relatively low levels of uncertainties.
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The only universal instrument for the analysis of systems with uncertain-
ties is the direct MCS [24, 25]. Improperly it can be classified as a probabilistic
approach, even if it has the advantage of enabling the analysis of any system hav-
ing any type of randomness. The great drawback related to the use of the MCS
is the high computational effort, so that it is often limited to structures with
a small number of DOFs. This has led several authors to propose more versa-
tile MCS-based methods, characterized by a lower computational cost than that
required by the direct MCS method [10, 11, 26, 27].

It is important to remark that all the aforementioned approaches give more
or less approximated response results and none of them is able to give exact
results in a closed form, regardless of the characteristics of the structural system
under consideration. Instead, owning some exact results, even if for particular
uncertain structures, would be very important because they would represent
the benchmark results for the above cited approximated approaches.

The aim of this paper is defining an approach able to give exact results
in terms of the response PDF for particular uncertain structures. At this pur-
pose, in 2002 Falsone and Impollonia [26, 27] proposed the APDM, that
belongs to the class of perturbation and MCS-based methods. It consists in
breaking up the structural response in the base of the main deformation modes
of the structure: this allows obtaining an approximation of the response, with-
out the cost to invert the stiffness matrix of the system and enabling to reduce
strongly the computational effort, the statistics of the response being obtained
by the MCS directly applied to the explicit expressions of the response. Never-
theless, the APDM can be considered also as a projection method, because it
consists essentially in the expansion of the structural response on a particular
base through a finite number of functions, depending on the uncertain parame-
ters, strictly related to the principal deformation modes of the structural system.
In any case, the coefficient of the series can be evaluated explicitly in terms of
the uncertain parameters. This method is remarkable for the purpose of this
paper because the same authors evidenced that in the case of statically deter-
minate structures it gives the exact explicit relationships between the response
components and the random variables defining the structural uncertainties [27].
For these structures the APDM becomes the EPDM (approximated → exact). In
this way a class of structures for which it is possible to find exact close relation-
ships between response quantities and uncertainty quantities has been identified.

The next step is the evaluation of the exact response PDF. At this purpose,
recently, an approach, based on a new version of the PTM, has been proposed for
the study of some stochastic problems [28, 29]. The method provides the basis for
a new philosophy in the study of stochastic structural systems, working directly
in terms of input (uncertainties) and output (responses) PDFs and providing
exact solutions in some cases.
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Consequently, the matching of the EPDM with the PTM for the statically de-
terminate uncertain structures appears to be a good way for reaching the above-
cited goals of this paper.

For the sake of clarity, in the following Sections 2 and 3, the basics of APDM
and of PTM are given, respectively, evidencing how for statically determined
uncertain structures the APDM becomes an EPDM. In Section 4, the way for
matching these methods in order to create an approach able to evaluate the re-
sponse PDF of an uncertain structural system is shown. In Section 5, some
numerical examples are reported with the aim of testing the efficiency of the ap-
proach through the comparisons with the results obtained by the direct MCS.
At last, some conclusions and remarks close the paper in Section 6.

2. Fundamentals of APDM [26, 27]

The response of a discretized structural linear system having uncertain prop-
erties is governed by an equilibrium equation that can be expressed in the fol-
lowing form:

(2.1) K(α)u(α) = F

where α = [α1, α2, . . . , αm]T is the m-vector collecting the random variables
modelling the uncertainties of the structural system; these variables are sup-
posed to be defined through the knowledge of their joint PDF, pα(α); K(α)
is the structural stiffness n × n matrix depending on the uncertain parameters;
F is the n-vector of the external actions, here considered deterministic, and u(α)
is the n-vector of the response displacements, depending on the structural pa-
rameters, and hence on α, besides of on the external actions. By following [26],
it is always possible to express the stiffness matrix as follows:

(2.2) K(α) = K0 +
m

∑

i=1

Kiαi

where K0 is the deterministic stiffness matrix obtained setting αi = 0, with
i = 1, . . . , m, and Ki are deterministic matrices extracted from K(α) by using,
for example, the first order Taylor expansion:

(2.3) K0 = K(0); Ki =

[

∂K(α)

∂αi

]

α=0

.

The basic idea of the method lies on the following approximation of the response
vector u(α):

(2.4) u(α) ≈ u0 +
m

∑

i=1

ui(αi) = u0 + uα(α)
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where u0 is the deterministic response obtained setting αi = 0 in Eq. (2.1), while
ui(αi) are the response vectors obtained supposing that only the random variable
αi characterizes the structure uncertainties. Hence, they are the solutions of
the following equations:

(2.5) K0u0 = F; (K0 + αiKi)ui(αi) = −αiKiu0.

In [26] the explicit closed-form expressions of the partial response vectors
ui(αi) have been given; they are:

(2.6) ui(αi) = −αiΦi[In + αiΛi]
−1ΛiΦ

T
i F

where Λi and Φi are the eigenvalue and eigenvector matrices, respectively, of
the matrix K−1

0 Ki, while In is the identity matrix of the order n . This im-
plies that the matrix in square brackets in Eq. (2.6) is diagonal, making very
simple its inversion. Moreover, always in [26], it has been shown that the num-
ber of the non-zero eigenvalues of the matrix K−1

0 Ki is equal to the number
of the structural principal deformation modes directly affected by αi; this num-
ber, ni, is very small with respect to the number of degrees of freedom n of the
system, making very simple the evaluation of ui(αi). The name of the approach
(APDM) just originates from the important role of the structural principal de-
formation modes in the application of this method. In particular, if each random
variable αi influences only one FE (as usually happens), then the number of
the significant eigenvalues cannot be greater than the number of natural modes
of the element that, in turn, depends on the type of FE chosen for discretizing
the structure. For example, a bar-type FE is characterized only by one natural
deformation mode (ni = 1); a beam-type FE (in a plane analysis) by two natu-
ral deformation modes (ni = 2); a frame-type FE (in a plane analysis) by three
natural deformation modes (ni = 3).

When ni = 1, the straightforward particularization of Eq. (2.6) gives:

(2.7) uij (αi) = −Φijk

αiΛikq0,ik

1 + αiΛik

=
aijαi

1 + bijαi

where uij is the j-th element of ui, Λik is the only non-zero eigenvalue of K−1
0 Ki

(the k−th) and Φijk
the j-th element of the k-th eigenvector. At last, q0,ik

is the k−th element of the modal response vector q0,i = Φ−1
i u0. Obviously,

the quantities aij and bij appearing in the last term of Eq. (2.7) can be obtained
once that the eigenvalue problem of K−1

0 Ki is solved.
When ni = 2, as, for example, happens in the beam-type FE discretized

planar structures, the non-zero eigenvalues of the matrix K−1
0 Ki are not more



320 G. Falsone, R. Laudani

than two. In this case the generic element of ui can be obtained by the following
relation:

(2.8) uij (αi) = −Φijk

αiΛikq0,ik

1 + αiΛik

− Φijl

αiΛilq0,il

1 + αiΛil

where Λik and Λil are the two non-zero eigenvalues of K−1
0 Ki (the k-th and

the l-th), Φijk
and Φijl

the corresponding element of the k-th and the l-th eigen-
vectors and, lastly, q0,ik and q0,il are the k-th and the l-th elements of q0,i. Even
in this case, it is possible to consider an alternative expression of uij (αi), that
is:

(2.9) uij (αi) =
aijαi + bijα

2
i

1 + cijαi + dijα
2
i

where the four coefficients appearing here can be easily obtained starting from
Eq. (2.8).

At last, the generalization to the case ni = p, p being the generic number of
the structural principal deformation modes influenced by the uncertain param-
eter αi, is quite simple. In fact, Eqs. (2.7), (2.8) and (2.9) can be generalized
in:

(2.10) uij (αi) = −
p

∑

k=1

Φijk

αiΛikq0,ik

1 + αiΛik

=

p
∑

k=1

bikjα
k
i

1 +
p
∑

k=1

dikjα
k
i

.

In [27] it has been evidenced that the APDM is affected by an error e(α)
having the following expression:

(2.11) e(α) = −
m

∑

i=1

m
∑

i6=j=1

αiKiuj(αj)

that shows of being strictly related to the presence of the cross-terms Kiuj , ne-
glected in the APDM. These cross-terms may assume an important physical sig-
nificance remembering that uj is the structural displacement when only the ran-
dom variable αj affects the structure. Consequently, they represent the nodal
forces arising in a structure characterized by the stiffness matrix Ki and sub-
jected to the nodal displacements uj . Then, if the discretized structure is stat-
ically determinate, these terms are rigorously zero, for i 6= j, and no error is
related to the use of Eq. (2.4). Hence, for statically determinate discretized
structures, the APDM becomes the EPDM (Exact Principal Deformation Mode)
approach, giving the exact relationships between the structural response and
the random variables describing the uncertainties.
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3. Fundamentals of the PTM [28, 29]

The basic aspects of the PTM must be looked for in the theory of the space
transformation of vector-valued random variables, briefly discussed below.

If x is a n-dimensional random vector with joint PDF px(x) and h(·) is
a n-dimensional invertible application, such that h−1(·) = g(·) exists, that is:

(3.1a, b) z = h(x); x = g(z)

then, it is well known that the joint PDFs of the random vectors x and z are
related by the probability transformation law as follows [30]:

(3.2) pz(z) =
1

|det[Jh(g(z))]|px(g(z)) = |det[Jg(z)]|px(g(z))

where Jh(·) and Jg(·) = J−1
h (·) are the Jacobian matrices related to the trans-

formations in Eqs.(12). Equation (3.2) allows to determine the joint PDF pz(z),
once that the joint PDF px(x) is known, together with the inverse transformation
law, g(·). It represents the fundamental relationship of the PTM.

It may happen that the numbers of elements of x and z are different. In
this case, the PTM is still relevant, if some expedients are performed for its
application. For example, if n and m are the orders of x and z, respectively,
and n > m, an efficient expedient may be the adding of new output elements
through (n − m) generic variables, in such a way that the augmented vector
z̄T = (zT ẑT ), ẑ being the (n − m)-vector of the added generic variables, has
the same number of elements of the input x. Hence, the law expressed in Eq. (3.2)
can be applied in the form:

(3.3) pz̄(z̄) =
1

|det[Jh̄(ḡ(z̄))]|px(ḡ(z̄)) = |det[Jḡ(z̄)]|px(ḡ(z̄))

where:

(3.4) h̄(·) =

(

h(·)
ĥ(·)

)

; ḡ(·) = h̄−1(·).

Once that the joint PDF pz̄(z̄) has been evaluated by Eq. (3.3), the effective joint
PDF pz(z) is obtained by the saturation of the (n − m) added generic variables,
that is:

(3.5) pz(z) =

+∞
∫

−∞

· · ·
+∞
∫

−∞

pz̄(z̄) dẑ1 · · ·dẑn−m.
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On the other hand, when n < m, an effective expedient may be the enlargement
of the input vector x by adding a deterministic zero (m − n)-vector. In this way,
Eq. (3.1a) can be rewritten as:

(3.6) z = h(x̄) =

(

h̃(x)

ĥ(x) + x̂

)

; x̄ =

(

x

x̂

)

where x̂ is the deterministically zero vector, while h̃(·) and ĥ(·) are the sub-
vector functions, of order n and (m − n), respectively, composing h(·). Hence,
the joint PDF of the augmented vector x̄ is given by:

(3.7) px̄(x̄) = px(x)δ(x̂),

δ(x̂) being the (m − n)-dimensional Dirac delta function placed at x̂ = 0. The
inverse relationships given into Eq. (3.1b) can be rewritten in the form:

(3.8) x̄ =

(

x

x̂

)

=

(

g̃(z̃)
ĝ(z)

)

; g̃(·) = h̃−1(·); ĝ(z) = ẑ − ĥ(g̃(z̃))

where the expression of the direct transformation given in Eq.(17a) has been
considered and where the inverse expression of Eq.(19b) is assumed to exist. At
this point, following the same procedure as that used for finding the classical
PTM expression, it is not difficult to find the following relationship between
the joint PDF of z and the joint PDF of x:

(3.9) pz(z) = |det[Jg̃(z̃)]|px(g̃(z̃))δ(ẑ − ĥ(g̃(z̃))).

Other useful expressions of the PTM can be found in the literature [28, 29].
A very interesting one is that based on the properties of the multidimensional
Dirac delta function and that has the following form:

(3.10) pz(z) =

+∞
∫

−∞

· · ·
+∞
∫

−∞

px(y)δ(z − h(y))dy1 · · · dyn.

This relationship is particularly useful when the random response variables of
interest are considerably less numerous than the elements of z. In particular,
if only the element zj = hj(x) must be probabilistically characterized, then
Eq. (3.10) is reduced as follows:

(3.11) pzj (zj) =

+∞
∫

−∞

· · ·
+∞
∫

−∞

px(y)δ(zj − hj(y))dy1 · · ·dyn
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while, if the joint PDF of the elements zj = hj(x) and zk = hk(x) is required,
the following relationship can be used:

(3.12) pzjzk
(zj , zk) =

+∞
∫

−∞

· · ·
+∞
∫

−∞

px(y)δ(zj − hj(y))δ(zk − hk(y))dy1 · · · dyn.

It is important to note that Eqs. (3.10)–3.12) show the useful property of
not requiring the knowledge of the inverse transformation g(·) = h−1(·), that,
in some cases, can represent a very hard task. Moreover, they do not depend
on the number of elements of z. On the contrary, they have the drawback of
requiring n integrations with respect to the component of x. This last drawback
is overcome when hj(x) is a linear combination of the components of x, that
is when it is possible to write hj(x) = hT

j x, hj being the n-vector collecting
the coefficients of the combination. In fact, in this case, the characteristic function
of zj can be expressed as:

(3.13) Mzj (ω) =
1

2π

∞
∫

−∞

pzj (zj) exp(−ωzj)dzj

=
1

2π

∞
∫

−∞

[

+∞
∫

−∞

· · ·
+∞
∫

−∞

px(y)δ(zj − hT
j y)dy1 · · ·dyn

]

exp(−ωzj)dzj

that, by using the properties of the Dirac delta function, becomes:

(3.14) Mzj (ω)

=
1

2π

+∞
∫

−∞

· · ·
+∞
∫

−∞

px(y) exp(−ωhT
j y)dy1 · · ·dyn = (2π)n−1Mx(θ)θ=ωhj

.

This last equation is important because directly relating the characteristic
functions of the input x and of the output zj , without the necessity of any
integration.

If the joint characteristic function of the two response variables zj and zk is
required, it is easy to show that the following relationship holds:

(3.15) Mzjzk
(ωj , ωk) = (2π)n−2Mx(θ)θ=ωjhj+ωkhk

.

The extension to more variables is straightforward.
Once that the characteristic functions are evaluated the corresponding PDF

can be obtained by Fourier anti-transform operations.



324 G. Falsone, R. Laudani

4. Proposed approach

In this section the EPDM and the PTM approaches are combined in order
to find the exact response PDFs of statically determinate structural systems
characterized by mechanical and/or geometrical uncertainties.

In Section 2 it has been evidenced that the APDM method, if applied to stat-
ically determinate structures, really is an EPDM, in the sense that the following
expansion is exact:

(4.1) u(α) = u0 +
m

∑

i

ui(αi) = u0 + uα(α).

Hence, the objective of this section is the evaluation of the joint PDF puα
(uα),

once that the joint PDF pα(α) is assigned. As seen in Section 2, it is possible to
express the j-th element of ui(αi) as uij = hij (αi), where the form of the function
hij (·) essentially depends on the number of principal deformation modes related
to the FE-type used for the structural discretization (Eqs. (2.7)–(2.10)). In any
case, the required inverse function gij (·) ≡ h−1

ij
(·), can be always obtained in

a closed form. For example, for np = 1 and np = 2 the inverse relationships are
given by:

(4.2)

αi =
uij

aij − bijuij

;

αi =
aij − cijuij ±

√

∆ij

2(bij − dijuij )
;

∆ij = (c2
ij − 4dij )u

2
ij + (4bij − 2aijcij )uij + a2

ij .

Equation (4.2b) shows that the inverse function has two values. In all the
cases in which the inverse shows np solutions, the PTM can be still applied, but
the sum of the PDFs corresponding to the various solutions must be considered,
that is:

(4.3) puij
(uij ) =

np
∑

k=1

|J
g
(k)
ij

(uij )|pαi(g
(k)
ij

(uij )).

If the probabilistic characterization of the structural response component uj is
required, the application of the EPDM method implies that:

(4.4) uj = u0j +

m
∑

i=1

uij (αi) = u0j + 1Tuj(α) = u0j + uαj (α)

where 1 is the m-vector whose components are all equal to one and uj(α) is
the m-vector whose i-th element is uij (αi). The joint PDF of uj(α) is obtained
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by the application of the PTM and it has the following form:

(4.5) puj (uj) = |det[Jgj (uj)]|pα(gj(uj)).

It is easy to verify that the Jacobian Jgj is diagonal because the inverse func-
tions gij (·) depends only on the response component uij . Hence, the following
expression is true:

(4.6) |det[Jgj (uj)]| =
m
∏

i=1

∣

∣

∣

∣

dgij (uij )

duij

∣

∣

∣

∣

.

Equations (4.5) and (4.6) give the joint PDF of the elements of the vector
uj(α). In order to determine the joint PDF of uαj (α), Eq. (4.4) must be taken
into account. It establishes a relation between the m-vector uj(α), whose joint
PDF is given into Eq. (4.5), and the response component uαj (α). For evaluat-
ing the PDF of this last quantity the most efficient approach is the version of
the PTM based on the use of the characteristic functions. In particular, the ap-
plication of Eqs. (3.14) and (4.4) gives the following result:

(4.7) Muαj
(ω) = (2π)m−1Muj (θ)θ=ω1.

Muj (θ) being the joint characteristic function of the vector uj that can be ob-
tained by the Fourier transform of puj (uj). In this way, the probabilistic char-
acterization of the response quantity uαj , and, hence, of uj , is complete.

If the joint probabilistic characterization of the two response components
uj and uk is required, the application of the approach above described requires
the evaluation of the joint characteristic function Muαj uαk

(ω1, ω2), that it is easy
to express as follows:

(4.8) Muαj uαk
(ω1, ω2) = (2π)m−2Mujuk

(θ1, θ2)θ1=ω11, θ2=ω21.

The joint characteristic function Mujuk
(θ1, θ2) is the double Fourier transform

of the joint PDF pujuk
(uj ,uk) that can be obtained by applying the PTM to

a transformation law in which the m-vector α is the input and the two m-
vectors uj and uk represent the output. Hence, in this case, the number of input
elements is smaller than the number of output elements and the version of PTM
expressed into Eqs. (3.6)–(3.9) can be used. This implies that the expression of
pujuk

(uj ,uk), particularizing Eq. (3.9) to this case, is given by:

pujuk
(uj ,uk) = |det[Jgj (uj)]|pα(gj(uj))δ(uk − hk(gj(uj)))(4.9)

=

m
∏

i=1

∣

∣

∣

∣

dgij (uij )

duij

∣

∣

∣

∣

pα(gj(uj))δ(uk − hk(gj(uj))).

This approach can be generalized to response higher order probabilistic charac-
terizations.
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5. Numerical examples

The numerical examples reported in this section aim to verify and highlight
the fundamental statement of the present work showing that, for statically de-
terminate discretized uncertain structures, the joint use of the EPDM and of
the PTM allows to obtain the exact response PDFs. It is assumed that, in all
the considered examples, the structural uncertain parameter is represented by
the Young modulus of each FE in which the structural system has been dis-
cretized. In particular, the Young modulus of the generic FE is modelled as
a random variable with the constant mean value E0 and fluctuation αi, accord-
ing to the expression:

(5.1) Ei = E0(1 + αi), i = 1, 2, . . . , m,

m being the number of the FE used in the discretization. The examples re-
ported have been chosen in such a way that the corresponding FE typology are
characterized by a different number of principal deformation modes, np.

5.1. Bar type FE

For this FE typology, two examples of statically determinate structural sys-
tems are taken into account. The truss-structure represented in Fig. 1 is first
considered. It is characterized by the following geometrical and mechanical deter-
ministic parameters: L = 5 m, H = 4 m; all the bars have the same cross-sections
area (4× 10−2 m2) and a random Young modulus defined as in Eq. (4.8), where
i = 1, . . . , 9 and E0 = 2.10×108 kN/m2. The random variables αi are assumed to

Fig. 1. The truss-structure.
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be uniformly distributed in the range [−0.30, 0.30]. The truss-structure is forced
by static deterministic forces: a force F = 10 kN applied to the nodes B and D,
and a force 2F applied to the node C.

The results presented here confirm that the proposed approach leads to
the exact expression of u(α), and, hence, by applying Eq. (4.7), to the exact
PDF of any responses of interest. The PDFs of some nodal displacements have
been obtained, comparing the results obtained by the proposed approach and
those by Monte Carlo simulations (for these last ones 5× 105 samples have been
considered). In Fig. 2, the PDF of the vertical displacement of node C, puC

y
(uC

y ),
and the PDF of the horizontal displacement of node E, puE

x
(uE

x ), are, respectively,
reported.

a)

b)

Fig. 2. PDF of the vertical displacement of node C (a) and of the horizontal displacement of
node E (b).
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Successively, the statically determined beam represented in Fig. 3 is taken
into account. Its length is L = 8 m, while its cross section is rectangular with
area equal to 1.5 × 10−3 m2. The external actions are a uniformly distributed
axial load with intensity q = 150 kN/m and a static deterministic axial force
applied to the free end with intensity F = qL. Due to the load characteristics,
the discretization can be made by means of bar-type FEs. In particular, four
FE of equal length have been used. The random Young modulus is defined as in
Eq. (4.8), with i = 1, . . . , 4 and E0 = 3 × 107 kN/m2.

Fig. 3. Cantilever beam (bar type FE).

In Fig. 4 the PDF of the horizontal displacement of the free end is reported
for the case that the random variables αi are assumed to be uniformly distributed
in the range [−0.40, 0.40]. By inspection of Fig. 4 the goodness of the compar-
ison is clear, even if a high level of uncertainty is present in the beam Young
modulus.

Fig. 4. PDF of the horizontal displacement of the free end.

5.2. Beam-type FE

The statically determinated cantilever beam under the deterministic trans-
versal load q = 50 kN/m is now considered. The beam (Fig. 5) differs from
the previous one only for the condition of load and it is characterized by an inertia
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Fig. 5. Cantilever beam (beam-type FE).

a)

b)

Fig. 6. PDF of the vertical displacement (a) and rotation (b) of the cantilever free end;
uncorrelated random variables αi.
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moment equal to I = 3.125 × 10−3 m4. Two different distributions of random
variables αi are examined: firstly, they have been assumed to be zero-mean,
Gaussian, independent and defined by a variance σ2 = (0.20)2; in the second
case, the same random variables are considered as correlated following the given
correlation law:

(5.2) ρ = exp

(

−∆x

λ

)

where ∆x is the distance between two points along the beam axes and λ is
the correlation length, assumed in this example equal to λ = 0.8L. The dis-

a)

b)

Fig. 7. PDF of the vertical displacement (a) and rotation (b) of the cantilever free end;
correlated random variables αi.
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cretization is made by means of four beam-type FEs of equal length. The mid-
point method is adopted to discretise the random field by four random vari-
ables αi, so that a random variable is representative of the fluctuation of the
Young modulus in each element.

By the application of the EPDM + PTM approach and paying attention
to the fact that the beam-type FE is characterized by np = 2, it is possible
obtain the exact PDF of any transversal displacement. The PDFs of the vertical
displacement and of the rotation of the free end section are given in Figs. 6
and 7 for both the cases of uncorrelated and correlated random variables αi.
Once again the EPDM + PTM approach is compared with the MCS applied in
Eq. (2.1), performed by 5 × 105 samples. Even in this example, the results are
practically overlapped.

It is important to note that the proposed gives the exact results even when
the uncertainties are strongly correlated, as it must be, due to the fact that
the correlation properties of the uncertainties have no influence on the funda-
mental steps of the EPDM + PTM approach, but only on the definition of
the input joint PDF.

5.3. Two-dimensional FE

As the last example, the two-dimensional panel under plane stress of Fig. 8
has been analysed utilising the two-dimensional FE. The two-dimensional ele-
ment considered herein is the simple triangular element with 6 DOF (each node
has two degrees of freedom, the displacements ux and uy). The following data
are assumed as known (deterministic) input parameters: the length is L = 6 m,
the height is H = 3 m, the Poisson coefficient is equal to 0.2 and the external
actions are two uniformly distributed loads with intensity p = q = 1000 kN/m.
The Young modulus is uncertain and modelled by a two-dimensional stochastic

Fig. 8. Two-dimensional panel.
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field with constant mean value E0 = 3 × 107 kN/m2 and expressed as:

(5.3) E = E0(1 + α(x, y)).

The zero mean two-dimensional stochastic field α(x, y) is assumed as Gaus-
sian with the squared exponential covariance function:

(5.4) Σα(|∆x|) = σ2ρ(|∆x|) = σ2 exp

(

−|∆x|
λ

)2

where |∆x| is the distance between two points of the field, σ2 is the variance and
λ = 0.2H is the correlation coefficient. The midpoint method is adopted to dis-
cretise the random field by eight random variables αi, so that a random variable

a)

b)

Fig. 9. PDFs of the vertical (a) and horizontal (b) displacement of node 8; correlated
random variables αi.
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is representative of the fluctuation of the Young modulus in each element. Three
natural deformations are present in the generic element, hence, for this example
np = 3.

The PDFs of the horizontal and vertical displacement of the node 8, re-
spectively, are depicted in Figs. 9, according to the proposed method and for
σ2 = (0.1)2. The comparison has been made with respect to the classical Monte
Carlo simulation, performed by 2 × 105 samples.

In order to confirm that the correlation assumptions have no influence on
the capability of the proposed approach to give the exact response PDF for stat-
ically determined uncertain structures, the same panel before studied is consid-
ered under the assumption of uncorrelated random variables αi. The confirming
results are represented in Figs. 10.

a)

b)

Fig. 10. PDF of the vertical (a) and horizontal (b) displacement of node 8. Uncorrelated
random variables αi.
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6. Conclusions

The goal of identifying a strategy for the evaluation of the exact response
PDF of discretized statically determinate uncertain structures has been reached.
This thanks to the application of the EPDM, which gives exact results if ap-
plied to the statically determinate structures, coupled with the application of
the PTM able to give explicitly the response PDF once that the relationships
between the response random variables and the uncertainty random variables are
explicitly given. When the uncertain structure is discretized by a FE approach,
attention must be paid to the FE type used because it determines the number np

of principal deformation modes influenced by each uncertainty random variable
and this number influences the form of the expressions to be used in the analysis.
It is important to note that this is a peculiar property of the APDM approach
that cannot be stressed if other projection methods are used for discretizing
the uncertainty random fields.

At last, the applications have confirmed the prevised results, regardless of
the level of correlation of the uncertainty random variables.
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