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The probabilistic solutions of the elastic stretched beam are studied under the
excitation of Kanai–Tajimi ground motion. Finite difference scheme is adopted to
formulate the nonlinear multi-degree-of-freedom system about the random vibration
of the beam. The state-space-split is employed to make the high-dimensional Fokker–
Planck–Kolmogorov equation reduced to 4-dimensional Fokker–Planck–Kolmogorov
equations which are solved by the exponential polynomial closure method for the
probabilistic solutions of the system responses. The rules for selecting the state
variables are proposed in order to reduce the dimensionality of Fokker–Planck–
Kolmogorov equation by the state-space-split method. The numerical results obtained
by the state-space-split and exponential polynomial closure method, Monte Carlo sim-
ulation method, and equivalent linearization method are presented and compared to
show the computational efficiency and numerical accuracy of the state-space-split and
exponential polynomial closure method in analyzing the probabilistic solutions of the
strongly nonlinear stretched beam systems formulated by a finite difference scheme
and excited by the Kanai–Tajimi ground motion.
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1. Introduction

There are many results about the vibrations of the hinged and elastic
stretched beam because this beam can find its applications in many areas of
science and engineering. However, the nonlinear random vibrations or the prob-
abilistic solutions of the beam were seldom studied when the beam is modeled
as multi-degree-of-freedom (MDOF) system. The hinged, axially restrained and
elastic stretched beam was modeled as MDOF system with Galerkin’s method
and then an expression for the joint probability-density function (PDF) of the
first N modal amplitudes was obtained under the excitation of uniformly dis-
tributed Gaussian white noise which is assumed to be uncorrelated in space [1].
If the Gaussian white noise is correlated or fully correlated in space as usual in
applications, the joint PDF of the first N modal amplitudes is not obtainable
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because of the difficulties in solving the relevant Fokker–Planck–Kolmogorov
(FPK) equation in this case. The technique of equivalent linearization was used
to investigate the mean square responses of a simply supported Bernoulli–Euler
beam undergoing moderately large random vibrations [2]. An improved stochas-
tic linearization method was employed to investigate the modal amplitude mean-
square of the stretched beam when the beam is modeled as MDOF system
with Galerkin’s method [3]. The probabilistic solutions of the deflection of the
stretched beam was studied when the beam is modeled as MDOF system with
Galerkin’s method and excited by filtered Gaussian white noise [4]. The proba-
bilistic solutions of the deflection of the stretched beam has been studied recently
when the beam is modeled as MDOF system by a finite difference scheme and
excited by Gaussian white noise [5].

Besides the beam systems, many other nonlinear systems in science and en-
gineering can be modeled as nonlinear stochastic dynamical (NSD) systems with
multiple degrees of freedom and excited by random noise [6–8]. In the case of
Gaussian white noise or filtered Gaussian white noise, the probabilistic solution
of the system is governed by Fokker-Planck-Kolmogorov (FPK) equation [6–10].
However, the analysis on the probabilistic solutions of MDOF-NSD systems or
high-dimensional FPK equation is a challenge because of the high dimensionality
[11, 12], especially for the systems with strongly coupled state variables, strong
nonlinearity or many nonlinear terms.

Some methods were developed or extended for obtaining the approximate
probabilistic solutions of NSD systems, such as the Wiener path integral method
[13–16] and path integral method [17–19], stochastic averaging method [20, 21],
perturbation method [22], A-type Gram-Charlier series or Hermite-polynomial
closure method [23], C-type Gram-Charlier series method [24], equivalent non-
linear system method [25], dissipation energy balancing method [26], maximum
entropy method [27], finite difference method [28], finite element method [29],
and exponential polynomial closure (EPC) method [30]. It is known that most
of these methods only work for analyzing the single-degree-of-freedom (SDOF)
systems or solving the 2-dimensional FPK equations in steady state under some
conditions. Few methods, such as the EPC method, can work for solving the
4-dimensional FPK equations corresponding to the 2DOF systems with polyno-
mial or power-type nonlinearity [31]. Some of the methods, such as the Hermite-
polynomial closure method, may also suffer from the loss of accuracy of the
PDF in the tail regions which play an important role in system reliability anal-
ysis. There are three methods popularly used to study the MDOF-NSD sys-
tems. One of the them is the equivalent linearization (EQL) method which
was first proposed by Booton [32] in the research on nonlinear random vibra-
tion of circuit and further investigated by many other researchers thereafter
[33–35]. It is well known that the EQL method is only suitable for the weakly
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nonlinear systems under Gaussian excitation because the system responses are
assumed to be close to Gaussian. The second is the Monte Carlo simulation
(MCS) method which was first proposed by Metropolis and Ulam [36] in their
research on nuclear physics and further studied by many other researchers in
science, engineering, and mathematics thereafter [37–39]. There are some chal-
lenges with MCS method in analyzing the large strongly nonlinear stochastic
dynamical systems, such as the problems of round-off error, numerical stability,
convergence, and requirement for a huge sample size when the small probability
of response is concerned. The third is the cumulant-neglect closure method.
With this method, the moment equations derived from FPK equation were
solved to obtain statistical moments by introducing the cumulant-neglect clo-
sure to moment equations to make the hierarchy of moment equations closed
to a desired level [40–43]. The moments obtained with this method are ex-
act for linear systems excited by additive and multiplicative white noises and
appear to be accurate for weakly nonlinear systems excited by additive white
noises.

In order to solve the high-dimensional FPK equations corresponding to
MDOF-NSD systems, the EPC method was proposed and studied in the past
two decades for solving the FPK equations, which works well for the systems
with 1 or 2 degrees of freedom or for the 2 or 4-dimensional FPK equations
[30, 31]. Various 2-dimensional and 4-dimensional FPK equations corresponding
to SDOF and 2-DOF systems with polynomial-type strong nonlinearity were
analyzed accurately with the EPC method. The accuracy of the PDFs obtained
by the EPC method were verified by MCS. The EPC method was well extended
for analyzing more general problems [44]. In 2011, a new method named state-
space-split (SSS) method was proposed for the probabilistic solutions of some
large MDOF-NSD systems by solving the relevant FPK equations in high di-
mensionality [45, 46]. It was extended or applied thereafter for analyzing some
strongly nonlinear systems excited by Gaussian white noise, Poissonian white
noise or colored noise being filtered Gaussian white noise [4, 47–52]. By the SSS
method, a high-dimensional FPK equation can be reduced to low-dimensional
FPK equations which are solvable by EPC method even if the system nonlinear-
ity is strong.

The high-dimensional nonlinear beam systems analyzed by the SSS-EPC
method in the past were formulated by Galerkin’s method [4] or the excita-
tion is Gaussian white noise when the nonlinear beam system is formulated by
finite difference scheme [5]. In this paper, the SSS-EPC method is extended to
study the probabilistic solutions of the stretched beam systems formulated by
a finite difference scheme and excited by uniformly or locally distributed filtered
Gaussian white noise. The equation of motion of the beam is a strongly nonlin-
ear partial differential equation in time and space. A finite difference scheme is
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employed to make the nonlinear partial differential equation reduced to a 10 or
11-degree-of-freedom system though larger system can also be formulated and
analyzed without difficulty. Including the equation about ground motion, the
total number of degrees of freedom of the formulated strongly nonlinear system
is 11 or 12. The dimensionality of relevant FPK equation corresponding to the
system is 22 or 24. The results obtained by SSS-EPC method are compared with
those obtained by EQL method and MCS to show the computational efficiency
and numerical accuracy of SSS-EPC method in analyzing the probabilistic solu-
tions of the MDOF-NSD systems formulated by a finite difference scheme and
excited by the uniformly or locally distributed filtered Gaussian white noise de-
scribing the excitations of Kanai–Tajimi Ground Motion. The MCS is conducted
on the original MDOF-NSD systems formulated by a central finite difference
scheme.

2. Nonlinear stochastic dynamical system of the stretched beam

Consider the Euler–Bernoulli beam with pin supports on its two ends and
excited by a distributed random force being filtered Gaussian white noise as
shown in Fig. 1. ��	
��� ��

− � ��
+��� ��

Fig. 1. Finite difference model of the stretched beam under distributed random force.

The governing equation of motion of this beam is

(2.1) ρAŸ (x, t) + cẎ (x, t) + EIY (4)(x, t) − EA

2L
Y ′′(x, t)

L
∫

0

Y ′2(x, t)dx

= q(x)F (t)

where Y (x, t) is the deflection of the beam at time t and the location with
distance x to the left-hand side of the beam; Ẏ = dY

dt ; Ÿ = d2Y
dt2

; Y ′ = dY
dx ;

Y ′′ = d2Y
dx2 ; Y (4) = d4Y

dx4 ; ρ is the mass density of the material; c is the damping
constant; E is Young’s modulus of the beam material; I is the moment inertia
of the cross section of the beam; A is the area of the cross section of the beam;
L is the length of the beam; q(x) is the mass distribution on the beam and F (t)
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is ground acceleration in the direction perpendicular to the beam axis. F (t) is
described by the Kanai–Tajimi model given by [53, 54]

F (t) = ω2
gU(t) + 2ξgωgU̇(t),(2.2)

Ü(t) + 2ξgωgU̇(t) + ω2
gU(t) = W (t),(2.3)

in which ξg is the damping constant in ground motion; ωg represents the domi-
nant ground frequency; W (t) is Gaussian white noise with zero mean and auto-
correlation E[W (t)W (t+τ)] = Sδ(τ) in which δ(τ) is Dirac’s delta function and
S is a constant representing the power spectral density (PSD) of W (t) or the
intensity of ground acceleration.

3. Multi-degree-of-freedom nonlinear stochastic dynamical system
of the stretched beam formulated with finite difference scheme

With a central finite difference scheme as shown in Fig. 1 and the following
approximations of the derivatives

Y ′
n =

dY

dx
|x=xn =

Yn+1 − Yn−1

2h
,

Y ′′
n =

d2Y

dx2
|x=xn =

Yn+1 − 2Yn + Yn−1

h2
,

Y (4)
n =

d4Y

dx4
|x=xn =

Yn+2 − 4Yn+1 + 6Yn − 4Yn−1 + Yn−2

h4
.(3.1)

Equation (2.1) can be discretized into the following system at the node n.

(3.2) Ÿn +
c

ρA
Ẏn + α(Yn+2 − 4Yn+1 + 6Yn − 4Yn−1 + Yn−2)

− β(Yn+1 − 2Yn + Yn−1)
N+1
∑

i=1

(Y 2
i+1 + Y 2

i + Y 2
i−1 + Y 2

i−2

+ Yi+1Yi − 2Yi+1Yi−1 − Yi+1Yi−2 − YiYi−1 − 2YiYi−2

+ Yi−1Yi−2) =
q(xn)

ρA
F (t) (n = 1, 2, . . . , N),

where Yi is the deflection at the point i with a distance xi to the left-hand
side of the beam; α = EI

h4ρA
; β = E

24Lh3ρ
; and h = xi+1 − xi. The central finite

difference scheme is adopted in formulating Eqs. (3.2) and handling the boundary
conditions in the following.

For the beam with pin supports on its two ends, the boundary conditions
shown in Fig. 1 can be expressed with a finite difference scheme by

(3.3) Y0 = 0, Y−1 = −Y1, YN+1 = 0, YN+2 = −YN .
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Introducing the boundary conditions expressed by Eq. (3.3) to Eq. (3.2) and
noting Eqs. (2.2) and (2.3), an MDOF-NSD system excited by filtered Gaussian
white noise can be formulated as follows

(3.4)



















































Ÿn +
c

ρA
Ẏn + α(Yn+2 − 4Yn+1 + 6Yn − 4Yn−1 + Yn−2)

− β(Yn+1 − 2Yn + Yn−1)
∑N+1

i=1 (Y 2
i+1 + Y 2

i + Y 2
i−1 + Y 2

i−2

+Yi+1Yi − 2Yi+1Yi−1 − Yi+1Yi−2 − YiYi−1 − 2YiYi−2

+Yi−1Yi−2) =
q(xn)

ρA
[ω2

gU(t) + 2ξgωgU̇(t)] (n = 1, 2, . . . , N),

Ü(t) + 2ξgωgU̇(t) + ω2
gU(t) = W (t).

The number of degrees of freedom of the system is N + 1.

4. Dimensionality reduction by state-space-split method

In the following discussion, the summation convention applies unless stated
otherwise. The random state variables or vectors are denoted by a capital letter
and the corresponding deterministic state variables or vectors are denoted by
the same letter in lowercase.

The system governed by Eq. (3.4) under the boundary conditions given by
Eq. (3.3) can be generally expressed by the following MDOF-NSD system.

(4.1)







Ÿi + aẎi + gi(Y) − hi[ω
2
gU(t) + 2ξgωgU̇(t)] = 0

(i = 1, 2, . . . , N),

Ü(t) + 2ξgωgU̇(t) + ω2
gU(t) = W (t),

where Yi ∈ R (i = 1, 2, . . . , N), are the components of the vector process
Y ∈ R

N ; gi(Y) are the polynomial functions of Y and gi(Y) : R
nY → R;

a = c
ρA , hi = q(xi)

ρA are constants.
Setting

Yi = X2i−1, Ẏi = X2i, f2i−1 = X2i,

f2i = hi[ω
2
gX2N+1 + 2ξgωgX2(N+1)] − 2ξω1X2i − gi(X), (i = 1, 2, . . . , N),

U = X2N+1, U̇ = X2(N+1), f2N+1 = X2(N+1),

f2(N+1) = −ω2
gX2N+1 − 2ξgωgẊ2N+2, nx = 2(N + 1),

then Eq. (4.1) can be expressed by the following coupled Langevin equations or
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Ito differential equations.

(4.2)















dXi

dt
= fi(X) i = 1, 2, . . . , nx − 1,

dXnx

dt
= fnx

(X) + W (t),

where X ∈ R
nx ; Xi (i = 1, 2, . . . , nx), are the components of the state vector

process X; fi(X) : R
nx → R.

The state vector process X is Markovian and the PDF p(x, t) of the Marko-
vian vector is governed by the FPK equation. Because the white noise W (t) is
Gaussian, the stationary PDF p(x) of the Markovian vector is governed by the
following reduced FPK equation [6]:

(4.3)
∂

∂xj
[fj(x)p(x)] − S

2

∂2p(x)

∂x2
nx

= 0,

where x is the deterministic state vector and x ∈ R
nx .

It is assumed that the solution to Eq. (4.3) fulfills the following conditions:

(4.4) lim
xj→±∞

fj(x)p(x) = 0 and lim
xj→±∞

∂p(x)

∂xj
= 0, j = 1, 2, . . . , nx,

which can be fulfilled by the deflection and the velocity of the beam.
Separate the state vector X into two parts as X1 ∈ R

nx1 which is referred
to as the first subspace and X2 ∈ R

nx2 which is referred to as the second sub-
space, i.e., X = {X1,X2} ∈ R

nx = R
nx1 × R

nx2 . The state variables in X1 are
referred to as target state variables which PDF is desired. In analyzing the above
beam system, define the vector X1 such that X1 = {Yi(t), Ẏi(t), U(t), U̇(t)} =
{X2i−1(t), X2i(t), Xnx−1(t), Ẋnx

(t)}, i ∈ [1, N ]. The PDF of X1 is analyzed in
the following with the SSS-EPC method [45, 46].

Denote the PDF of X1 as p1(x1). In order to obtain p1(x1), integrating both
sides of Eq. (4.3) over R

nx2 gives

∫

R
nx2

∂

∂xj
[fj(x)p(x)] dx2 −

S

2

∫

R
nx2

∂2p(x)

∂x2
nx

dx2 = 0.(4.5)

Because of the conditions in Eq. (4.4), we have

(4.6)
∫

R
nx2

∂

∂xj
[fj(x)p(x)]dx2 = 0 xj ∈ R

nx2 .
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Equation (4.5) can then be written after integration by part as

(4.7)
∫

R
nx2

∂

∂xj
[fj(x)p(x)] dx2 −

S

2

∫

R
nx2

∂2p(x)

∂x2
nx

dx2 = 0, xj ∈ R
nx1 ,

which can be equivalently written as

(4.8)
∫

R
nx2

∂

∂xj
[fj(x)p(x)] dx2 −

S

2

∂2

∂x2
nx

∫

R
nx2

p(x)dx2 = 0, xj ∈ R
nx1 .

Since

(4.9)
∫

R
nx2

p(x)dx2 = p(x1)

Eq. (4.8) can be rewritten as

(4.10)
∫

R
nx2

∂

∂xj
[fj(x)p(x)] dx2 −

S

2

∂2p(x1)

∂x2
nx

= 0, xj ∈ R
nx1

which can be written equivalently as

(4.11)
∂

∂xj

∫

R
nx2

fj(x)p(x)dx2 −
S

2

∂2p(x1)

∂x2
nx

= 0, xj ∈ R
nx1 .

Collecting the terms purely in x1 in one part and the other terms in the other
part. Then fj(x) is expressed in terms of two parts as

fj(x) = f I
j (x1) + f II

j (x).(4.12)

Substituting Eq. (4.12) into Eq. (4.11) gives

(4.13)
∂

∂xj

∫

R
nx2

[

f I
j (x1) + f II

j (x)
]

p(x)dx2 −
S

2

∂2p(x1)

∂x2
nx

= 0, xj ∈ R
nx1 .

Noting Eq. (4.9), Eq. (4.13) can be written as

(4.14)
∂

∂xj

[

f I
j (x1)p(x1) +

∫

R
nx2

f II
j (x)p(x)dx2

]

− S

2

∂2p(x1)

∂x2
nx

= 0, xj ∈ R
nx1 .

Express f II
j (x) as

∑

k f II
j (x1, zk) in which zk ∈ R

nzk ⊂ R
nx2 and nzk

denotes
the number of the state variables in zk. For real problems, nzk

≪ nx2 . For the



Probabilistic solutions of a stretched beam. . . 441

system expressed by Eq. (3.4), (4.1) or (4.2), nzk
= 3. Then Eq. (4.14) can be

written as

(4.15)
∂

∂xj

[

f I
j (x1)p1(x1) +

∑

k

∫

R
nzk

f II
j (x1, zk)pk(x1, zk)dzk

]

− S

2

∂2p(x1)

∂x2
nx

= 0, xj ∈ R
nx1

in which pk(x1, zk) denotes the joint PDF of {X1,Zk}. The summation con-
vention does not apply for the indexes k in Eq. (4.15) and in the following
discussions.

From Eq. (4.15), it is seen that the coupling of X1 and X2 comes from
f II

j (x1, zk)pk(x1, zk). Because

(4.16) pk(x1, zk) = p1(x1)qk(zk;x1),

where qk(zk;x1) is the conditional PDF of Zk for given X1 = x1, substituting
Eq. (4.16) into Eq. (4.15) gives

(4.17)
∂

∂xj

{[

f I
j (x1) +

∑

k

∫

R
nzk

f II
j (x1, zk)qk(zk;x1)dzk

]

p1(x1)

}

− S

2

∂2p(x1)

∂x2
nx

= 0, xj ∈ R
nx1 .

The conditional PDF qk(zk;x1) is needed in Eq. (4.17), but it is not available.
A large amount of numerical analysis showed that the conditional PDF qk(zk;x1)
employed in dimension reduction procedure of the SSS method can be effectively
replaced by that obtained by EQL and the obtained approximate PDFs of X1

are accurate even if the systems are strongly nonlinear [4, 5, 45, 46, 48–50].
Approximately replacing the conditional PDF qk(zk;x1) by that obtained by
EQL, then Eq. (4.17) becomes

(4.18)
∂

∂xj

{[

f I
j (x1) +

∑

k

∫

R
nzk

f II
j (x1, zk)qk(zk;x1)dzk

]

p̃1(x1)

}

− S

2

∂2p̃(x1)

∂x2
nx

= 0, xj ∈ R
nx1 ,

where qk(zk;x1) is the approximate conditional PDF of Zk obtained by EQL for
the given X1 = x1 and p̃1(x1) is then the approximate PDF of X1. It is noted
that the approximate conditional PDF qk(zk;x1) leads to the difference between
the approximate solution p̃1(x1) and exact solution p1(x1). Denote

(4.19) f̃j(x1) = f I
j (x1) +

∑

k

∫

R
nzk

f II
j (x1, zk)q(zk;x1)dzk,
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then Eq. (4.18) is finally written as

∂

∂xj
[f̃j(x1)p̃1(x1)] −

S

2

∂2p̃(x1)

∂x2
nx

= 0, xj ∈ R
nx1(4.20)

which is the approximate FPK equation for the joint PDF of the state variables
in the subspace R

nx1 . It is seen that X1 only contains four state variables, i.e.,
{X2i−1(t), X2i(t), Xnx−1(t), Ẋnx

(t)}, i ∈ [1, N ] or {Yi, Ẏi, U, U̇} where Yi and Ẏi

are the displacement and velocity, respectively, at the node i. Hence, the resulting
approximate FPK equation is 4-dimensional. The EPC method can be employed
to solve Eq. (4.20) in the following numerical analysis [30, 31].

5. Solution procedure of exponential polynomial closure method

The EPC solution procedure is briefed in the following. Consider the following
reduced low-dimensional FPK equation.

(5.1)
∂

∂xj
[fj(x)p(x)] − 1

2

∂2

∂xi∂xj
[Gij(x)p(x)] = 0,

where X ∈ R
mx with the assumption that mx is small or mx = 4 when solving

the approximate dimension-reduced FPK equation (4.20) in the random vibra-
tion analysis of the stretched beam excited by the Kanai–Tajimi ground motion.

The approximate solution p̃(x;a) of Eq. (5.1) is assumed to be

(5.2) p̃(x;a) = c expQn(x;a),

where a is an unknown parameter vector, a = {a1, a2, . . . , aNp}, Np is the
total number of unknown parameters, and Qn(x;a) is a n-degree polynomial in
x ∈ R

mx . This replacement may cause some error in the approximate solution
and hence some residual errors in the FPK equation.

Eq. (5.1) can also be written in the following form:

(5.3)
∂fj

∂xj
p + fj

∂p

∂xj
− 1

2

(

∂2Gij

∂xi∂xj
p +

∂Gij

∂xj

∂p

∂xi
+

∂Gij

∂xi

∂p

∂xj

+ Gij
∂2p

∂xi∂xj

)

= 0.

Generally, Eq. (5.3) cannot be satisfied exactly with p̃(x;a) because p̃(x;a) is
only an approximation of p(x) and the number Np of the unknown parameters
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is limited in practice. Substituting p̃(x;a) for p(x) in Eq. (5.3) leads to the
following residual error.

(5.4) ∆(x;a) =
∂fj

∂xj
p̃ + fj

∂p̃

∂xj
− 1

2

(

∂2Gij

∂xi∂xj
p̃ +

∂Gij

∂xj

∂p̃

∂xi

+
∂Gij

∂xi

∂p̃

∂xj
+ Gij

∂2p̃

∂xi∂xj

)

.

Substituting p̃(x;a) = c expQn(x;a) into Eq. (5.4) gives

(5.5) ∆(x;a) = δ(x;a)p̃(x;a),

where

(5.6) δ(x;a) = fj
∂Qn

∂xj
− 1

2

(

∂Gij

∂xj

∂Qn

∂xi
+

∂Gij

∂xi

∂Qn

∂xj

+ Gij
∂2Qn

∂xi∂xj
+ Gij

∂Qn

∂xi

∂Qn

∂xj

)

+
∂fj

∂xj
− 1

2

∂2Gij

∂xi∂xj
.

Because p̃(x;a) 6= 0, therefore, the only possibility for p̃(x;a) to satisfy
Eq. (5.3) is δ(x;a) = 0. However, usually δ(x;a) 6= 0 because p̃(x;a) is only
an approximation of p(x). In this case, a set of mutually independent functions
hk(x) which span space R

Np are introduced to make the projection of δ(x;a) on
R

Np vanish, which leads to

(5.7)
∫

Rmx

δ(x;a)hk(x)dx = 0, k = 1, 2, . . . , Np

or

(5.8)
∫

Rmx

{

fj
∂Qn

∂xj
− 1

2

(

∂Gij

∂xj

∂Qn

∂xi
+

∂Gij

∂xi

∂Qn

∂xj
+ Gij

∂2Qn

∂xi∂xj

+ Gij
∂Qn

∂xi

∂Qn

∂xj

)

+
∂fj

∂xj
− 1

2

∂2Gij

∂xi∂xj

}

hk(x)dx = 0, k = 1, 2, . . . , Np.

The above Eq. (5.8) means that the reduced FPK equation is satisfied with
p̃(x;a) in the weak sense of integration if δ(x;a)hk(x) is integrable in R

mx .
By selecting hk(x) as xk1

1 xk2
2 · · ·xkn

n fN (x), being k1, k2, . . . , kn = 0, 1, . . . , Np

and k = k1+k2+ · · ·+kn such that δ(x;a)hk(x) is integrable in R
mx , Np nonlin-

ear algebraic equations in terms of Np undetermined parameters can be obtained
from Eq. (5.8). The algebraic equations can be solved to determine the param-
eters. Numerical experience shows that a convenient and effective choice for the
function fN (x) is the PDF obtained from EQL or the Gaussian closure proce-
dure. Hence, it is a normal PDF.
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6. Numerical analysis

Example 1. Consider the stretched beam with pin supports on its two ends.
The uniformly distributed load is applied over the whole length of the beam as
shown by Fig. 2. The beam parameters are given by L = 7 m, E = 2.1×1011 pa,
I = 2.17× 10−4 m4, A = 8.6112× 10−3 m2, ρ = 7.85× 103 kg/m3, c = 103, and
q(x)W (t) = 5 × 104W (t) N/m, S = 0.05 m2/s3, ωg = 50 rad/s, ξg = 0.3. The
number of nodes N in a finite difference scheme is 11.����� ��

−  !"
+#$% &

Fig. 2. Finite difference model of beam under uniformly distributed load.

The equations of motion of the system formulated by central finite difference
scheme are

(6.1)























































Ÿi +
c

ρA
Ẏi + α(Yi+2 − 4Yi+1 + 6Yi − 4Yi−1 + Yi−2)

− β(Yi+1 − 2Yi + Yi−1)
∑12

m=1(Y
2
m+1 + Y 2

m + Y 2
m−1 + Y 2

m−2

+ Ym+1Ym − 2Ym+1Ym−1 − Ym+1Ym−2 − YmYm−1 − 2YmYm−2

+ Ym−1Ym−2) −
q(xi)

ρA
[ω2

gU(t) + 2ξgωgU̇(t)] = 0

(i = 1, 2, . . . , 11),

Ü(t) + 2ξgωgU̇(t) + ω2
gU(t) = W (t),

with the boundary conditions Y0 = 0, Y−1 = −Y1, Y12 = 0, Y13 = −Y11.
The formulated system in Eq. (6.1) is a 12-DOF system and the dimensional-

ity of the relevant FPK equation is 24. There are filtered Gaussian white noises
in all the equations of motion and the filtered Gaussian white noises are fully cor-
related. In order to use SSS method for dimension reduction, the state variables
in the first subspace are selected to be X1 = {Yi, Ẏi, Ui, U̇i}, i ∈ [1, 11]. After
dimension reduction by the SSS method, the dimension reduced 4-dimensional
FPK is solved by EPC method. Because the structure is symmetric and the load-
ing is symmetrically distributed over the beam, the deflection is also symmetric
about the middle of the beam, i.e., Yi = Y12−i and Ẏi = Ẏ12−i for i ∈ [1, 6].
Therefore, only the marginal PDFs and logarithmic PDFs of Yi for i ∈ [1, 6] are
shown in the following figures. In order to shown the accuracy of the PDFs and
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Fig. 3. (a) The PDFs of the deflection Y1 under uniformly distributed load over the whole
beam. (b) The logarithm of PDFs of the deflection Y1 under uniformly distributed load over

the whole beam.
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Fig. 4. (a) The PDFs of the deflection Y2 under uniformly distributed load over the whole
beam. (b) The logarithm of PDFs of the deflection Y2 under uniformly distributed load over

the whole beam.

logarithmic PDFs of Yi obtained by the SSS-EPC method, the results obtained
by MCS and EQL are also shown in Figs. 3–8. For this beam system, the mean
value of deflection equals zero, i.e., myi = 0 and mẏi = 0. The standard deviation
of deflection obtained by EQL in the middle of the beam is σy6 = 0.0681m. From
these figures it is observed that the results obtained by the SSS-EPC method
are close to those obtained by MCS. However, the computational time needed
by MCS is about 500 times of that needed by the SSS-EPC method when the
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Fig. 5. (a) The PDFs of the deflection Y3 under uniformly distributed load over the whole
beam. (b) The logarithm of PDFs of the deflection Y3 under uniformly distributed load over

the whole beam.
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Fig. 6. (a) The PDFs of the deflection Y4 under uniformly distributed load over the whole
beam. (b) The logarithm of PDFs of the deflection Y4 under uniformly distributed load over

the whole beam.

sample size used in MCS is 108. The computational time needed by the SSS-EPC
method is mainly spent on the EQL procedure. The rate of computational time
between MCS and SSS-EPC can increase quickly as the number of degrees of
system freedom increases. By comparing the results obtained by the SSS-EPC
method and MCS with those obtained by the EQL method, it is observed that
the system nonlinearity is very strong and the results obtained by EQL is far
from being acceptable.
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Fig. 7. (a) The PDFs of the deflection Y5 under uniformly distributed load over the whole
beam. (b) The logarithm of PDFs of the deflection Y5 under uniformly distributed load over

the whole beam.
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Fig. 8. (a) The PDFs of the deflection Y6 under uniformly distributed load over the whole
beam. (b) The logarithm of PDFs of the deflection Y6 under uniformly distributed load over

the whole beam.

All the PDFs at different nodes or beam locations are similar to each other
because the rate of the nonlinear restoring force and the linear restoring force in
Eq. (2.1) does not change much, which is due to the fact that

∫ L
0 Y ′2(x, t)dx is

free of x or beam location for the stretched beam. A similar behavior can also
be observed in the PDF solutions of the following Example 2.

In order to check the convergence of the solution as the the nodes number N
in the finite-difference gird increases or the value of h decreases, the PDFs and
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Fig. 9. (a) PDFs in the middle of the beam for different number of nodes. (b) Logarithmic
PDFs in the middle of the beam for different number of nodes.

logarithmic PDFs of the deflection in the middle of beam, which are obtained
by the SSS-EPC method, are shown in Fig. 9. From Fig. 9, it is seen that the
PDFs and logarithmic PDFs corresponding to N = 9 and 11 almost overlap,
which means that the solution corresponding to N = 9 or 11 can be considered
as a converged solution for the adopted finite difference scheme. The convergence
behaviors of the solutions at other nodes are similar. N = 11 rather than N = 9
is adopted in the above analysis on the PDF solutions at different nodes so
that the PDF solutions at more beam locations can be obtained, shown and
compared.

Example 2. Consider the stretched beam with pin supports on its two ends.
The distributed load is only applied between node 5 and node 6 of the beam
as shown by Fig. (10), which can be considered as a point load applied in the
middle of the beam. The beam parameter values are all to be the same as those
in Example 1 except q = 2×105 is applied between middle node 5 and node 6 but
q = 0 elsewhere. The number of unknowns N in a finite difference scheme is 10.'()*+ ,-

− . /0
+123 4

Fig. 10. Finite difference model of beam under partially distributed load in the middle of
the beam.
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The equations of motion of the system formulated by the central finite dif-
ference scheme are

(6.2)







































































































Ÿi +
c

ρA
Ẏi + α(Yi+2 − 4Yi+1 + 6Yi − 4Yi−1 + Yi−2)

− β(Yi+1 − 2Yi + Yi−1)
∑11

m=1(Y
2
m+1 + Y 2

m + Y 2
m−1 + Y 2

m−2

+ Ym+1Ym − 2Ym+1Ym−1 − Ym+1Ym−2 − YmYm−1 − 2YmYm−2

+ Ym−1Ym−2) = 0 (i = 1, 2, 3, 4, 7, 8, 9, 10),

Ÿi +
c

ρA
Ẏi + α(Yi+2 − 4Yi+1 + 6Yi − 4Yi−1 + Yi−2)

− β(Yi+1 − 2Yi + Yi−1)
∑11

m=1(Y
2
m+1 + Y 2

m + Y 2
m−1 + Y 2

m−2

+ Ym+1Ym − 2Ym+1Ym−1 − Ym+1Ym−2 − YmYm−1 − 2YmYm−2

+ Ym−1Ym−2) −
q(xi)

ρA
[ω2

gU(t) + 2ξgωgU̇(t)] = 0 (i = 5, 6),

Ü(t) + 2ξgωgU̇(t) + ω2
gU(t) = W (t),

with the boundary conditions Y0 = 0, Y−1 = −Y1, Y11 = 0, Y12 = −Y10.
The formulated system is a 11-DOF system and the dimensionality of the

relevant FPK equation is 22. There are filtered Gaussian white noises only in
the 5th and 6th equations of motion and the filtered Gaussian white noises in
the 5th and 6th equations are fully correlated.

Similar to the case in Example 1, the state variables in the first subspace
are selected to be X1 = {Yi, Ẏi, Ui, U̇i}, i ∈ [1, 10] in order to use SSS method
for dimension reduction. After dimension reduction by the SSS method, the
dimension reduced 4-dimensional FPK is solved by EPC method.

Because the structure is symmetric and the loading is also symmetrically
distributed in the middle of the beam, the deflection is also symmetric about
the middle of the beam, i.e., Yi = Y11−i and Ẏi = Ẏ11−i for i ∈ [1, 5]. Therefore,
only the marginal PDFs and logarithmic PDFs of Yi for i ∈ [1, 5] are shown in
the following figures. In order to show the accuracy of the PDFs and logarith-
mic PDFs of Yi obtained by SSS-EPC method, the results obtained by MCS
and EQL are also shown in Figs. 11–15. For this beam system, the mean value
of deflection equals zero, i.e., myi = 0 and mẏi = 0. The standard deviation
of deflection in the middle of the beam is σy6 = 0.0771 m. From these figures
it is observed that the results obtained by the SSS-EPC method are close to
those obtained by MCS. However, the computational time needed by MCS is
about 500 times of that needed by the SSS-EPC method when the sample size
used in MCS is 108. The computational time needed by SSS-EPC method is
mainly spent on the EQL procedure. The rate of computational time between
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Fig. 11. (a) The PDFs of the deflection Y1 under partially distributed load over the whole
beam. (b) The logarithm of PDFs of the deflection Y1 under partially distributed load over

the whole beam.
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Fig. 12. (a) The PDFs of the deflection Y2 under partially distributed load over the whole
beam. (b) The logarithm of PDFs of the deflection Y2 under partially distributed load over

the whole beam.

MCS and SSS-EPC can increase quickly as the number of degrees of system
freedom increases. By comparing the results obtained by SSS-EPC method and
MCS with those obtained by EQL method, it is observed that the system non-
linearity is very strong and the results obtained by EQL are far from being
acceptable.

The convergence of the solution is also checked as the nodes number N in the
finite-difference gird increases or the value of h decreases. Only the convergence
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Fig. 13. (a) The PDFs of the deflection Y3 under partially distributed load over the whole
beam. (b) The logarithm of PDFs of the deflection Y3 under partially distributed load over

the whole beam.
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Fig. 14. (a) The PDFs of the deflection Y4 under partially distributed load over the whole
beam. (b) The logarithm of PDFs of the deflection Y4 under partially distributed load over

the whole beam.

behavior of the PDF of the deflection in the middle of beam is presented in view
that the convergence behaviors of the solutions at other nodes are similar. In
view that the system is symmetric and the load is symmetrically distributed in
the middle of beam, the deflection in the middle of beam equals the deflection
at the node nearest to the middle of beam under the adopted finite difference
scheme. The PDFs and logarithmic PDFs of the deflection in the middle of
beam, which are obtained by the SSS-EPC method, are shown in Fig. 16. From
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Fig. 15. (a) The PDFs of the deflection Y5 under partially distributed load over the whole
beam. (b) The logarithm of PDFs of the deflection Y5 under partially distributed load over

the whole beam.
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Fig. 16. (a) PDFs in the middle of the beam for different number of nodes. (b) Logarithmic
PDFs in the middle of the beam for different number of nodes.

Fig. 16, it is seen that the PDFs and logarithmic PDFs corresponding to N = 6, 8
and 10 almost overlap, which means that the solution at N = 6, 8 or 10 can
be considered as a converged solution for the adopted finite difference scheme.
N = 10 rather than N = 6 or 8 is adopted in the above analysis on the PDF
solutions at different nodes so that the PDF solutions at more beam locations can
be obtained, shown and compared. Since this load is considered as a concentrated
load applied in the middle of the beam, the sum of the distributed load keeps
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constant as nodes number N changes. In the presented case, q = 2 × 105 for
N = 10. Then q = 2× 105 × N+1

11 for N = 2, 4, 6, 8 and 10. The distributed load
applies between node N/2 and node N/2 + 1.

7. Conclusions

The equations of motion of the stretched beam with pin supports at its two
ends are formulated with a central finite difference scheme when the beam is ex-
cited by filtered Gaussian white noise. The rule for selecting the state variables
which PDF is desired, is that there must be diffusion terms in the dimension-
reduced FPK equations for employing the SSS-EPC method. The SSS-EPC
method is extended to analyze the probabilistic solutions of the beam systems
formulated by a central finite difference scheme. Both beams excited by uni-
formly distributed load over the whole length of the beam and the concentrated
load applied in the middle of the beam are analyzed. When the beam is modeled
as a MDOF system, the dimension-reduction procedure of the SSS method is
employed to make the high-dimensional FPK equation governing the PDF solu-
tions of the beam reduced to some 4-dimesional FPK equations. Then the EPC
method is employed to solve the 4-dimensional FPK equations. The techniques
about selecting the subspace in the SSS procedure are introduced and discussed
for this nonlinear stochastic dynamical beam system. The first subspace in SSS
dimension-reduction procedure must be 4-dimensional for this beam system. The
effectiveness and efficiency of the SSS-EPC method are verified by comparing
the results obtained with MCS and EQL methods. From numerical analysis it
is observed that the SSS-EPC method works well for obtaining the PDFs of the
deflections of the beam at all nodes. It is observed that the computational time
needed by MCS is about 500 times that needed by SSS-EPC for the 12 or 11-
DOF beam systems when the sample size adopted in MCS is 108. The MCS is
conducted on the original MDOF-NSD systems formulated by a central finite
difference scheme. Though the results from EQL are far from being acceptable
for the analyzed strongly nonlinear systems, but the SSS-EPC can still give ac-
curate results when the conditional PDF from EQL is adopted both in the SSS
dimension-reduction procedure and the EPC solution procedure.
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