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The combined stochastic-deterministic approach, which may be applied to
the numerical analysis of a wide range of scalar elliptic problems of civil engineer-
ing, is presented in this paper. It is based on the well-known Monte Carlo concept
with a random walk procedure, in which series of random paths are constructed. Ad-
ditionally, it incorporates selected features of the meshless finite difference method,
especially star selection criteria and a local weighted function approximation. The ap-
proach leads to the explicit stochastic formula relating one unknown function value
with all a-priori known data parameters. Therefore, it allows for a fast and effec-
tive estimation of the solution value at the selected point(s), without the necessity
of generation of large systems of equations, combining all unknown values. In such
a manner, the proposed approach develops and extends the original standard Monte
Carlo one toward analysis of boundary value problems with more complex shape ge-
ometry, natural boundary conditions, non-homogeneous right-hand sides as well as
anisotropic and non-linear material models.
The paper is illustrated with numerical results of selected elliptic problems, including
a torsion problem of a prismatic bar, a stationary heat flow analysis with anisotropic
and non-linear material functions, as well as an inverse heat problem. Moreover,
the appropriate coupling with other deterministic methods (e.g., the finite element
method) is considered.
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1. Introduction

Elliptic problems of mechanics are usually investigated by means of meth-
ods of deterministic type. In these (hard-computing) methods, a problem domain
(line in 1D, plane in 2D, surface in 3D) is discretized by a set of nodes and/or
elements as well as degrees of freedom. Moreover, the approximation of the un-
known function, as well as its derivatives, is required. Degrees of freedom con-
stitute primary unknowns to the final system of algebraic equations, which are
generated by means of appropriate techniques, depending on the method’s na-
ture and problem formulation (collocation, functional minimisation, variational
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principle). The system of equations yields one unique solution (providing the
well-posedness of a problem), corresponding to the stationary load case. Among
those deterministic solution approaches, one may distinguish the finite differ-
ence method (FDM [1, 2]), finite element method (FEM, [3]), boundary element
method (BEM, [4]) or a wide group of meshless methods (MM, [1, 5–8]).

However, stochastic (soft-computing) methods of analysis may be applied
as well. Their characteristic feature is that they may take data randomness
into account, thus leading to the entire family of solutions, out of which one
has to select the optimal solution. Therefore, in most cases, the original elliptic
boundary value problem has to be reformulated into a new one, namely the non-
linear optimisation problem or a set of stochastic differential equations. These
new problems may be investigated by means of various stochastic approaches,
namely the Monte Carlo (MC, [9, 10, 11]) method, fuzzy sets (FS, [12]), arti-
ficial neural networks (ANN, [13]) or genetic and evolutionary algorithms (GA
and EA, [14, 17, 15]). Nevertheless, auxiliary boundary value problems, produc-
ing the family of admissible solutions, are usually solved by means of standard
deterministic methods. Therefore, numerous combinations of deterministic and
stochastic methods exist, for instance the stochastic BEM tailored for piezoelec-
tric problems [16] or the coupled FE-GA method for solution of inverse problems
(e.g., static load determination [17], parameters identification [18], topology op-
timisation [15]). In this paper, the special attention is laid upon the Monte
Carlo method with a random walk (RW) of a meshless type. Although it rather
constitutes a stochastic approach, it incorporates selected features typical for
deterministic meshless methods, especially the meshless finite difference method
(MFDM, [1, 8, 19–22]).

The Monte Carlo idea (developed by S. Ulam and J. von Neumann, [9, 10])
may be applied to variety of algebraic and differential problems in which the so-
lution determination may be troublesome or even impossible using analytical
and deterministic numerical tools. Although subsequent Monte Carlo methods
vary, according to their applications, they all tend to follow a particular pattern,
namely: definition of a domain of possible inputs; random generation of inputs on
the basis of a probability distribution over the domain; performance of a deter-
ministic computation on the inputs and, aggregation of the results. Eventually,
the number of (relevantly defined) successful inputs, related to the number of all
inputs and scaled by the dimensional quantity (length, area, volume, function
value) allows for the estimation of the unknown solution, providing the num-
ber of inputs is large enough. Applications of this simple Monte Carlo concept
may concern, for instance, eigenvalues estimation [23], solution of linear systems
of equations [24–26] numerical integration in multidimensional spaces [27, 28] or
numerical solution of differential equations [29–36, 38, 39] at the selected internal
point(s) of a problem domain, which is the focal point of this research.
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The oldest works on this last subject [29, 30, 31] focus on the purely stochastic
estimation of the solution of the Laplace differential equation at any internal point
of the rectangular grid of mutually perpendicular lines. Random sampling of inputs
is based upon the so called random walks. A single random walk describes a path
that consists of a succession of random steps on this rectangular grid. Each path
starts at the same internal point of a domain (where solution of Laplace equation
is unknown) and terminates at boundary points (where this solution is known
from boundary conditions), building the net of boundary indications (or boundary

hits). The probability of each random step depends only on the state attained in
the previous step (a Markov chain). The total sum of all numbers of boundary
indications, scaled by a known solution at boundary points and related to the
entire number of all random walks, estimates the solution of the Laplace equation
at this particular internal point. It has been proved [30, 11] that this estimation
converges with the finite difference solution obtained on the same grid of points,
providing the number of random walks is large enough (the Monte Carlo concept).

Random walks may be classified into several different types. In the simplest
case, both move directions and a step size of each randon step are pre-defined
(e.g., in case the regular grid of points is used), leading to the fixed random
walk [11, 29–31, 40]. However, a rectangular grid of points may lead to large
discretization errors in the case of more complex geometries, including, for in-
stance, curvilinear edges, voids, corners etc. Therefore, several other types of
random walks were developed, for instance semi floating random walk (step size
is fixed, though the move direction is not limited, [41, 42]), full floating random
walk (step size is not preassigned and changes at each step whereas the move
direction is not limited, [37, 40–42]) or a meshless random walk [11], considered
here. Furthermore, a continuous random walk minimizing the solution error has
been proposed [33, 43, 44] along with the self-adaptive, grid-free algorithm, with
improved solution smoothness and its application to diffusion equations [34]. The
state-of-the-art of the MC/RW approach, as well as its recent developments (up
to date) may be found in [35, 38, 39, 45, 46].

Similar stochastic concepts were successfully applied in variety of methods
based upon the reformulation of the original boundary value problem to integra-
tion problem of stochastic equations [47, 48], including the well-known Feynman–
Kac formula [49, 50]. They may be interpreted as methods for the evaluation of
functional integrals of a specified continuous form. However, their practical ap-
plication is limited by the existence of the explicit closed form solution formula.
The relevant numerical solution approach is based upon the stochastic approxi-
mation of these integrals [48], which incorporates both the Monte Carlo method
and the random walk procedure.

The proposed meshless random walk procedure is based upon several fea-
tures of the MFDM, which uses rather totally arbitrarily irregular clouds of
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nodes, than structured meshes (sets of nodes and elements). Therefore, all mod-
ifications of the current discretization (e.g., nodes shifting, removal, adding) may
be performed without any difficulties, much more effectively and faster than in
the FEM. Since there is no nodes connectivity, the MFDM (and other meshless
methods) work well with problems with complex geometries, moving boundary,
concentrated forces, crack propagation. Moreover, a-priori refined meshes and
clouds of nodes may be applied, due to the complexity of load functions. How-
ever, several principles of the original MC/RW approach have to be reformulated
and extended. First of all, potential directions of each subsequent move have to
be selected according to appropriate direction selection criteria. Moreover, selec-
tion probabilities may be determined by difference schemes generated by means
of the moving weighted least squares approximation (MWLS, [51, 52, 1, 8, 22]) of
the unknown function. Additionally, those probabilities as well as the final MC
formula should take into account the material anisotropy, boundary conditions
of mixed types as well as non-homogeneous right-hand sides (load intensity). In
such a manner, the proposed meshless Monte Carlo method may be considered
as the combined deterministic-stochastic approach. Its deterministic nature is
reflected by the following features, namely

– it does not require any additional reformulation of the original boundary
value problem into a stochastic one,

– it may be applied to complex geometries and elliptic problems in more
general form, due to the lack of a mesh structure and nodes regularity
requirements,

– it takes into account all a-priori given data (e.g., load parameters, material
coefficients, domain dimensions),

– it may be coupled with any arbitrary methods of deterministic and stochas-
tic types, for instance, coupling MC/RW with the FE framework for analy-
sis of the same problem, though in several subdomains; in each subdomain,
a different method (e.g., in accordance with accuracy requirements and ge-
ometry limitations) is applied separately, followed by an additional integral
over a domain interface, enforcing a solution continuity.

On the other hand, in the random walk technique, both step size and move di-
rections are variable instead of being fixed, thus effectively adapting to a local
distribution of nodes, curvilinear geometry and an equation type. Moreover, the
meshless Monte Carlo approach delivers an explicit relation of a stochastic type,
relating the output (an unknown function) and the input data (e.g., load param-
eters) at any arbitrary point of the domain; therefore it is especially convenient
in problems in which the function values have to be determined multiple times
(e.g., non-linear problems, solved in incremental-iterative manner (e.g., by means
of simple iteration method or the Newton–Raphson approach), non-stationary
problems, inverse problems). Finally, it is a very simple and fast solution ap-
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proach, especially when the high accuracy of a solution is not among the most
important aspects (e.g., a preliminary estimation of a solution for forthcoming
iterative procedures).

The paper is organized as follows. Section 2 evokes the classic original
MC/RW approach for Laplace equations, on the rectangular grid of points. Sec-
tion 3 recalls the most important aspects of the proposed MC with meshless
RW, discussed in [11] in more detailed manner. Section 4 is devoted to MC/RW
algorithms for torsion problem of a prismatic bar. In Section 5, stationary heat
flow problems, with anisotropic material functions, are investigated. In Section 6,
heat problems with a non-linear material function are taken into account. Sec-
tion 8 deals with the MC/RW formulation for inverse heat problems. Eventually,
Section 7 presents a method coupling on the domain partitioned into several dis-
joint subdomains. It has to be stressed that the application of the MC/RW to
problems, discussed in the last three sections, is reported here for the first time
ever. The paper is briefly concluded and directions of future work are mentioned.

2. Standard Monte Carlo method with fixed random walk technique

The following 2D Laplace equation is considered

(2.1)
∂2F

∂x2
1

+
∂2F

∂x2
2

= 0 in Ω

with essential boundary conditions

(2.2) F = F̄ (x1, x2) on ∂Ω,

where Ω = {x = (x1, x2)} ∈ ℜ2 is the problem domain, ∂Ω - its boundary,
F : (x1, x2) ∈ Ω → ℜ is the unknown C2 scalar function, with given values
F̄ (x1, x2) at every boundary point. Let us assume that the grid of mutually
perpendicular, n1 horizontal and n2 vertical lines, was generated, forming a mesh
Ωh ⊂ Ω, consisting of n = n1 × n2 regularly spaced points (see Fig. 1, in which
white dots indicate internal nodes where random walk begins/proceeds, whereas
red dots are boundary nodes, where random walk terminates). Function values
Fk at those points (k = 1, . . . , n) constitute the set of unknowns, while values
at all boundary nodes (located on ∂Ωh = Ωh ∩ ∂Ω) are known. The following
stochastic procedure may be adopted, in case only one function value (e.g., at
domain centre point) is to be determined in a relatively fast manner and with
reasonable accuracy:

1. Initiate the subsequent random walk starting from the given internal node
xk =

(

x1(k), x2(k)

)

, randomly selecting one of the fourth equally possible
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Fig. 1. Regular mesh of points with configuration of nodes (FD star) for a fixed random
walk.

direction senses (north, east, south or west). Move to the closest neigh-
bouring node, located in the selected direction (Fig. 1), and repeat the
random walk from this new node as long as the first boundary node xr is
reached. Evaluate the function value at this boundary node

(2.3) F̄r = F̄ (xr)

and modify the number of its indications N
(e)
r by one (we initialize all N

(e)
r

with zeros).

2. Return to the node of interest xk. Repeat the entire procedure described
above until all N random walks are performed (N is the assumed total
number of random walks).

3. Evaluate estimation of the function value Fk, according to the Monte Carlo
concept (in which reaching the boundary node is treated as a successful
input), by means of the simple formula

(2.4) Fk ≈ 1

N

n(e)
∑

r

F̄rN
(e)
r

where n(e) denotes the number of all boundary nodes with essential bound-
ary conditions (i.e., all boundary nodes in this case).

It has been proved [30] that this stochastic formula (2.4) corresponds to
the finite difference (FD) solution, obtained for the considered regular mesh of
nodes Ωh. The proof is based upon the similarity of the stochastic system of
equations to the one obtained by the standard FD method. In this manner,
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the estimated function value (2.4) is convergent to the FD solution providing
we assume the large number of random walks N . Therefore, N has the crucial
influence on the accuracy of estimation (2.4). In the simplest cases, the Monte
Carlo solution error may be upper-bounded by the non-linear function of N ,
namely

(2.5) e = ‖Fk − F̄k‖ <
1√
N

,

where F̄k is the exact solution of (2.1) at xk. This formula is valid providing
there is no dimensionality dependence (i.e., a mesh size h has no influence on
the solution estimation (2.4)). In other words, limN→inf Fk = F̄k. It is important
to notice that, unlike in deterministic methods, the estimate of the error (2.5)
is not a strict error bound due to the fact that the random walks may not
reach all boundary nodes with an appropriate frequency (especially for small N).
Moreover, in case of differential equations in a more general form, discussed in the
following sections, the relevant solution estimation becomes dependent on a mesh
size h (constant for regular meshes, variable for irregular ones). In other words,
limN→inf Fk = F

(FD)
k and limh→0 F

(FD)
k = F̄k, where F

(FD)
k is the corresponding

finite difference (FD) solution at xk. Therefore, limN→inf, h→0 Fk = F̄k. The
proper relation between N and h is usually determined a-posteriori [42, 11], by
performing series of tests for various N with fixed h and controlling the stochastic
error.

The standard MC method with a fixed RW technique exhibits numerous ad-
vantages, for instance, an existence of an explicit formula for an approximate
solution, no curse of dimensionality, algorithm simplicity or low computational
cost, which may be reflected in a potential parallelization of computations, since
random walks may be performed independently from each other. However, it is
limited to regular grids of points, second order differential equations of Laplace
type (no heterogeneity in the right-hand side function), constant material coef-
ficients as well as essential boundary conditions. However, the most important
disadvantage seems to be an inability of considering problem domains with more
complex geometries (e.g., with curvilinear edges and rounded corners, Fig. 1).
Since one is able neither to generate a rectangular mesh with a reasonable mesh
size nor to use local nodes refinements, the discretization error, resulting from
∂Ωh ≈ ∂Ω, would be very large in that case.

3. Monte Carlo method with meshless random walk technique

In order to overcome drawbacks and limitations of the standard MC method
with a fixed random walk technique, the fundamental principles of the approach
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have to be reformulated and extended. Those include: selection of potential move
directions, selection of probabilities of selection of the following move as well as
determination of the final MC formula. Since nodes may be distributed without
any a-priori imposed structure (mesh regularity, element mesh, no mapping re-
strictions), it would be convenient to apply selected features typical for meshless
methods (MM), especially the meshless FD method, which is one of the oldest
MM, and therefore possibly the most developed one.

3.1. Selection of move directions

A random selection of four mutually perpendicular direction senses, with
equal probabilities, which is natural for regular mesh, does not hold in case of
irregular clouds of nodes. New direction selection criteria have to be carried
out, taking advantage of the nodes’ irregular distribution. Let us consider the
determination problem of potential walk directions, starting from the central
node (k) towards selected nodes numbered (j(k)), and j(k) = 1, 2, . . . , m. Both
the total number of nodes (m + 1) in such a configuration (denoted as the
MFD star or MFD stencil in MFD analysis), and their distribution should be
assumed in such a manner that the resulting approximation scheme remains non-
singular and non-ill-conditioned. Thus, m is usually larger than it is required from
the order of differential operator (e.g., 6 nodes for 2D Laplace equation). The
simplest criterion is based upon the distance from (k) to (j) nodes only. In more
complex, 2D cross criterion [19, 21, 1, 8], the closest neighbourhood of node (k) is
divided into four zones. Each of four semi-axes is assigned to one of these zones.
A specified number of nodes (usually 2,3,4, depending on the derivatives’ order),
closest to the central node (point) is taken from every zone separately, thus the
number of nodes in the MFD star is always constant. When comparing results

Fig. 2. Cloud of nodes and results of two main criteria for star selection.
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obtained on the same cloud of nodes, for both a distance criterion (Fig. 2a) and
a cross criterion (Fig. 2b), it may be observed that nodes are more well-balanced
in the second case (i.e., the central node is located closer to the centre of gravity
of selected nodes, which produces less approximation error). Consequently, this
criterion was applied in all examples presented in this paper.

Regardless of the criterion applied, the resulting [(m + 1) × 2] matrix Sk,
representing a MFD star, contains numbers of nodes belonging to this star (first
column) as well as distances between a central node and all other nodes (second
column), usually sorted in an ascending order.

3.2. Selection of move direction probabilities

Consequently, equal probabilities of move direction, corresponding to the
standard MC/RW approach, do not hold for heterogeneous distribution of move
directions. Therefore, new rules have to be established, taking nodes irregularity
into account. The most intuitive concept is based upon the inverse proportion-
ality between a length measured between two nodes, located in a next move
direction, and the probability of its selection. In other words, the longer this
length is, the smaller the probability of its selection is. Such a concept may be
implemented if a weighted version of moving least square (MLS) approximation
is applied. The group of MLS methods is a typical approximation technique
for variety of meshless methods. However, the MWLS (weighted MLS version,
[51, 52, 1]), which is the most natural approximation technique for the MFD
method, additionally uses singular weight functions which enforce interpolation
properties of basis functions, despite its general approximation character (e.g.,
taking advantage of information overload). The MWLS constitutes a power-
ful tool, commonly applied to both generation of difference schemes [8, 22, 53]
and for post-processing purposes (including methods other than meshless, for
instance FEM, [54]).

Let us assume a configuration of nodes Sk, with the central node xk, consist-
ing of m other nodes xj(k) (representing move directions from k to particular j).
The local approximation Fk of a scalar function F , assigned to xk and at arbi-
trary x, may be formulated as follows

(3.1) F (x) ≈ Fk(xk,x) = p(xk,x) · DF (xk)

in which p is a known [1×s] vector of local interpolants (xk−x)l, l = 0, 1, . . . , p,
resulting from the Taylor series expansion of F at x with respect to xk, whereas
DF is an unknown [s × 1] vector of subsequent derivatives’ values at xk, up to
and including the approximation order p. Moreover, s is the number of Taylor
series components, corresponding to p, for instance s = 0.5(p + 1)(p + 2) in 2D
case. It should be stressed that FEM and other meshless methods use equivalent
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monomial notation [1, 5–7]. However, the Taylor series notation offers a simple
and convenient interpretation of degrees of freedom (as local derivatives’ values).
Moreover, the approximation error may be evaluated without any difficulties, by
the estimation of first neglected terms in (3.1).

Applying interpolation conditions at every node of Sk leads to the over-
determined system of m + 1 equations with s unknowns, namely

(3.2) P · DF (xk) = Fk

in which P = p(xk,xj(k)) is a [(m + 1) × s] matrix of local interpolants
(xk − xj(k))

l, j = 1, . . . , m + 1, l = 0, 1, . . . , p, whereas Fk is a [(m + 1) × 1]
vector of degrees of freedom of F , for instance, function values at every node
of Sk. Afterwards, the weighted error function

(3.3) I(xk) = (P · DF (xk) − Fk)
T · W2 · (P · W2 · DF (xk) − Fk)

is determined, in which W is a [(m + 1) × (m + 1)] diagonal weight matrix,
with weights at its main diagonal, assigned to each node of Sk, according to the
formula

(3.4) ωj(k) =
1

‖xk − xj(k)‖p+1 + ε

in which ε is a positive and relatively small real number, preventing from a divi-
sion by zero and corresponding to the assumed machine precision. Minimisation
of (3.3), in the least square sense, yields the final formula for DF , namely

(3.5) DF (xk) = Mk · Fk, Mk = (PT · W2 · P)−1 · PT · W2.

Here, Mk = M(xk) is a [s× (m + 1)] difference coefficients matrix. Values of all
derivatives included in DF as well as values of any arbitrary differential operators
of elliptic type (up to the assumed p-th order) may be composed by means of
appropriate rows of Mk, for instance

(3.6)

(

∂F

∂x1

)

k

= M<2>
k · Fk =

m
∑

j=0

Mk2,j · Fj(k),

(

∂F

∂x2

)

k

= M<3>
k · Fk =

m
∑

j=0

Mk3,j · Fj(k)

providing that p ≥ 1 and

(3.7)

(

∂2F

∂x2
1

)

k

= M<4>
k · Fk,

(

∂2F

∂x1x2

)

k

= M<5>
k · Fk,

(

∂2F

∂x2
2

)

k

= M<6>
k · Fk
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or

(3.8)
(

∂2F

∂x2
1

)

k

+

(

∂2F

∂x2
2

)

k

= (M<4>
k +M<6>

k ) ·Fk =
m

∑

j=0

(Mk4,j +Mk6,j ) ·Fj(k)

corresponding to the Laplace operator in (2.1), providing that p ≥ 2, etcetera.
Here, M<i>

k denotes the i-th row of Mk (i = 1, 2, . . . , s).
Eventually, selection probabilities may be derived from approximation

schemes (3.6)÷(3.8), dependently on the equation type, by rearranging terms
in order to have an explicit formula for the central value (i.e., a function value
at xk). For instance, for the Laplace operator (3.8), one has

(3.9) Fk ∼ −
∑m

j=1(Mk4,j + Mk6,j ) · Fj(k)

Mk4,0 + Mk6,0

whereas selection probabilities pj are multipliers of Fj(k), namely

(3.10) pj = −
Mk4,j + Mk6,j

Mk4,0 + Mk6,0

, j = 1, 2, . . . , m.

It should be noted that the total sum of all probabilities equals one (
∑m

j=1 pj

= 1), which is typical for elliptic difference operators. Therefore, selection of one
of possible m directions, determined by Sk, is a certain event.

3.3. The final Monte Carlo formula

Once potential directions of a next move (determined by Sk) and correspond-
ing selection probabilities (3.10) are known, general principles of a random walk
procedure remain unmodified. The path of a particular random walk is generated
as long as the first boundary node is reached, at which the solution value is given.
As a consequence, not all boundary nodes terminate a random walk, since there
may be natural boundary conditions posed, for which boundary derivatives are
given, instead of a solution itself. Moreover, one has to build relevant statistics
of indication numbers of all nodes reached along the path. It is required from the
point of view of the final MC formula, which may be considered as a stochastic
approximation of all a-priori known material and load parameters. Detailed for-
mulas are given in the following sections, devoted to selected direct and inverse,
linear and non-linear elliptic problems of mechanics.

4. Torsion problem of a prismatic bar

4.1. Problem formulation

The following mechanical problem is considered: find shear stress components
τx1 and τx2 , generated on the cross-section of a long prismatic bar, clamped
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at one end, subjected to a pure torsional load, given by a torsional angle θ.
Assume linearly elastic material, represented by the Kirchhoff modulus G. The
appropriate mathematical formulation is as follows: find such a function F ∈ C2

which satisfies the following Poisson elliptic equation

(4.1)
∂2F

∂x2
1

+
∂2F

∂x2
2

= −2Gθ in Ω

with essential homogeneous boundary conditions

(4.2) F = 0 on ∂Ω.

Here, the 2D problem domain Ω represents the considered cross-section and F
is a scalar Prandtl function whose derivatives yield stress components as well as
the total average stress, namely

(4.3) τx1 =
∂F

∂x2
, τx2 = − ∂F

∂x1
, τ =

√

τ2
x1

+ τ2
x2

.

4.2. Computational model

Let us assume that the arbitrarily irregular cloud of nodes Ωh ⊂ Ω has been
generated. The total number of nodes n may be decomposed as n = n(e) + n(i),
where n(e) is the number of boundary nodes (with an given function value
equal 0), whereas n(i) is the number of internal nodes (with an unknown function
value). Therefore, the Monte Carlo formula may be applied to any k-th inter-
nal node (k = 1, 2, . . . , n(i)), with assigned star Sk, consisting of m potential
directions of a next move, determined by means of a cross criterion. The MWLS
approximation allows for the determination of a difference coefficient matrix Mk.

Applying a collocation technique (i.e., fulfillment of a difference equation at
node) produces the following relation

(4.4)
m

∑

j=0

(Mk4,j + Mk6,j ) · Fj(k) = −2Gθ

at internal nodes, which yields selection probabilities in accordance with (3.10)
and the additional right-hand side component, namely

(4.5) Fk = −
∑m

j=1(Mk4,j + Mk6,j ) · Fj(k)

Mk4,0 + Mk6,0

− 2Gθ

Mk4,0 + Mk6,0

=
m

∑

j=1

pj · Fj(k) −
2Gθ

Mk4,0 + Mk6,0
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Furthermore, the final explicit formula for Fk may be found after summation
of indicators (N (i)

k ) of right-hand values (constant here), reached along all N
random paths as well as by applying the Monte Carlo estimation of probabilities
(pk ≈ N

(i)
k /N), namely

(4.6)















Fk ≈ −2Gθ

N

n(i)
∑

k

N
(i)
k

Mk4,0 + Mk6,0

, k = 1, 2, . . . , n(i),

Fr = 0, r = 1, 2, . . . , n(e).

Three situations may be distinguished, namely

1. The Prandtl function value is required at one point (node) only; in this
case, the formula (4.6) is applied only once.

2. Shear stress components (4.3) are required at one point (node) only; in
this case, the formula (4.6) is applied m times (m ≪ n), for each node
of a star, assigned to this point. Moreover, stress components (4.3) are
computed by means of numerical differentiation technique, namely using
the MWLS difference formulas from (3.6).

3. The Prandtl function values as well as shear stress components are required
at every cloud node; in this case, the formula (4.6) is applied for all n nodes,
separately.

It may be noted here that the simplified error estimation (2.5) may no longer
hold, as the function value in (4.6) depends on both the number of random
walks N and the cloud nodes dimension parameters, hidden inside difference
coefficients (Mk4,0 and Mk6,0). However, (2.5) may still be applied in order to
examine the convergence rate of (4.6) in terms of N .

4.3. Numerical examples

Two cross-section shapes are investigated, namely the simple rectangular one
and the L-shape domain. Both geometric shapes are presented in Fig. 3, along
with applied irregular clouds with n = 100 and n = 183 nodes, respectively.
The following data was assumed: G = 80 GPa, θ = π/4 and m = 9. First, one
function value F , at one selected node for each domain, indicated in Fig. 3 (xk =
[0.46447, 0.53659] and xk = [1.1309, 1.6472], respectively), was determined, on
the set of increasing number of random walks (N changes from Ninitial = 20, by
∆N = 200, to Nfinal = 10000). For each fixed random walk number, the relative
solution error was evaluated

(4.7) eN =
|Fk − F̄k|

|F̄k|
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Fig. 3. Cross-section domains applied for a torsional problem: a) rectangular cross-section,
b) L-Shape cross-section, with irregular distribution of nodes (100 and 183, respectively).

Fig. 4. Results of N -convergence study for a torsional problem a) Prandtl function
N -convergence for the rectangular cross-section, b) Prandtl function N -convergence for the
L-shape cross-section, c) stress components N -convergence for the rectangular cross-section,

d) stress components N -convergence for the L-shape cross-section.
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where F̄k is the high quality reference solution (here: the FD solution, corre-
sponding to (4.1) and obtained on one rank denser clouds of 246 and 312 nodes,
respectively). Error distribution is presented in Fig. 4a, b, in the form of N -
convergence graphs, for both domains separately. The simple error estimation
(2.5) is plotted as well, for comparison purposes.

Fig. 5. Results of MC method applied for the entire cloud of nodes with N = 1000
a) Prandtl function for the rectangular cross-section, b) average stress for the rectangular
cross-section, c) Prandtl function for the L-shape cross-section, d) average stress for the

L-shape cross-section.

Comparison of computational times t, required for the determination of one
unknown value for the considered L-shape domain, for MFDM and meshless MC
methods separately, is presented in Fig. 6a, with respect to the number of nodes n
in the cloud (for the fixed N = 1000). The total computational time for the FD
analysis includes the dynamic allocation of the coefficient matrix and right-hand
side vector, generation of approximation schemes and equations, fulfillment of
relevant matrix rows and vector elements, the solution of system of equations
(by means of optimally selected elimination method) as well as post-processing
of results, whereas for the MC analysis, selection probabilities are computed
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Fig. 6. Results for L-shape: comparison of computational time with respect to the number
of nodes, for MFDM and MC methods (a) and results of h-convergence test (b).

along with the construction of random walks as well as application of the final
MC formula. All computations were performed in Matlab R2014b, using 8 GB
RAM as well as 1.80 GHz processor. Although Matlab is rather a slow high-
level programming language (as the majority of its function bodies is loaded
from the disc files), the key issues here is the difference and the improvement
rate between FD and MC methods. Obviously, for each cloud of nodes, the MC
formula (4.6) has to be applied only once, while the full system of FD equations
has to be generated and solved. It may be observed that the MC curve t = t(n)
increases incomparably slower than the corresponding MFDM one. In case of
larger number of unknown values (e.g., for shear stress evaluation), the MC curve
may be scaled by this number (since all values may be computed separately),
unless the appropriate parallelization of computations is performed (e.g., using
many processors, with one processor for each unknown value). On the other hand,
the MC method becomes ineffective, providing the number of unknown values is
large (here, 25 unknown values on the cloud with n = 10000 nodes, computed
by the MC method, require as much time as the generation and solution of the
system of FD equations).

As it has been mentioned in the previous section, the solution error, caused by
the MC solution estimation (4.6), is affected by both the number of random walks
(N) and the discretization modulus (included in MWLS coefficients). The simple
h-convergence test, performed for L-shape domain (see Fig. 6b, with numerical
results and their linear regression), clearly shows that the stochastic type of error
prevails over the discretization error. Fixing N and increasing n only would lead
to no convergence at all. However, modifying both N and n in the same time may
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lead to the reasonable convergence rate, though with no monotonic tendency.
More details on the optimal N ÷ n(h) relation may be found in [45, 11].

Furthermore, convergence graphs of all components of shear stress (4.3), in
a respective relative error norm (4.7), calculated at the same nodes, are shown
in Fig. 4c, d. Very good results may be observed for the primary solution (the
Prandtl function). Results for derivatives (shear stress) are less accurate, though
reasonable. It has to be stressed that no a-priori convergence estimation formulas
for derivatives exist, for Monte Carlo methods and with respect to N . However,
as it has been reported for FD [1] and meshless methods [6, 8], numerical FD
derivatives are unconditionally super-convergent, namely their convergence rate,
with respect to the (average) mesh size, is the same, or larger than the corre-
sponding convergence of the primary solution.

Eventually, the MC formula was applied to the entire cloud of nodes, produc-
ing solution and derivatives values at all nodes. The fixed number of N = 1000
was used. This number may be justified twofold. First of all, it guarantees the
total solution error below the 3% (see Fig. 4a, b and Fig. 11a in which a se-
ries of over one dozen MC trials were performed for the same N , thus pro-
ducing the upper and lower bounds as well as the mean total error, limited
by the 3% assumed error level). Furthermore, the assumed N may be inter-
preted as the estimation of the optimal regularization parameter, determined
for the theoretical and experimental L-curves [56], built upon MC solutions.
Such a parameter guarantees the optimal balance between the N and the so-
lution error, namely the lowest solution error obtained for the lowest number
of N .

Results (graphs of Prandtl function F and average shear stress τ) are pre-
sented in Fig. 5. They are comparable with results obtained by means of FDM
[22, 11], though, as study of computational time indicates, the MC method be-
comes less effective for the larger number of unknown solution values.

5. Stationary heat flow analysis for anisotropic materials

5.1. Problem formulation

The following 2D stationary (time-independent) heat flow analysis problem
is considered (see Fig. 7), namely: find such a C2 temperature function T :
(x1, x2) ∈ Ω ⊂ ℜ2 → ℜ that fulfills the following the Poisson (elliptic) differential
equation for an anisotropic material

(5.1) − ∂

∂x1

(

λ1(x1, x2)
∂T

∂x1
(x1, x2)

)

− ∂

∂x2

(

λ2(x1, x2)
∂T

∂x2
(x1, x2)

)

= f(x1, x2) in Ω
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with the appropriate boundary conditions of essential (Dirichlet) type

(5.2) T (x1, x2) = T̄ (x1, x2) on ∂Ωe

and natural (Neumann) type

(5.3) λn(x1, x2)
∂T

∂n
(x1, x2) = q̄(x1, x2) on ∂Ωn

Fig. 7. Cloud of nodes with configuration of nodes (MFD star) for a meshless random walk,
for the direct heat problem.

The following variables are introduced, namely
– λ1 = λ1(x1, x2) – variable positive conductivity coefficient in x direction

[J/(m · s · ◦C)],
– λ2 = λ2(x1, x2) – variable positive conductivity coefficient in y direction

[J/(m · s · ◦C)],
– f = f(x1, x2) – intensity of heat generation inside the domain Ω, [J/(m3·s)],
– T̄ = T̄ (x1, x2) – known temperature, ascribed to ∂Ωe, [◦C],
– λn = λn(x1, x2) – variable conductivity coefficient in a normal direction,

outward to boundary,
– q̄ = q̄(x1, x2) – known heat flux, in a normal direction (represented by

a versor n = [n1, n2]) to ∂Ωn, [J/(m2 · s)].
Similarly as in the torsion problem, the primary temperature function may be
differentiated yielding components of the heat flux vector q = [q1, q2] and the
total average flux q, namely

(5.4) q1 = −λ1
∂T

∂x1
, q2 = −λ2

∂T

∂x2
, q =

√

q2
1 + q2

2.

Arguments (x1, x2) of T , λ1 and λ2 functions were omitted, for the sake of
simplicity.
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5.2. Computational model

Function values at all n(i) internal nodes xk as well as at all n(n) nodes xr

located on ∂Ωn, constitute the set of n(i) + n(n) unknowns. The star configura-
tions Sk and Sr as well as difference coefficient matrices Mk and Mr have to be
determined in a standard manner. However, in order to apply the difference ap-
proximation schemes (3.7) and (3.6) to (5.1) and (5.3), respectively, the equation

Fig. 8. Domains applied for a direct heat problem a) rectangular cross-section, b) L-Shape
cross-section, with irregular distribution of nodes.

Fig. 9. Results for L-shape: results of N -convergence test (a) and comparison of
computational time with respect to the number of nodes, for MFDM and MC methods (b).
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(5.1) has to be modified to the following form

(5.5) −∂λ1

∂x1

∂T

∂x1
− λ1

∂2T

∂x2
1

− ∂λ2

∂x2

∂T

∂x2
− λ2

∂2T

∂x2
2

= f.

Derivatives of λ1 and λ2 may be evaluated analytically (assuming λ1 and λ2 are
differentiable functions) or numerically (in case material parameters are defined
by a discrete set). Collocation technique applied to (5.5) at xk ∈ Ω and (5.3) at
xr ∈ ∂Ωn yields the following relations

(5.6)



















































Tk =
m

∑

j=1

pjTj(k)

− fk

∂λ1

∂x1

∣

∣

∣

∣

k

Mk2,0 + λ1|k Mk4,0 +
∂λ2

∂x2

∣

∣

∣

∣

k

Mk3,0 + λ2|k Mk6,0

, xk ∈ Ω,

Tr =
m

∑

j=1

pjTj(r) +
q̄r

λ1|r n1|r Mr2,0 + λ2|r n2|r Mr3,0

, xr ∈ ∂Ωn,

in which

fk = f(xk), q̄r = q̄(xr), λ1|r = λ1(xr), λ2|r = λ2(xr), λ1|k = λ1(xk),

λ2|k = λ2(xk),
∂λ1

∂x1

∣

∣

∣

∣

k

=
∂λ1

∂x1
(xk),

∂λ2

∂x2

∣

∣

∣

∣

k

=
∂λ2

∂x2
(xk) , n1|r = n1 (xr) , n2|r = n2 (xr) , n = [n1, n2]

is the versor normal to the boundary ∂Ωn. Selection probabilities are defined as

(5.7) pj =







































−

∂λ1

∂x1

∣

∣

∣

∣

k

Mk2,j + λ1|k Mk4,j +
∂λ2

∂x2

∣

∣

∣

∣

k

Mk3,j + λ2|k Mk6,j

∂λ1

∂x1

∣

∣

∣

∣

k

Mk2,0 + λ1|k Mk4,0 +
∂λ2

∂x2

∣

∣

∣

∣

k

Mk3,0 + λ2|k Mk6,0

, xk ∈ Ω,

−
λ1|r n1|r Mr2,j + λ2|r n2|r Mr3,j

λ1|r n1|r Mr2,0 + λ2|r n2|r Mr3,0

, xr ∈ ∂Ωn,
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j = 1, 2, . . . , m, whereas the final Monte Carlo formula is given in the following
explicit form

(5.8)































































Tk ≈ 1

N

n(e)
∑

r

T̄rN
(e)
r

− 1

N

n(i)
∑

k

fkN
(i)
k

∂λ1

∂x1

∣

∣

∣

∣

k

Mk2,0 + λ1|k Mk4,0 +
∂λ2

∂x2

∣

∣

∣

∣

k

Mk3,0 + λ2|k Mk6,0

+
1

N

n(n)
∑

r

q̄rN
(n)
r

λ1|r n1|r Mr2,0 + λ2|r n2|r Mr3,0

, k = 1, 2, . . . , n(i) + n(n),

Tr = T̄r, r = 1, 2, . . . , n(e).

It is worth noticing that each random walk may be terminated if a boundary
node located on ∂Ωe is reached only. Consequently, the random walk proceeds for
any other node (Fig. 7), taking the boundary (N (e)

r and N
(n)
r ) as well as internal

(N (i)
k ) indications (hits) into account. Similarly as in the torsion problem, the

final Monte Carlo formula for an anisotropic thermal problem (5.8) is strongly
affected by both discretization/approximation and stochastic types of errors.
Therefore, a density of clouds of nodes has to be selected in an appropriate
manner, resulting in an average modulus h ≪ 1.

5.3. Numerical examples

The same domain geometries were considered, namely the rectangular and
L-shaped ones, though with boundary conditions of both essential and natural
types. Moreover, denser irregular nodes discretization models were used, with
n = 225 and n = 348, respectively (Fig. 8). The thermal load functions (T̄ , f, q̄)
were manufactured on the basis of the analytical solution

(5.9) T̄ = sin

(

πx1

2
+

πx2

2

)

as well as material functions λ1 = x2
1 and λ2 = x2

2. The first key issue, inves-
tigated here, is the distinction between the discretization and stochastic error
types as well as their influence on the total solution error. Comparative com-
putations were performed for the L-shape domain, for two clouds, namely the
coarse cloud with n = 41 nodes and an average modulus h = 0.6 as well as
the finer cloud with n = 348 nodes (Fig. 8). Results (i.e., relative true MC

solution error eMC
true =

∣

∣

∣

∣

TMC − Ttrue

Ttrue

∣

∣

∣

∣

and relative estimated MC solution error
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Fig. 10. Results of a N-convergence analysis for L-shape domain: a) coarse cloud with
41 nodes, b) fine cloud with 384 nodes.

Fig. 11. Results of a N-convergence analysis of series of trials, for the L-shape domain and
a) torsion problem with 3% of assumed solution error, b) thermal problem with 1% of

assumed solution error.

eMC
FD =

∣

∣

∣

∣

TMC − TFD

TFD

∣

∣

∣

∣

in terms of N , as well as relative true FD solution error

eFD
true =

∣

∣

∣

∣

TFD − Ttrue

Ttrue

∣

∣

∣

∣

, independent from N , where Ttrue is the true analytical

solution, according to (5.9), TFD is the FD solution and TMC is the Monte Carlo
solution) are presented in Fig. 10. In case a cloud of nodes is too coarse, the dis-
cretization error may be significantly greater than the stochastic one (Fig. 10a).
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Fig. 12. Results of a stationary heat flow analysis for rectangular domain; a) Monte Carlo
temperature, b) Monte Carlo average flux, c) FDM temperature, d) FDM average flux.

However, providing the cloud is fine enough, both errors produce very similar
results (Fig. 10b).

Afterwards, N -convergence and computational time comparison tests were
performed for L-shape, for one selected point xk = [1.1309, 1.6472]. Results are
presented in Fig. 9. They are very similar to the ones obtained for the torsion
problem, even though paths of random walks are longer and take more time to
reach boundary edges with essential conditions. Since this is a more demanding
problem (due to material anisotropy as well as mixed boundary conditions),
N = 3000 random walks were assumed, thus limiting the total solution error at
1% level (Fig. 9a and Fig. 11b).

Moreover, the full analysis, for all nodes with unknown function values, was
performed as well. Results are presented in Fig. 12 and Fig. 13, for both do-
mains separately. The following graphs are included: Monte Carlo solutions for
temperature and average heat flux (5.4) as well as equivalent FDM solutions.
Additionally, true solution errors (with respect to the analytical one) were eval-
uated in L2, Linf norms as well as H1 semi-norm, and presented in figures’
titles. Although Monte Carlo results are less precise and smooth, the overall so-
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Fig. 13. Results of a stationary heat flow analysis for L-shape domain; a) Monte Carlo
temperature, b) Monte Carlo average flux, c) FDM temperature, d) FDM average flux

lution quality is reasonable, especially when compared to the assumed analytical
solution T̄ and corresponding FD solutions.

6. Physically non-linear heat problem

6.1. Problem formulation and computational model

The material with following thermal coefficients λ1 = const and λ2(T ) = d·T 2

is assumed, where d > 0 [J/(m ·s ·(◦C)3)] denotes a scalar coefficient, responsible
for units unification. Additionally, let us assume boundary conditions of essential
type only (∂Ω = ∂Ωe), for the sake of simplicity. Although a strong physical
non-linearity appears, the problem remains elliptic, since λ2 > 0 for all x ∈ Ω.
The general local formulation (5.1) with (5.2) is considered, though (5.1) has
a slightly modified form, namely

(6.1) −λ1
∂2T

∂x2
1

− ∂

∂x2

(

λ2
∂T

∂x2

)

= f.
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After substitution of the assumed λ2 = λ2(T ) relation and execution of analytical
differentiations, one obtains the following residual formula

(6.2) R = −λ1
∂2T

∂x2
1

− 2d · T
(

∂T

∂x2

)2

− d · T 2 ∂2T

∂x2
2

− f.

Afterwards, MWLS approximations (3.6) and (3.7) of partial derivatives of T
are constructed, followed by the collocation technique at the internal node xk,
leading to the difference version of residual error

(6.3) Rk = −λ1(M
<4>
k Tk) − 2d · Tk(M

<3>
k Tk)

2 − d · T 2
k (M<6>

k Tk) − fk.

The standard Newton–Raphson iterative procedure is applied

(6.4) Mt(l)
k · ∆T

(l+1)
k = −R

(l)
k

in which Mt(l)
k is a [1 × (m + 1)] tangent vector

(6.5) Mt(l)
k =

dR
(l)
k

dT(l)
k

= −λ1M
<4>
k −4d ·T (l)

k (M<3>
k T

(l)
k )M<3>

k −d ·(T (l)
k )2M<6>

k

of difference coefficients, and R
(l)
k is a scalar residual error

(6.6) R
(l)
k = −λ1(M

<4>
k T

(l)
k )−2d·T (l)

k (M<3>
k T

(l)
k )2−d·(T (l)

k )2(M<6>
k T

(l)
k )−fk,

both evaluated at xk on every l-th iteration step (l = 0, 1, . . . , lmax, lmax –
assumed maximum number of iterations) and

(6.7) ∆T
(l+1)
k = T

(l+1)
k − T

(l)
k .

Calculations are performed until the estimated convergence error

(6.8) ε(l+1) =
‖∆T

(l+1)
k ‖

‖T(l+1)
k ‖

≤ εadm,

where εadm denotes the assumed admissible error, or l = lmax. Moreover, the
initial solution T(0) needs to be provided, corresponding to the linear problem
(e.g., λ2 = λ1) and satisfying the non-homogeneous boundary conditions (5.2).

Selection probabilities assigned to an internal k-th node, of a move direction
leading to one of its m neighbours (according to a cross criterion and meshless
random walk principles), may be derived from (6.4), by the rearrangement of
terms towards the evaluation of the central value ∆T

(l)
k , namely

(6.9) pj = −
M t(l)

kj

M t(l)
k0

, j = 1, 2, . . . , m.
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Eventually, the final Monte Carlo formula for a solution increment at the par-
ticular node is as follows

(6.10)















∆T
(l)
k ≈ − 1

N

n(i)
∑

k

R
(l)
k N

(i)
k

M t(l)
k0

, xk ∈ Ω, k = 1, 2, . . . , n(i),

∆T
(l)
r = 0, xr ∈ ∂Ω, r = 1, 2, . . . , n(e).

6.2. Numerical examples

Similar types of domain shapes, with discretizations and locations of selected
internal points presented in Fig. 3, were applied. Additionally, the following data
was assumed: d = 1 [J/(m · s ·∆(◦C)3], λ1 = 1 [J/(m · s · ◦C], lmax = 30, εadm =
10−6, N = 3000, as well as load parameters, corresponding to the analytical
solution (5.9). The solution of a linear problem (i.e., for λ2 = 1) was applied as
the initial solution T(0).

Results of the non-linear analysis by means of the meshless Monte Carlo ap-
proach are presented in Fig. 14. In Fig. 14a, c, convergence results are shown in
the form of the Newton–Raphson error (6.8), for rectangle and L-shape domains,
respectively. This error was evaluated in two, mean (blue lines) and maximum
(red lines), norms, as well as for two types of solutions: primary Monte Carlo so-
lution (solid lines) and reference FD solution (dotted lines). In Fig. 14b, d, graphs
of the final solution (temperature) are shown, with solution norms and semi-norm
indicated in graphs’ titles. The following advantages of the MC method may be
mentioned, namely possibility of solution of a non-linear problem in a linearized
form for selected point(s) of the domain only with the same accuracy as for the
MFDM method, simplicity of the final solution formula (6.10) in which boundary
indications are determined only once, as well as shorter computational time (for
rectangle: 15 seconds (MFDM) vs. 1 second (MC) and for L-shape: 36 seconds
(MFDM) vs. 2 seconds (MC)).

7. Inverse heat problem

7.1. Problem formulation

Consider the stationary thermal problem (5.1) with (5.2) and (5.3), though
with constant, material (λ1, λ2) as well as boundary load (T̄ , q̄), parameters. Let
us assume that some of these parameters are unknown and have to be determined
on the basis of additional information, namely temperature measurements T̂i at
M isolated internal points x̂i

(7.1) T̂ (x̂i) = T̂i ± ∆Ti, i = 1, 2, . . . , M
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Fig. 14. Results of a physically non-linear heat flow analysis a) Newton–Raphson
convergence for rectangle, b) the final temperature graph, for rectangle c) Newton–Raphson

convergence for L-shape, d) the final temperature graph, for L-shape.

with assigned measurement tolerances ∆Ti each. This problem may be considered
as the inverse heat problem (i.e., thermal load determination or/and material
parameter identification). Its basic mathematical model constitutes the non-
linear optimisation problem

(7.2)

(λ1, λ2, T̄ , q̄)(opt) = arg min
(λ1,λ2,T̄ ,q̄)

J(λ1, λ2, T̄ , q̄),

J =

√

√

√

√

1

M

M
∑

i=1

(T (x̂i, λ1, λ2, T̄ , q̄) − T̂i)
2

with inequality constrains

(7.3) |T (x̂i, λ1, λ2, T̄ , q̄) − T̂i| ≤ ∆Ti, i = 1, 2, . . . , M,

based upon the mean square error between measured and evaluated temper-
ature values. Variety of methods of deterministic, probabilistic and combined
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types may be applied for solution of (7.2) with (7.3), for instance non-gradient
searching methods (brute search method, genetic or evolutionary algorithms,
see [14]) or gradient half-analytical methods (bisection, conjugate gradients, fea-
sible directions, steepest descent method, see [2, 17]). However, regardless of the
methods’ type, numerical solution of the considered optimisation problem re-
quires multiple solutions of auxiliary direct heat problems (5.1) with (5.2) and
(5.3). Therefore, its computational complexity strongly depends on the selec-
tion of intermediate methods as well as the number of decision variables (here:
unknown load and material parameters).

7.2. Computational model

Let us assume that the simple searching method (brute search approach)
was applied in order to find optimal decision variables (λ1, λ2, T̄ , q̄)(opt), which
minimize (7.2). Its main idea is based upon the assumption of admissible intervals
for each decision variable (e.g., T̄ ∈ [Tmin, Tmax]). Afterwards, each interval is
divided into a large number of subintervals which determine the intermediate sets
of decision variables

(

λ1, λ2, T̄ , q̄
)

. For each set, the boundary value problem (5.1)
with (5.2) and (5.3) is solved and the value of J is evaluated, according to (7.2).
Eventually, the optimal set of variables is selected, for which J has the minimal
value.

Standard deterministic methods (FEM, FDM, MFDM, BEM), applied for
the solution of (5.1), produce values of the unknown temperature T , at all n
nodes, even though they are required at a small number of measurement points
M (M ≪ n) in order to compare them with measured temperatures. Therefore,
calculation time may grow rapidly, especially when one deals with a multidimen-
sional optimisation problem (i.e., there are several decision variables). However,
the Monte Carlo method allows for the effective elimination of this drawback. In
fact, the final explicit formula (5.8) relates load and material parameters (un-
known in inverse heat problems), with temperature value at the specified node.
Therefore, temperature may be calculated at measurement locations only. Two
approaches may be distinguished, namely

1. Application of the selected searching method and evaluation of nodal tem-
perature values at M measurement points only, by means of the Monte
Carlo formula (5.8), leading to J . Indication numbers N

(e)
r , N

(n)
r , N

(i)
k are

determined only once, for the entire process.
2. Direct analytical differentiation of J with respect to decision variables,

which reduces to the differentiation of (5.8), thus leading to the necessary
condition of the existence of the minimum of J , in the form of a small
system of algebraic equations. Here, besides analytical tools (e.g., Lagrange
multipliers), variety of gradient methods may be applied.
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Moreover, flexible meshless discretization of the problem domain (by means of
irregular cloud of nodes) may be adapted to measurement locations with no
difficulties, since there is no imposed structure on it. For instance, generated
nodes may be shifted to measurement locations, without any global modifications
of the entire discretization.

7.3. Numerical examples

The considered problem domains (rectangle, L-shape), and the numbers of
nodes are similar to those from previous examples, though modified were bound-
ary values (Fig. 15a, c) as well as locations of four nodes in order to match four
measuring locations exactly. Here, constant boundary values for temperature T̄
and heat flux q̄ were applied, instead of a given analytical solution. Selected
boundary temperature values T̄? are unknown (top value for rectangle as well as
left and bottom values for L-shape) whereas other boundary temperature T̄ as
well as remaining parameters (λ1 = λ2 = 1 J/(m ·s ·◦C), q̄, f) are fixed. The heat
intensity function f = x1 − 2x2 + 0.5 was assumed. Temperature measurements
are given at selected four locations (M = 4), shown in Fig. 15a, c. Those values
were simulated on the basis of a FD numerical solution, obtained for one rank
denser clouds of nodes and with T̄ = −3oC (for rectangle) and T̄ = 0oC (for
L-shape). Moreover, a Gaussian noise was added to computed temperatures at
nodes, with amplitude ∆T̂ = 0.5oC.

For both domains, calculations were performed by means of the brute search
method (the first approach), combined with the Monte Carlo method with mesh-
less random walk (N = 1000). Results – graphs of the target function, which
1000 values were evaluated inside the interval T̄? ∈ [−10oC, 10oC] as well as
the optimal solution T̄

(opt)
? – are presented in Fig. 15c, d, respectively. In both

cases, very good accuracy was obtained, when comparing assumed original val-
ues (T̄ = −3oC and T̄ = 0oC) with the recovered ones (T̄ (opt)

? = −2.965oC and
T̄

(opt)
? = 0.050oC). Moreover, these results were obtained within several seconds

(in both cases), whereas the brute search method with traditional determinis-
tic approach (here: MFDM) requires over a minute more (the solution of 1000
boundary value problems at all nodes is required). The advantages in reduction of
computational time will be obviously clearer for multidimensional optimisation
problems.

For the second approach, the direct differentiation of (7.2) with respect to T̄?

yields the following equation (the inverse of the square root, producing no roots,
was neglected)

(7.4) min
(T̄?)

J ⇐⇒ dJ

dT̄?
= 0 → 2

M

M
∑

j=1

[

(Tj(T̄?) − T̂j)
1

N

n(e)
∑

r,T̄=T̄?

N
(e)
r(j)

]

= 0,
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Fig. 15. Results of a stationary inverse heat flow analysis a) domain, nodes and
measurements for rectangle, b) graph of a target function J , with optimal solution, for

rectangle c) domain, nodes and measurements for L-shape, d) graph of a target function J ,
with optimal solution, for L-shape.

where Tj(T̄?) are given by the Monte Carlo formula (5.8) (assuming constant
material parameters λ1 = const and λ2 = const). After substituting (5.8) into
(7.4) and by simplifying and rearranging terms in the resulting equation, one
may explicitly evaluate the unknown boundary temperature value T̄?, namely

(7.5) T̄? ≈

M
∑

j=1

(

NT̂j −
n(e)
∑

r,T̄ 6=T̄?

N
(e)
r(j)T̄r +

n(i)
∑

k

ckN
(i)
k(j) −

n(n)
∑

r

crN
(n)
r(j)

)

n(e)
∑

r,T̄=T̄?

N
(e)
r(j)

M
∑

j=1

(

n(e)
∑

r,T̄=T̄?

N
(e)
r(j)

)2

,

where

(7.6) ck =
fk

λ1|k Mk4,0 + λ2|k Mk6,0

, cr =
q̄k

λ1|r n1|r Mr2,0 + λ2|r n2|r Mr3,0

.
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Application of (7.5) to both examples yields the following results: T̄
(opt)
? =

−3.125oC for rectangle and T̄
(opt)
? = −0.110oC for L-shape, which are fully

competitive to those obtained by means of a brute search method, much more
computationally expensive. Furthermore, the inverse heat problem was solved in
a direct manner, by means of the explicit stochastic formula, yielding the un-
known data parameter(s) on the basis of remaining load/material data as well
as measurements, in the one-step algorithm. Therefore, this very simple exam-
ple reflects the potential power of this approach, though the research is still in
a preliminary stage and it is too early to draw more general conclusions.

8. Coupling meshless Monte Carlo with other computational methods

8.1. Problem formulation

Although the Monte Carlo method with random walk of meshless type may
be considered as the combination of the standard Monte Carlo approach with
meshless FDM, it may be additionally combined with other computational meth-
ods on various levels of a numerical analysis. Here, we focus on a method coupling
in a domain divided into a set of disjoint subdomains, with a different method
in each. For illustration purposes, let us assume that the entire problem domain
Ω is divided into two subdomains Ω1 and Ω2 (Ω1 ∪ Ω2 = Ω and Ω1 ∩ Ω2 = ∅).
This division is performed due to particular reasons, for instance Ω1 is much
more sensitive to thermal loading (e.g., due to stronger material conductivity)
and therefore, requires a more accurate solution than the second, less impor-
tant one Ω2. One may apply completely different methods in both subdomains,
with independent discretization densities, approximation orders, non-conforming
meshes and enforce solution continuity conditions on the mutual interface. The
coupling idea is based upon the introduction of a very thin (though finite) mate-
rial layer ∂Ω1,2, separating those two subdomains (Fig. 16). Its width z is selected
according to appropriate heuristic assumptions and it depends on discretization
and approximation parameters. Along this interface layer, an additional one-
dimensional integral is evaluated. It results from a weak formulation (e.g., vari-
ational principle) of the original elliptic problem, posed in a local formulation.
The reader is referred to [53, 55], for more detailed description of fundamentals
of such a method coupling. Here, attention is laid upon the general formulation
and the final system of algebraic equations.

For the sake of simplicity, let us assume that Ω1 is discretized by the FEM,
whereas the meshless Monte Carlo is applied for Ω2. Moreover, an isotropic
material is assumed (λ1 = λ2 = λ). The local strong formulation of the elliptic
boundary value problem for a heat transfer

(8.1) −λ∆T = f
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Fig. 16. The concept of coupling FEM with meshless Monte Carlo in one domain, divided
into two disjoint subdomains.

with appropriate boundary conditions (5.2) and (5.3)), is a simplified form of
(5.1), using global notation. The appropriate variational formulation has to be
derived, starting from the global strong form

(8.2) −
∫

Ω

vλ∆TdΩ =

∫

Ω

vfdΩ

in which all integrals may be decomposed into two subdomains and their mu-
tual interface (assuming that

∫

Ω =
∫

∂Ω1,2
z on the interface subdomain z∂Ω1,2),

namely

(8.3) −
∫

Ω1

v1λ∆TdΩ −
∫

Ω2

v2λ∆TdΩ −
∫

∂Ω1,2

zv1,2∆T d∂Ω

=

∫

Ω1

v1fdΩ +

∫

Ω2

v2fdΩ +

∫

∂Ω1,2

zv1,2f d∂Ω.

By integration by parts, the above equation may be reformulated into a global
weak one (for Ω1 and z∂Ω1,2), with the additional boundary term on ∂Ω1 and
a global strong one (for Ω2) again, namely

(8.4) −
∫

∂Ω1

v1 q·n d∂Ω+

∫

Ω1

∇v1·q dΩ−
∫

Ω2

λv2∆T dΩ+

∫

∂Ω1,2

z∇v1,2·q d∂Ω

=

∫

Ω1

v1f dΩ+

∫

Ω2

v2f dΩ+

∫

∂Ω1,2

zv1,2f d∂Ω
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in which T ∈ H1
0 + T̄ is an unknown (trial) temperature function in Ω1, whereas

v1, v2, v1,2 ∈ H1
0 are test functions. Here, Hk

0 is a Hilbert space of the k-th order,
of functions which satisfy homogeneous boundary conditions on ∂Ωe and T̄ is
the affine transformation, required for the exact fulfillment of non-homogeneous
boundary conditions for T on ∂Ωe. Additionally, T ∈ H2

0 + T̄ in Ω2. Although all
functions and their derivatives remain continuous in (8.4), relevant approximated
forms, appearing in integrals over an interface ∂Ω1,2, shall exhibit discontinuity.
Therefore, two operators are introduced

(8.5) 〈v〉1,2 = 0.5 · (v1 + v2), [[v]]1,2 = v1 − v2

allowing for an evaluation of a mean solution value at the interface. In this
manner, one obtains the final variational formulation

(8.6) −
∫

∂Ω1

v1 q · n d∂Ω +

∫

Ω1

∇v1 · q dΩ −
∫

Ω2

λv2∆T dΩ

+

∫

∂Ω1,2

λ

z
[[v1,2]][[T ]] d∂Ω + +

∫

∂Ω1,2

zλ〈∇Tv1,2 · s · sT · ∇T 〉 d∂Ω

=

∫

Ω1

v1f dΩ +

∫

Ω2

v2f dΩ +

∫

∂Ω1,2

z〈v1,2〉f d∂Ω,

where s = [s1, s2] is a versor, tangent to the interface.

8.2. Computational model

It has been assumed that the standard FE framework is applied to Ω1 (2D
model) and ∂Ω1,2 (1D model). Therefore, both test v1, v1,2 and temperature T
functions have to be approximated by means of the same basis (shape) functions
N1 (according to the Bubnov–Galerkin approach), for instance T = N1 ·T1 and
∇T = B1 ·T1, where B1 = ∇N1 and T1 denotes the vector of nodal degrees of
freedom (i.e., temperature values at nodes of Ω1, including ∂Ω1,2). However, for
the Ω2, with the meshless Monte Carlo approach, a test function v2 is assumed
in the form of the Dirac delta pseudo-function (v2 = δ). Due to its selective
property, it produces the original local formulation of the heat problem (8.1),
for which the final Monte Carlo formula (5.8) may be directly applied, yielding
a vector T2 of nodal degrees of freedom (temperature values at nodes of Ω2,
including ∂Ω1,2). Standard shape functions N2 and their derivatives B2 = ∇N2

are required for those finite elements from Ω2 which edges are located on ∂Ω1,2.
In other words, a partially structural mesh has to be generated in Ω2, near the
interface (Fig. 16). Taking everything into account, the final system of algebraic
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equations may be presented in the following manner

(8.7)
[

K1,1 K1,2

K2,1 K2,2

] [

T1

T2

]

=

[

F1

F2

]

where matrices and vector are as follows

(8.8)

K1,1 =

∫

Ω1

λBT
1 · B1 dΩ +

∫

∂Ω1,2

λ

z
NT

1 · N1 d∂Ω

+
1

2

∫

∂Ω1,2

zλBT
1 · s · sT · B1 d∂Ω,

K1,2 = −
∫

∂Ω1,2

λ

z
NT

1 · N2 d∂Ω +
1

2

∫

∂Ω1,2

zλBT
1 · s · sT · B2 d∂Ω,

K2,1 = −
∫

∂Ω1,2

λ

z
NT

2 · N1 d∂Ω +
1

2

∫

∂Ω1,2

zλBT
2 · s · sT · B1 d∂Ω,

K2,2 = λI +

∫

∂Ω1,2

λ

z
NT

2 · N2 d∂Ω +
1

2

∫

∂Ω1,2

zλBT
2 · s · sT · B2 d∂Ω,

F1 =

∫

Ω1

NT
1 f dΩ +

1

2

∫

∂Ω1,2

zNT
1 f d∂Ω +

∫

∂Ωn1

NT
1 q̄ d∂Ω,

F2 = λT2 +
1

2

∫

∂Ω1,2

zNT
2 f d∂Ω,

where components of vector T2 are evaluated according to (5.8).

8.3. Numerical examples

Geometrical and thermal data was assumed, similarly as in Sec. 5, though
with constant material parameters λ1 = λ2 = 1 J/(m · s · ◦C). Straight inter-
face (horizontal and skew) lines were generated, thus dividing both domains into
two subdomains. In each case, the upper subdomain is discretized by finite ele-
ments (triangles for rectangular domain, quadrangles for L-shape domain) with
linear (rectangle) and parabolic (L-shape) shape functions. Simultaneously, the
meshless Monte Carlo method was applied to the lower domain. Results are
presented in Fig. 17. The additional norm was evaluated and displayed in fig-
ures’ titles, namely the average difference between two solutions on the interface
(JL2 = ‖T1 − T2‖). It may be observed that a discontinuity rank is on the same
level as solution accuracy, at least.
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Fig. 17. Results of a method coupling: a) rectangle with interface and two independent
discretization models, b) temperature for rectangle, c) L-shape with interface and two

independent discretization models, d) temperature for L-shape.

9. Final remarks

The research presented in this paper is focused on the development of the
meshless Monte Carlo (MC) method with the random walk (RW) technique and
its application to selected scalar elliptic problems of mechanics and civil engineer-
ing. MC belongs to the wide class of probabilistic approaches and is commonly
used in a variety of algebraic and differential problems. Its main concept is based
upon the performance of series of simulations (trials) with an appropriately de-
fined successful event. Eventually, the number of successful trials related to the
total number of all trials, scaled by the dimension quantity may be treated as an
unbiased estimator of the unknown solution to the considered problem. In this
manner, MC combined with the appropriate RW technique, allows for a sim-
ple and effective estimation of the solution of the Laplace differential equation
at selected point(s) of the domain. It does not require the time-consuming and
computationally demanding generation and solution of a system of equation,
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combining all unknown function values. The original concept, developed in this
paper, is based upon the application of selected aspects of the meshless FDM to
the MC/RW approach. Especially, classification criteria of nodes into FD stars
as well as the MWLS approximation are taken into account. Therefore, an anal-
ysis of a wider class of problems, with more complex geometry, natural boundary
conditions, non-homogeneous material and right-hand side functions as well as
arbitrarily irregular clouds of nodes, is possible. The proposed MC with meshless
RW approach was examined on selected 2D benchmark elliptic problems (tor-
sion of a prismatic bar, stationary heat problem, non-linear heat problem as well
as inverse heat problem), including possible coupling with other computational
approaches in disjoint subdomains.

Further research includes, for instance, application of the meshless Monte
Carlo random walk solution approach to analysis of the 3D elliptic equations,
more complex inverse problems (in combination with genetic algorithms) as well
as non-stationary thermo-mechanical problems. In case the reference problem
has to be solved multiple times (e.g., within an incremental-iterative procedure
or an implicit time integration scheme), series of random walks forming a net
of nodal indications, are performed only once. Afterwards, the meshless Monte
Carlo formula is applied to each solution increment, allowing for the significant
reduction of the entire computational effort.
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