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Thermal processes in domain of thin metal film subjected to an ultrashort laser
pulse are considered. A mathematical description of the process discussed is based on
the system of four equations. Two of them describe the electrons and lattice tempera-
ture, while third and fourth equations represent the generalized Fourier law, it means
the dependencies between the electrons (lattice) heat flux and the electrons (lattice)
temperature gradient. In the generalized Fourier law the heat fluxes are delayed in
relation to the temperature gradients which consequently causes the appearance of
heat fluxes time derivatives in the appropriate equations. Depending on the order
of the generalized Fourier law expansion into the Taylor series, the first- and the
second-order model can be obtained. In contrast to the commonly used first-order
model, here the second-order two-temperature model is proposed. The problem is
solved using the implicit scheme of the finite difference method. The examples of
computations are also presented. It turns out that for the low laser intensities the
results obtained using the first- and the second-order models are very similar.
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1. Introduction

The two-temperature model describes the temporal and spatial evolution
of the lattice and electrons temperatures in the irradiated metal by two coupled
nonlinear differential equations [1–7]

(1.1) Ce(Te)
∂Te(X, t)

∂t
= −∇ · qe(X, t) − G(Te, Tl)[Te(X, t) − Tl(X, t)] + Q(X, t)

and

(1.2) Cl(Tl)
∂Tl(X, t)

∂t
= −∇ · ql(X, t) + G(Te, Tl)[Te(X, t) − Tl(X, t)],

where Te(X, t), Tl(X, t) are the temperatures of electrons and lattice, respec-
tively, Ce(Te), Cl(Tl) are the volumetric specific heats, G(Te, Tl) is the electron-
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phonon coupling factor which characterizes the energy exchange between elec-
trons and phonons, Q(X, t) is the source function associated with the laser ir-
radiation, X and t denote spatial co-ordinates and time. It should be pointed
out that for pure metals, the incident radiation is absorbed mainly by electrons,
therefore the source function Q(X, t) appears only in Eq. (1.1) [8].

The two-temperature model proposed by Anisimov et al. [1] contains two ad-
ditional equations based on the Fourier law describing the dependencies between
electron and lattice heat fluxes and temperature gradients

(1.3) qe(X, t) = −λe(Te, Tl)∇Te(X, t)

and

(1.4) ql(X, t) = −λl(Tl)∇Tl(X, t),

where λe(Te, Tl), λl(Tl) are the thermal conductivities of electrons and lattice,
respectively. This model is also known as a parabolic two-step model.

Qiu and Tien [9] proposed a more general relationships between heat fluxes
and temperature gradients, namely

(1.5) qe(X, t + τe) = −λe(Te, Tl)∇Te(X, t)

and

(1.6) ql(X, t + τl) = −λl(Tl)∇Tl(X, t),

where τe is the relaxation time of free electrons in metals (the mean time for
electrons to change their states), τl is the relaxation time in phonon collisions.
In this way a hyperbolic two-temperature model is obtained.

Now, the problems related to the parameters appearing in Eqs. (1.1)–(1.6) are
discussed. The electron volumetric specific heat can be calculated as the deriva-
tive of the total electron energy Ue with respect to the electron temperature Te

[2, 4, 6]

(1.7) Ce(Te) =
∂Ue

∂Te
=

∞
∫

0

∂f(E, µ(Te), Te)

∂Te
g(E)E dE,

where f(E, µ(Te), Te) is the Fermi distribution function, g(E) is the electron
density of states (DOS) at the energy level E, µ(Te) is the chemical potential at
the temperature Te. It should be noted that the electron density of states can
be determined from the electronic structure calculations performed within the
density functional theory [2]. Determination of Ce(Te) is still not easy because the
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evaluation of ∂f/∂Te requires the knowledge of a chemical potential as a function
of electrons temperature µ(Te). Therefore, at the low electron temperatures the
Sommerfeld expansion is commonly used [4] which leads to the following formula

(1.8) Ce(Te) = γTe,

where

(1.9) γ =
π2k2

BN

2TF
,

while N is the electrons concentration, kB is the Boltzmann constant and TF is
the Fermi temperature.

The electrons thermal conductivity in metals is described by the Drude
model [4]

(1.10) λe(Te, Tl) =
1

3
Ce(Te)τe(Te, Tl)v

2
e ,

where τe(Te, Tl) is the total electron scattering time and ve is the mean velocity of
the electrons. It is assumed that all electrons within the metal travel at the Fermi
velocity, it means ve = vF . Electrons collisions can occur with other electrons, the
lattice, defects, grain boundaries and surfaces. Assuming that each mechanism
is independent, the Matthiessen rule [4] can be applied

(1.11)
1

τe
=

1

τee
+

1

τeph
+

1

τed
+

1

τeb
,

where τee is the electron-electron scattering time, τeph is the electron-phonon
scattering time, τed is the electron-defect scattering time and τeb is the electron-
boundary scattering time.

Electron-defect and electron-boundary scattering times are both typically
independent of temperature. The electron-phonon scattering time depends on
the lattice temperature Tl, while the electron-electron scattering time depends
on the electrons temperature. For temperatures above the Debye temperature
the electron-electron scattering time in comparison with the electron-phonon
scattering time can be neglected [4] and then

(1.12)
1

τe
=

1

τeph
= B Tl,

where B is assumed to be constant.
Taking into account the dependencies (1.8) and (1.12) the electrons thermal

conductivity (1.10) can be expressed as

(1.13) λe(Te, Tl) = λ0
Te

Tl
,
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where λ0 is the material constant (thermal conductivity in the thermal equilib-
rium [11]).

The volumetric specific heat of lattice can be calculated as the derivative of
the total phonon energy Ul with respect to the lattice temperature Tl [5, 6]

(1.14) Cl =
∂Ul

∂Tl
=

ω2
∫

ω1

gl(ω)
∂fBE(ω, Tl)

∂Tl
~ω dω,

where fBE(ω, Tl) is the Bose–Einstein distribution function, gl(ω) is the phonon
density of states at the frequency ω, ω1 and ω2 are the minimum and maximum
frequency of the phonons, respectively, ~ is Planck’s constant divided by 2π.

Applying the Debye model [5, 6], under the assumption that the lattice tem-
perature Tl is much higher than the Debye temperature TD, the volumetric
specific heat of lattice is a constant value

(1.15) Cl = 3NakB,

where Na is the number of atoms per unitary volume.
The lattice thermal conductivity can be expressed as [6]

(1.16) λl(Tl) =
1

3
Cl(Tl)τph(Tl)v

2
l ,

where τph(Tl) is the total scattering time and vl is the phonons velocity.
Phonons collisions can occur with other phonons and defects. Using the

Matthiessen rule [4, 5, 6] one obtains

(1.17)
1

τph
=

1

τph ph
+

1

τph d
,

where τph ph and τph d are the phonon-phonon scattering time and phonon-defect
scattering time, respectively. If the temperature Tl is much higher than the De-
bye temperature, scattering times are not dependent on temperature. They are
assumed as a constant values. For the constant value of the volumetric specific
heat of lattice and vl = c, where c is the speed of sound in the material, the
thermal conductivity of lattice is also a constant value λl = λ0, where λ0 is the
thermal conductivity for Te = Tl and equal to room temperature [11].

Another key parameter in the two-temperature models is the coupling factor,
which for high electrons temperature can be calculated as follows [2, 4]

(1.18) G(Te) =
G0

g2(EF )

∞
∫

−∞

g2(E)

(

−∂f(E, µ, Te)

∂E

)

dE,

where G0 is the constant and EF is the Fermi energy.
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As shown in [2], for low electrons temperature (Te < 5000 K) the formulas
(1.8), (1.13) can be used, while the other parameters (thermal conductivity of
lattice, volumetric specific heat of lattice, coupling factor) can be assumed as
the constant values. In this paper, the low intensity of the laser is considered,
therefore such parameter values are accepted.

We are now returning to the considerations related to the two-temperature
model. Thus, the left sides of the dependencies (1.5), (1.6) are expanded into
a Taylor series

(1.19) qe(X, t) + τe
∂qe(X, t)

∂t
+

τ2
e

2

∂2qe(X, t)

∂t2
+ · · · = −λe(Te, Tl)∇Te(X, t)

and

(1.20) ql(X, t) + τl
∂ql(X, t)

∂t
+

τ2
l

2

∂2ql(X, t)

∂t2
+ · · · = −λl(Tl)∇Tl(X, t).

Taking into account the first two components of this expansion one obtains
the hyperbolic two-temperature model, that can be called the first-order two-
temperature model.

It should be noted that the parabolic model and the first-order hyperbolic
two-temperature model are widely used for numerical modeling of thermal pro-
cesses occurring in the laser treated materials, e.g. [10–19].

At this point, the Maxwell–Cattaneo–Vernotte (MCV) model and the dual-
phase lag (DPL) model are worth mentioning [3–6, 20–23]. These models can be
derived in several ways. They belong to the so-called one-temperature models
describing the macroscopic lattice temperature [3] and can be obtained, among
others, from the hyperbolic two-temperature model [3] (but under the certain
assumptions). It should be emphasized that the non-physical solutions can be
obtained using hyperbolic models, too. These problems are analyzed by many
researches, who propose the appropriate constitutive assumptions using the ex-
tended irreversible thermodynamics [24–29].

In the paper the second-order hyperbolic two-temperature model is proposed,
it means in the dependencies (1.19), (1.20) three components of the Taylor ex-
pansion are taken into account. According to the best knowledge of the authors,
such a model has not yet been considered. In the Section 2 the formulation of
the analyzed problem is presented, Section 3 is devoted to the method of solu-
tion, while Section 4 contains the results of computations. Conclusions resulting
from the comparison of the first- and second-order hyperbolic two-temperature
models are formulated in the final part of the paper.
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2. Formulation of the problem

Thin metal film of the thickness L (1D problem) subjected to the laser pulse
is considered. For low laser intensities the relationships (1.8), (1.13) describing
the electrons thermal conductivity and volumetric specific heat are widely used
[13, 15, 16, 19]. Additionally the coupling factor G, thermal conductivity λl and
volumetric specific heat Cl are assumed to be the constant values.

The second-order two-temperature model consists of the following equations

Ce(Te)
∂Te(x, t)

∂t
= −∂qe(x, t)

∂x
− G[Te(x, t) − Tl(x, t)] + Q(x, t),(2.1)

Cl
∂Tl(x, t)

∂t
= −∂ql(x, t)

∂x
+ G[Te(x, t) − Tl(x, t)],(2.2)

qe(x, t) + τe
∂qe(x, t)

∂t
+

τ2
e

2

∂2qe(x, t)

∂t2
= −λe(Te, Tl)

∂Te(x, t)

∂x
,(2.3)

ql(x, t) + τl
∂ql(x, t)

∂t
+

τ2
l

2

∂2ql(x, t)

∂t2
= −λl

∂Tl(x, t)

∂x
.(2.4)

The source function Q(x, t) is associated with the laser irradiation [15, 16, 19]

(2.5) Q(x, t) =

√

β

π

1 − R

tpδ
I0 exp

[

−x

δ
− β

(t − 2tp)
2

t2p

]

,

where I0 is the laser intensity, tp is the characteristic time of laser pulse, δ is
the optical penetration depth, R is the reflectivity of the irradiated surface and
β = 4 ln 2.

For x = 0 and x = L the non-flux conditions are assumed (the external heat
flux resulting from the laser action is taken into account by the introduction
of the function Q(x, t)). The initial condition Te(x, 0) = Tl(x, 0) = Tp is also
known.

3. Method of solution

To solve the problem formulated the algorithm based on the finite difference
method is proposed. Thus, the staggered grid is introduced [12, 15], as shown in
Fig. 1. It should be noted that this type of spatial discretization is also called
the scheme of shifted fields [30], in which the spatial locations of temperature
values are shifted by a space step h with respect to locations of heat flux values.

Let us denote T f
i = T (ih, f∆t), where h is the mesh step, ∆t is the time step,

i=0, 2, 4, . . . , n, f =0, 1, 2, . . . , F , and qf
j = q(jh, f∆t), where j =1, 3, . . . , n− 1.
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Fig. 1. Staggered grid: i = 0, 2, 4, . . . , n – ’temperature nodes’, j = 1, 3, 5, . . . , n − 1 – ’heat
fluxes nodes’.

The finite difference approximation of Eqs. (2.3) and (2.4) using implicit
scheme can be written in the form

(3.1) qf
ej + τe

qf
ej − qf−1

ej

∆t
+

pτ2
e

2

qf
ej − 2qf−1

ej + qf−2
ej

(∆t)2
= −λf−1

ej

T f
ej+1 − T f

ej−1

2h

and

(3.2) qf
lj + τl

qf
lj − qf−1

lj

∆t
+

pτ2
l

2

qf
lj − 2qf−1

lj + qf−2
lj

(∆t)2
= −λl

T f
lj+1 − T f

lj−1

2h
,

where index j corresponds to the ’heat flux nodes’ (Fig. 1). For the second-order
model parameter p = 1, while for the first-order model p = 0.

From Eqs. (3.1) and (3.2) it follows that

(3.3) qf
ej = −

(λf−1
ej−1 + λf−1

ej+1)(∆t)2

2hBe
(T f

ej+1 − T f
ej−1)

+
2τe(∆t + pτe)

Be
qf−1
ej − pτ2

e

Be
qf−2
ej

and

(3.4) qf
lj = − λl

hBl
(T f

lj+1 − T f
lj−1) +

2τl(∆t + pτl)

Bl
qf−1
lj − pτ2

l

Bl
qf−2
lj ,

where

(3.5) Be = 2(∆t)2 + 2τe∆t + pτ2
e , Bl = 2(∆t)2 + 2τl∆t + pτ2

l .

The dependencies (3.3), (3.4) allow to construct the similar formulas for nodes
i − 1, i + 1 and then one obtains

(3.6) qf
ei−1 − qf

ei+1 =
(λf−1

ei−2 + λf−1
ei )(∆t)2

2hBe
(T f

ei−2 − T f
ei)

+
(λf−1

ei+2 + λf−1
ei )(∆t)2

2hBe
(T f

ei+2 − T f
ei)

+
2τe(∆t + pτe)

Be
(qf−1

ei−1 − qf−1
ei+1) −

pτ2
e

Be
(qf−2

ei−1 − qf−2
ei+1)
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and

(3.7) qf
li−1 − qf

li+1 =
λl(∆ t)2

hBl
(T f

li−2 − T f
li ) +

λl(∆t)2

hBl
(T f

li+2 − T f
li )

+
2τl(∆t + pτl)

Bl
(qf−1

li−1 − qf−1
li+1) −

pτ2
l

Bl
(qf−2

li−1 − qf−2
li+1).

Now, Eqs. (2.1), (2.2) are discretized using the implicit scheme of the finite
difference method

Cf−1
ei

T f
ei − T f−1

ei

∆t
= −

qf
ei+1 − qf

ei−1

2h
− G(T f

ei − T f
li ) + Qf

i ,(3.8)

Cl
T f

li − T f−1
li

∆t
= −

qf
li+1 − qf

li−1

2h
+ G(T f−1

ei − T f−1
li ),(3.9)

where index i corresponds to the ’temperature nodes’, as shown in Fig. 1. Putting
(3.6) into (3.8) one has

T f
ei = T f−1

ei + Af−1
e1 (T f

ei−2 − T f
ei) + Af−1

e2 (T f
ei+2 − T f

ei)(3.10)

+ Af−1
e3 (qf−1

ei−1 − qf−1
ei+1) − Af−1

e4 (qf−2
ei−1 − qf−2

ei+1)

− ∆tG

Cf−1
ei

T f
ei +

∆tG

Cf−1
ei

T f
li +

∆tQf
i

Cf−1
ei

,

where

(3.11)

Af−1
e1 =

(λf−1
ei−2 + λf−1

ei )(∆t)3

4h2Cf−1
ei Be

, Af−1
e2 =

(λf−1
ei+2 + λf−1

ei )(∆t)3

4h2Cf−1
ei Be

,

Af−1
e3 =

τe∆t(∆t + pτe)

hCf−1
ei Be

, Af−1
e4 =

pτ2
e ∆t

2hCf−1
ei Be

.

From Eq. (3.10) it follows that

T f
ei =

Af−1
e1

Af−1
e5

T f
ei−2 +

Af−1
e2

Af−1
e5

T f
ei+2 +

1

Af−1
e5

T f−1
ei +

Af−1
e3

Af−1
e5

(qf−1
ei−1 − qf−1

ei+1)(3.12)

− Af−1
e4

Af−1
e5

(qf−2
ei−1 − qf−2

ei+1) +
∆tG

Cf−1
ei Af−1

e5

T f
li +

∆t

Cf−1
ei Af−1

e5

Qf
i ,

where

(3.13) Af−1
e5 = 1 + Af−1

e1 + Af−1
e2 +

∆tG

Cf−1
ei

.
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In a similar way one obtains (cf. Eqs. (3.7), (3.9))

T f
li =

Al1

Al5
T f

li−2 +
Al2

Al5
T f

li+2 +
1

Al5
T f−1

li(3.14)

+
Al3

Al5
(qf−1

li−1 − qf−1
li+1) −

Al4

Al5
(qf−2

li−1 − qf−2
li+1) +

∆tG

ClAl5
T f

ei,

where

(3.15)
Al1 =

λl(∆t)3

2h2ClBl
, Al2 =

λl(∆t)3

2h2ClBl
, Al3 =

τl∆t(∆t + pτl)

hClBl
,

Al4 =
pτ2

l ∆t

2hClBl
, Al5 = 1 + Al1 + Al2 +

∆tG

Cl
.

The non-flux conditions take a form

(3.16)
x = 0 :

∂Te

∂x
= 0, x = L :

∂Te

∂x
= 0,

x = L :
∂Tl

∂x
= 0, x = L :

∂Tl

∂x
= 0

and the following finite difference approximation is used

(3.17)
x = 0 :

T f
e2 − T f

e0

2h
= 0, x = L :

T f
en − T f

en−2

2h
= 0,

x = L :
T f

l2 − T f
l0

2h
= 0, x = L :

T f
ln − T f

ln−2

2h
= 0,

or

(3.18) T f
e0 = T f

e2, T f
en = T f

en−2, T f
l0 = T f

l2, T f
ln = T f

ln−2.

Thus, for each transition tf−1 → tf the system of Eqs. (3.3), (3.4), (3.12),
(3.14) supplemented by boundary conditions (3.18) should be solved using e.g.
the Gauss–Seidel iterative method.

4. Results of computations

Thin metal film of the thickness 200 nm and the initial temperature dis-
tribution Te(x, 0) = Tl(x, 0) = 300 K is considered. Three different materials,
namely lead, titanium and vanadium are taken into account. In Table 1 the ther-
mophysical parameters of materials are collected. The melting temperature Tm

is also given. It should be pointed out, that the phase transitions are not con-
sidered here. The melting point for individual materials is given to control the
calculation whether the lattice temperature does not exceed the melting point.
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Table 1. Thermophysical parameters [2, 8, 31].

Pb Ti V

λ0 [W/(m · K)] (see also formula (1.13)) 71.6 21.9 30.7

γ[J/(m3 · K2)] (formula (1.8)) 748.1 328.9 67.1

Cl [J/(m3 · K)] 2.7417·106 2.34·106 2.9939·106

G [W/(m3 · K)] 109·1016 130·1016 523·1016

τe [ps] 0.005 0.001 0.002

τl [ps] 0.4 0.05 0.06

Tm [K] 600.5 1941 2183

It is assumed that the laser intensity equals I0 = 200 J/m2 and the char-
acteristic time of laser pulse is equal to tp = 0.1 ps (reflectivity R = 0.93 and
optical penetration depth δ = 15.3 nm).

The problem is solved using the implicit scheme of the finite difference
method for n = 300 and ∆t = 0.0005 ps. For these values of n and ∆t the
results are grid independent.

In Figs. 2, 3 and 4 the temperature histories of electrons and lattice at the
irradiated surface for the materials considered are shown. As it can be seen,
depending on the material, the maximum electron temperatures are reached at
the different times. In addition, the time after which the temperature of electrons
and the lattice is equalized, is also different – the longest for lead (about 1.6 ps)
and the shortest for vanadium (about 0.34 ps).

The results obtained using the second-order and first-order two-temperature
models are compared. It turns out that the differences between the solutions are

Fig. 2. Temperature histories at the irradiated surface, Pb.
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Fig. 3. Temperature histories at the irradiated surface, Ti.

Fig. 4. Temperature histories at the irradiated surface, V.

very small. For example, in the case of lead the maximum electrons tempera-
tures are equal to 1229.77 K and 1229.90 K, respectively, while maximum lattice
temperatures are equal to 375.38 K and 375.12 K, respectively. For titanium,
maximum electrons temperatures: 1744.06 K and 1744.07 K, maximum lattice
temperatures: 457.20 K and 457.17 K. For vanadium: 1540.98 K, 1541.06 K and
523.63 K, 523.44 K.

The computations are repeated for other laser parameters, namely I0 =
400 J/m2 and tp = 0.1 ps, I0 = 200 J/m2 and tp = 0.05 ps, I0 = 400 J/m2

and tp = 0.05 ps. In all cases, the differences between maximum electrons tem-
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peratures and the maximum lattice temperatures do not exceed 0.5 K. Even for
a high laser intensity e.g. I0 = 1800 J/m2 (tp = 0.1 ps) and the vanadium thin
film, when the maximum lattice temperature is close to the melting point, the
differences between the second-order and first-order models are small: maximum
electrons temperatures: 7905.14 K and 7905.31 K, maximum lattice tempera-
tures: 2130.03 K and 2129.57 K.

One can see, that using the second-order two-temperature model, the elec-
trons temperature is slightly lower in comparison with the first-order one, while
the lattice temperature is slightly higher.

To compare the results of calculations with the results presented in [32], the
computations are performed for a layer with the thickness L = 100 nm made of
chromium. The authors of this article use the parabolic two-temperature model,
thus in Eqs. (2.3), (2.4) the values τe = 0, τl = 0 are assumed. The following
parameters of laser are accepted (formula (2.5)): intensity I0 = 559 J/m2 and
characteristic time tp = 0.03 ps. The thermophysical parameters of chromium
are taken from [32].

In Fig. 5 the temperature histories of electrons and lattice at the irradiated
surface are shown. The good agreement with the results presented in [32] is
observed (symbols). Moreover, the time after which the temperature of electrons
and the lattice is equalized, is also similar: about 4 ps.

Fig. 5. Temperature histories at the irradiated surface, Cr (I0 = 559 J/m2, tp = 0.03 ps),
symbols – solution presented in [32].

Experimental research presented in the paper [32] concern the identification
of laser intensity I0 (under the assumption that the characteristic time of laser
pulse is equal to tp = 0.03 ps) ensuring the achievement of melting point on
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the irradiated surface of the metal film. For the laser intensity I0 = 559 J/m2

the lattice temperature for x = 0 reaches the value 2180.45 K very close to the
melting temperature Tm = 2180.15 K.

In this paper, the thermodynamics problems [20–23] related to the second-
order two-temperature model are not considered. It should be noted that using
the model presented here, the physical anomalies can take place but in our
calculations we have not encountered a solution that would be incorrect from
a physical point of view.

5. Conclusions

The second-order two-temperature model has been presented. The problem
has been solved using the implicit scheme of the finite difference method. The
computations have been performed for thin metal films (lead, titanium and vana-
dium) subjected to the ultrashort laser pulse. Different laser parameters have
been taken into account. The comparison of results obtained using the first-
and second- two-temperature models show that the differences between the so-
lutions are very small. In conclusion, the first-order two-temperature model is
sufficiently accurate for the numerical modelling of thermal processes occurring
in heated thin metal films. The introduction of the higher-order expansion into
the Taylor series seems in this situation unnecessary.
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