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The paper presents the development of the GPU-based discrete element
method (DEM) code for simulating damage and fracture of cohesive solids with ap-
plication to reinforced concrete at the scale of reinforcement ribs. The solid volume of
concrete and steel is modelled by bonded spherical particles. Very fine discretization,
containing more than million particles, is applied to describe the 3D reinforcement
bar geometry at the scale of ribs and to investigate cracking behaviour of concrete
near the reinforcement bar. The numerical model is validated by using experimental
results of the double pull-out test. Influence of the discretization scale to the numer-
ical solution is evaluated by using the reinforcement strain profiles and the cracking
patterns. The developed GPU-based DEM algorithm efficiently handles interaction of
particles, does not require any atomic operation and allows performing fast damage
and fracture simulations with large number of particles. The performance measured
on GPU is compared with that attained on different CPUs for varying number of
particles. The high value of the Cundall number (particle number multiplied by time
steps computed per second) equal to 4.3E+07 is measured on NVIDIA R©TeslaTMP100
GPU in the case of 1858560 particles.
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1. Introduction

The discrete element method (DEM) or so called distinct element method,
suggested in pioneering work of Cundall and Strack [1], opened new vistas in
modelling of materials. The concept of the DEM presents numerical methodol-
ogy, providing a quantitative description of discrete particulate media by consid-
ering motion and deformation behaviour of individual particles in the frame of
Newtonian mechanics. Traditionally, the DEM methodology is related to phys-
ical nature of granular materials. The granular microstructure of the material
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is modelled as a statistically generated assembly of non-cohesive particles of
different shapes and sizes. The proper interactions between particles need to
be defined to account for the macroscopic mechanical properties of the medium.
Main advantages of the particle-based modelling methodology include the simple
mathematical treatment of the problem, whereby complex constitutive relation-
ships are replaced by simple particle contact logic. The main aspects of the the-
oretical DEM framework, new findings and application samples of granular flows
are addressed to selected reviews, see [2–4]. Nowadays DEM is acknowledged to
be an effective procedure not limited for analysis of non-cohesive granular ma-
terials [5, 6], but extended to cohesive powders [7], fluidized environments [8],
rock cutting [9] and couplings with different multiphysics [10–12].

The specific DEM application area is related to damage of heterogeneous
multiphase continuum. Practically, most of the main produced engineering ma-
terials, including concrete and reinforced concrete, as well as natural minerals
fall into this category. The state of damaged concrete with propagating cracks
may be regarded as fragmentation of initially stable heterogeneous continuum
or assembly of bonded particles characterized by an unstable structure. DEM
can take into account most kinds of discontinuities and material failure since
the medium is considered as naturally discontinuous. In the case of intensive
cracking, DEM is a powerful alternative to the finite element modelling, because
it does not rely on any assumption regarding where and how cracks occur and
propagate [13].

Many particle- or lattice-based numerical methods for concrete modelling
on aggregate scale (mesoscale or microscale) can be classified to an unified ap-
proach termed hereafter by the common name Lattice Discrete Particle Method
(LDPM). The earliest methods are based on structural networks or lattice dis-
cretization techniques. The lattice methods [14] explore a regular grid structure
considered on a finer scale than an aggregate size. Theoretical aspects of the
relationship between DEM and lattice discretization of continuum are general-
ized by Ostoja-Starzewski [15]. According to other approaches, a heteroge-
neous material is modelled as a web of elements, connecting discrete particles of
different materials. Continuity of inhomogeneous solids including concrete can
be represented by cohesive particles [16]. A cohesive model for discrete parti-
cles combined with experimental data has been demonstrated by Nitka and
Tejchman [17]. Potyondy and Cundall [18] have proposed a numerical
discrete element model called the bonded particle model (BPM) to simulate
the fracture behaviour. The material has been represented by a dense packing
of circular or spherical particles bonded at their contact points. Two types of
bonds are typically used in BPM: the contact bond and the parallel bond. In
the parallel bond model, the moment induced by particle rotation is resisted
by a set of elastic springs uniformly distributed over a finite-sized section, ly-
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ing on the contact plane and centred at the contact point. This bond model
reproduces the physical behaviour of a cement-like substance gluing adjacent
particles together. In the contact bond model, an elastic spring with constant
normal and shear stiffness acts at the contact points between particles, allow-
ing only forces to be transmitted. The original LDPM elaborated by Cusatis
et al. [19] reflects concrete mesostructure by a system of interacting polyhedral
aggregate particles connected by a lattice system that is obtained through a De-
launay tetrahedralization of the aggregate centres and the Voronoi tessellation.
The mechanical interaction among adjacent aggregate particles is governed by
mesoscale constitutive equations, simulating mesoscale tensile fracturing with
strain-softening, cohesive and frictional shearing, and nonlinear compressive be-
haviour with strain-hardening.

Remarkable developments are also related to modelling of reinforced con-
crete, where different concepts and techniques how to evaluate reinforcement
may be found. The earlier discussed LDPM combined with a homogenization
procedure on the fine scale has been applied for the macroscopic response analy-
sis of reinforced concrete structures by Lale et al. [20]. A specific 3D mesoscale
model with discrete fibers for reinforced high strength concrete has been suc-
cessfully developed and verified by Liang and Wu [21]. A similar model, con-
ducting randomly distributed aggregates, has been suggested by Zhang et al.
[22]. Ren et al. [23] have simulated the tensile and compressive failure process
of concrete by using a user-defined BPM based on the modified parallel bond.
Stochastic nature of reinforced concrete in lattice models has been illustrated by
Zabulionis et al. [24]. An important issue of reinforced concrete modelling is
incorporation of the reinforcement bars and, especially, description of the bond
between the concrete and the reinforcement. Continuum formulation of the con-
crete and the reinforcement interaction is presented by Rabczuk et al. [25].
Here, several important issues of modelling reinforced concrete structures are
manifested. Firstly, the experimental crack pattern usually cannot be well re-
produced. Secondly, bond models can be developed at three different scales,
and geometry of the bar surface, comprising the scale of the ribs, have to be
considered. The nature of cracking around the bond is comprehensively dis-
cussed by Rabczuk and Belytschko [26] and Desnerck et al. [27]. However,
the presented cracking patterns around the bar are rather of a hypothetical
character, therefore, novel contributions to modeling of this effect are desir-
able.

In spite of considerable advances of computer hardware, the simulation of
reinforced concrete structures at the discretization level necessary for the rein-
forcement bar geometry has the disadvantage of making DEM computationally
very expensive [28]. Naturally, to solve the industrial-scale problems, parallel
computing has become an obvious option for significantly increasing computa-
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tional capabilities. However, the selection of the efficient parallel solution al-
gorithm is highly dependable on the specifics of the considered problem and
numerical method [28–30]. Today, usage of GPUs as general coprocessors is
a major trend in high performance computing, usually called the general pur-
pose GPU (GPGPU). High peak performance associated with moderate cost of
GPU makes them good candidates to dramatically boost the performance of
the computing node. Some GPUs are dedicated to GPGPU like the NVIDIA
Tesla family, and software environments like CUDA [31] or OpenCL [32] are tar-
geted at GPGPU programming. However, efficient GPU codes with implemented
practical DEM models for simulation of industrial applications still present chal-
lenges.

The main focus and the novelty of the present paper is to evaluate the crack-
ing behaviour of the concrete in the vicinity of the reinforcement bar by applying
fine discretization related to the scale of the ribs. To retain natural deformation
gradients and to avoid artificial effects, occurring by variable discretization den-
sity, the uniform fine discretization with particle diameters smaller than height of
ribs is applied for the entire volume of the member. The simulations based on the
preferable discretization scale require very large computational resources to solve
the described problem in a full scale. The considered DEM model and developed
GPU code are employed to solve the problem with reasonable computational
resources.

Other parts of the paper are organized as follows: Section 2 presents a dis-
cussion on the related works, Section 3 outlines the governing relations of the
DEM, Section 4 provides the developed GPU algorithm for damage and the frac-
ture simulation by DEM, Section 5 describes the considered problem, including
the experimental double pull-out test of the reinforced concrete prism, Section
6 presents the numerical results and performance analysis, while Section 7 gives
the concluding remarks.

2. The related works

The computing time of industrial applications can be significantly reduced
exploiting the parallelization benefits of the graphical processing unit (GPU),
which is becoming increasingly more important as an alternative computational
platform for DEM simulations [5] Radeke et al. [33] have proposed an approach
of using CUDA for DEM, which enabled a simulation of more than two million
particles per gigabyte of the GPU memory. Nishiura et al. [34] have developed
several novel algorithms for a shared memory concurrent computation of parti-
cle simulations and measured their efficiency and scalability on various shared
memory architectures, including GPUs. Yue et al. [35] have made a GPU ver-
sion of Trubal code and demonstrated its application in die filling. In 3D simula-
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tions, containing 20000 particles, an average speed-up of 19.66 has been achieved
on NVIDIA Tesla K40c card. Govender et al. [5] have simulated the hopper
discharge flow with the non-convex polyhedral particles by using the modular
high performance Blaze-DEMGPU framework for the GPU architecture. Re-
cently, Zheng et al. [36] have presented a GPU-based DEM-FEM computational
framework implemented by CUDA FORTRAN for tire-sand interaction simula-
tions. In general, the simplified DEM models without consideration of rotational
components of the contact force or incremental friction model [5, 33] result in
a significant speedup on GPU. Washizawa et al. [37] have demonstrated that
the computing speed of the practical model, considering more forces between
interacting particles, is 7 times slower than that of the simplified model on
GPU. Thus, efficient GPU codes with implemented complex physical models
still present challenges.

To achieve a higher speedup ratio for a larger number of particles, a few
efforts have been made to use the combined GPU and MPI technology. The
one-dimensional domain decomposition with multiple GPUs has been applied
to simulation of 128 million particles by Tian et al. [38]. Gan et al. [39] have
developed the multiple GPU-based DEM software and modelled the screw con-
veyor and rotating drums. Simulations of large granular systems with more than
10 million particles have demonstrated that the speed using 32 GPUs can be
18 times faster than a single GPU. However, data transfer from the GPU mem-
ory to CPU and communication overhead between nodes leads to a significant
decrease of the parallel performance and primitive topology of domain decom-
position.

In the case of the damage modelling based on the failure of bonds between
particles, a speed-up for the self-compacting concrete flow simulations [40] has
been up to 35 with nearly 30000 particles on the GPU card GTX 580 in com-
parison with the Fortran code, running on one core of 2.93 GHz Intel Core i7
CPU. The complex and costly contact search algorithm, allowing a particle to
overlap an arbitrary number of cells [40], has performed well up to 140063 het-
erogeneous particles in the case of the gravity packing problem. However, the
moderate GPU resources have reduced the maximum number of used particles
to 29580 in the case of the complex physical model of self-compacting concrete
flow. Durand et al. [41] simulated an impact on a reinforced concrete slab on
GPU. However, challenging implementation of the fracture model with normal
and tangent failure criteria and insufficient GPU resources have also limited the
number of used particles to 14274, which is not enough in the case of civil engi-
neering structures. Thus, the efficient GPU algorithm for the complex physical
models of damage and fracture leads to challenging implementation on shared
memory architectures, and quantitative performance analyses are still of interest
in the case of large number of particles.
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3. Governing relationships

On macroscopic scale, the reinforced concrete model is considered as two-
phase solid body. The elaborated discrete model assumes the volume of the
body as a particulate domain composed by the finite number of bonded solid
particles. The dynamic behavior of the discrete system is described by consid-
ering motion and deformation of interacting individual particles in the frame of
Newtonian mechanics. Motion of particles is described in the first subsection,
while computation of forces is presented in the second subsection.

3.1. Equations of motion

An arbitrary particle i in the system of N particles is characterized by three
translational and three rotational degrees of freedom and undergoes the trans-
lational and rotational motion described in time t as follows:

(3.1) mi
d2

xi

dt2
= Fi, Ii

dωi

dt
= Ti,

where mi and Ii are the mass and the moment of inertia of the particle i, re-
spectively, while x i and ωi are the position vector of the particle centre and the
rotational velocity around the centre of mass of the particle i. The vectors F i

and T i present the resultant force and the resultant torque, acting in center of
the particle i. Formulation and integration of rotational motion slightly differs
from that of translational motion. Translational motion is completely defined
by the position vector x i of the particle centre, velocity vector and acceleration
that are defined by integration of the first equation in (3.1). Rotational motion
described by angular velocity ωi and angular acceleration is valid for spheri-
cal particles in 3D. The employed formulation of rotational motion is simplified
with respect to a general form for an arbitrary rigid body with the rotational
inertial properties represented by a second order tensor. Evaluation of time-
dependent orientation of particles defined by three angles presents additional
task. For details several references could be recommended [2, 42]. The above
equations along with the specified initial conditions present an universal math-
ematical model, capturing large amount of problems encountered by the DEM
and various extensions. This rather standard DEM model has been described in
countless review papers and problem-oriented applications, therefore, only the
most important aspects will be outlined hereafter.

The proper formulation of the considered problem is governed by the right-
hand forces. These forces may depend on the base of subject-related physical
nature, modelling approach and many other factors. The vector F i can be ex-
pressed by the external force and sum of the contact forces between interacting
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particles that are indicated by subscript j = 1 , Nc:

(3.2) Fi = Fi,ext + Fi,cont = Fi,ext +

NC
∑

j=1, j 6=i

Fij,cont,

where F i,ext and F i,cont are the external force and the resultant contact force
of particle i, respectively, F ij,cont is the interparticle contact force vector, de-
scribing the contact between the particles iand j. In the present research, the
electromagnetic force [43], the aerodynamic force [44] and other external forces
[45], including the gravity force are not considered. The rotational motion is gov-
erned by particle torques T i that can be expressed by torques Tij of neighboring
particles:

(3.3) Ti =

NC
∑

j=1,j 6=i

Tij =

NC
∑

j=1,j 6=i

dcij × Fij,cont,

where d cij is the vector pointing from the particle centre to the contact cen-
tre. The interparticle contact force vector F ij,cont may be expressed in terms of
normal and tangential components.

(3.4) Fij,cont = Fij,n + Fij,t = Fij,cont,nn ij + Fij,cont,ttij ,

where textitnij is the unit normal vector, tij is the unit vector of the tangential
contact direction.

3.2. Computation of forces

DEM is well adopted to simulate a granular media with repulsive interaction,
but the description of solid is more challenging. Generally, 3D heterogeneous con-
tinuum may be presented as 3D box fulfilled by particles embedded into material
substance like cement. Several models for computation of cohesive interparticle
forces dependent on the properties and geometry may be found in practical
use [13–18]. Probably, the mostly detailed approach earlier termed as a bonded
particle model was elaborated by Potyondy and Cundall [18]. According to
the BPM, the interaction of the particles can be defined by a connection ele-
ment, which reproduces the physical behaviour a cement-like substance gluing
adjacent particles together. In the present research, heterogeneity is defined in
a fine scale, and packing of particles is dense. Since the interparticle bond length
is negligibly small, contribution of the bond can be neglected. This simplifica-
tion presents a particular case of BPM, termed by authors of [18] as the contact
bond. Assuming the linear relationship with the displacement δij , the contact
force can be expressed:

(3.5) Fij,cont = Kijδij .
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The resultant stiffness of the connecting element Kij can be expressed by stiffness
parameters of contacting particles Ki and kj :

(3.6) Kij =
kikj

ki + kj
.

Generally, interaction of particles via interface material presents 3D continuum
problem. A detailed FEM analysis of this contact has been performed by Zang
and Wong [46] and Pilkavičius et al. [47]. Results have shown evidence that
bond stiffness depends on microproperties of material and radiuses of interacting
particles and simplified expressions are not accurate. Therefore, calibration of
microconstants is often performed [4, 48].

According to a linear contact model, the normal force is computed according
to formula [2]:

(3.7) Fij,n =
4

3

EiEj

Ei(1 − ν2
j ) + Ej(1 − ν2

i )
Rijδn,ijnij ,

where Rij is the reduced radius of two particles, Ei and Ej are elastic moduli,
νiand νj are Poison’s ratios of the spherical particles i and j, respectively. The
depth of the overlap between particles i and j is defined by δn,ij . In the present
research, the viscous energy dissipation is not considered. The tangential contact
force is computed by summing the elastic components of the spring model [2, 49]:

(3.8) F ij,t = −16

3
· GiGj

√

Rijδn,ij

Gi (2 − νj) + Gj(2 − νi)
|δt,ij |tij ,

where |δt,ij | is the length of tangential displacement δt,ij , Gi and Gj are shear
moduli of the particles i and j, respectively. The unit vector tij of the tangential
contact direction can be obtained according to formula:

(3.9)























vt,ij

|vt,ij |
, ν 6= 0,

δt,ij

δt,ij
, νt,ij = 0, δt,ij 6= 0,

0, otherwise.

where vt,ij is the tangential component of the relative velocity of the contact
point. The vector of tangential displacement is obtained from the temporal inte-
gration of the tangential component of the relative velocity vt,ij , starting at the
time instant when particles i and j came into contact:

(3.10) δt,ij(tC) =

t0+tC
∫

t0

vt,ij(t)dt =

iC
∑

i=1

vt,ij(t0 + i∆t)∆t,
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where TC denotes either the end time of the contact or the current time. The
approximate time integration is performed by using an incremental approach.
At each time step, the current value of the tangential component of the relative
velocity is multiplied by the time step value and added to the accumulated
result of the previous time steps, which should be saved at each time step of
the contact. Thus, tangential force-displacement behavior is simplified in such
a manner, where a stepwise solution is available without memorizing the whole
loading history [50]. The details of model application can be found in [51].

The implemented contact bonds can break when the external loading exceeds
the strength of bonds, leading to crack formation directly between two particles.
The bonds are broken instantaneously, when the bond strength is exceeded in
the normal direction by the tensile contact force or in the tangential direction
by the tangential contact force. This process shows fragmentation behaviour of
the considered material. The failure criteria can be written as:

Fij,cont,n ≤ Rn,(3.11)

|Fij,cont,t| ≤ Rt,(3.12)

where Rn and Rt are the bond strengths in the normal direction and in the
tangential direction, respectively.

If new contacts between particles occur after breakage of bonds, normal and
tangential contact forces are computed, using the linear contact model (3.7)
and (3.8). A frictional interaction can occur among the particles in the case of
recompression. The tangential force is evaluated, assuming the Coulomb model
of friction:

(3.13) Fij,t = −tijµ|Fij,n|,

where µ is the Coulomb friction coefficient. The force-displacement relationships
for the normal and tangential contact interaction in the elastic perfectly brittle
model are shown in Fig. 1.

Figure 2 shows the force-displacement relationships for the elastic-softening
constitutive model [7, 9], which is considered as an alternative contact model;
δcrit
n and δcrit

t are the critical values of the normal and tangential relative dis-
placements. The softening slopes can be defined by the softening parameters
csoft
n and csoft

t in the normal and tangential directions, respectively.
The applied method can simulate the motion of individual particles and also

the behaviour of bulk material formed by assembling many particles through
bonds at contacts. It is worth noting that the priority of modelling strategy is to
achieve required accuracy with the simplest computational models by increasing
the number of particles in the case of the fast DEM simulation on GPU.
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a) b)

Fig. 1. Force-displacement relationships for the elastic perfectly brittle constitutive model:
a) in the normal direction; b) in the tangent direction.

a) b)

Fig. 2. Force-displacement relationships for the elastic-softening constitutive model: a) in
the normal direction; b) in the tangential direction.

4. The developed DEM algorithm for GPU

The GPU-based algorithm is developed by using OpenCL [32] to run the
same DEM code on all shared memory architectures, including GPU and CPU
of different vendors. In general, contact detection, computation of forces and
time integration are the most time consuming parts of double precision DEM
computations. In the case of considered damage problems, contact detection
can be performed very seldom because of relatively small changes of system
topology after interparticle fracture. Moreover, in the case of monosized particles,
the simple and fast implementation of an uniform grid algorithm [37] can be
used instead of the complex and costly contact search algorithms [40]. Thus,
contact detection is not the most time consuming and the most important in
the present research. The fifth order Gear predictor-corrector algorithm [51] is
used for accurate time integration, which requires more than one GPU kernel for
implementation. In the case of damage simulations, the computation of forces is
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performed in different ways, depending on the presence and state of the bond
between contacting particles. Thus, implementation of the computation of forces
is the most challenging because of the fracture model with failure criteria.

The flowchart of the developed GPU algorithm for DEM computations is
presented in Fig. 3. At the start of the simulation, preprocessing is performed
on CPU and initial data is copied into the GPU memory. No further memory
transactions between the CPU and GPU memory is required except the result
storage. Kernel 1 starts the time integration, performing Gear predictor on the
thread per particle basis. The new values of displacements, velocities and ac-
celerations of particles are predicted at the time increment by a simple series
expansion up to the fifth order of accuracy in this kernel.

Fig. 3. The flowchart of the developed GPU algorithm.
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Kernel 2 performs the contact detection on the thread per particle basis. The
simple and fast version of an uniform grid algorithm is implemented to save the
computing time in the case of monosized particles. Each particle is assigned to
only one cell of the uniform grid based on a position of the particle centre. The
size of a grid cell is equal to the particle diameter. The employed kernel stores
two arrays containing the list of pairs: cell hash and particle id. Ids of particles
are sorted according to their hash values, representing the grid cell. The sorting
is performed by using the fast radix sort method. Finally, for each particle, the
grid cell, where it belongs, is obtained and contacting particles are searched in
a loop through the neighbouring grid cells. When the distance between particles
is smaller than the sum of radii of particles, the collision is identified.

Kernel 3 computes contact forces between all overlapped particles (δn,ij > 0)
as in conventional DEM codes for granular flow simulations. All computations are
performed by thread per particle, which can be considered as the most convenient
and efficient parallelism in the case of DEM computations on GPU. Kernel 4

computes pulling forces between bonded particles. This kernel works on the
thread per bond basis, which is very natural for damage and fracture simulations.
The normal and tangential failure criteria (3.11) and (3.12) of bonds are also
checked and the bond state array is updated if the bond is broken. The computed
values of bond forces are temporally stored in the special purpose arrays to avoid
the conflicts of memory access when threads of different bonds writes forces into
memory of the same particle at the same time. Thus, atomic operations are
avoided and high parallel performance is ensured at the cost of increased memory
usage. In the present research, it is assumed that initially determined topology of
bonds is fixed and new bonds cannot appear during computations. The developed
algorithm exploits this assumption to minimize the increased memory usage. The
exact size of additional arrays can be determined according to the list of bonds
at the beginning of computations even in preprocessor. The necessary arrays of
a minimal size are allocated in the GPU memory before the time loop and their
size does not change until the end of computations. This is the main advantage
of the developed algorithm over the other DEM algorithms [40, 41] proposed for
damage simulations on GPU. In the opposite to the GPU algorithm proposed
by Durand et al. [41], the same kernel handles bonds between different types
of particles (steel and concrete), which does not reduce the data parallelism.

Kernel 5 assigns the contact forces computed by the previous kernel to par-
ticles. It sums values of forces, computed on bonds attached to the processed
particle and stored in the special purpose arrays. Thus, it finishes the algorithm
started by a previous kernel and stores the computed forces, acting on particles,
in memory. This kernel works on the thread per particle basis, avoiding a concur-
rent memory access, in the opposite to the kernels, performing force computation
on the thread per bond basis.
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Kernel 6 sets boundary conditions. The symmetry boundary conditions are
defined by setting the normal components of displacements of particles located
on symmetry planes. Tension is applied by setting velocity values of the certain
particles. Kernel 7 finishes the time integration, performing Gear corrector on
the thread per particle basis. The values of displacements, velocities and accel-
erations of particles are corrected in this kernel. At the end of time step, the
particle data can be copied from GPU memory to CPU and stored on a hard
disk drive in HDF5 format. It is recommended to transfer the data to CPU mem-
ory as seldom as possible because it is a time-consuming process. In the case of
1089892 particles, the result transfer of one time step to CPU memory takes
about 0.119 s, which 4.6 times exceeds the computing time of one time step. In
the present research, the results are transferred and stored for every 2000 time
steps that the transfer time can be neglected.

In the case of DEM application to discretization of solids, computation of
forces and time integration are the most time consuming parts of DEM compu-
tations, because contact detection can be rarely performed. The time integration
performed by Kernel 1 and Kernel 7 consumes 14% of the total computing time
of 1089892 particles. The computation of contact forces performed by Kernel 3

takes up to 38% of the total computing time. The computation of bond forces per-
formed by Kernel 4 and assignment them to particles performed by Kernel 5 con-
sumes 24% and 19% of the total time, respectively. Kernel 6 responsible for set-
ting boundary conditions takes 5% of the total time. The execution time of Ker-

nel 2, performing rare contact detection, is less than 1% of the total computing
time, therefore, can be treated as negligible during the initial phases of damage.

In the case of damage and fracture simulations, the additional operations,
such a checking failure criteria, should be performed on bonds between particles,
comparing with granular flow computations. Two additional kernels (Kernel 4

and Kernel 5 ) are employed to perform required computations in the present
algorithm. Moreover, maintaining the data arrays employed for bond informa-
tion handling and efficient force processing increased the used memory up to
31% of the memory required for granular flow computations of the same number
of particles. The efficient memory management makes the developed algorithm
different from the DEM algorithms proposed by other researchers [40, 41] for
damage and fracture simulations. The developed algorithm does not require any
atomic operation and allows performing efficient damage simulations with mil-
lions of particles.

5. A description of the considered uniaxial tension problem

The load bearing capacity of reinforced concrete structures highly depend on
the bond between reinforcing bars and the surrounding concrete. It was already
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shown that destruction of the bond by intensive cracking of weaker concrete
occurred in the vicinity of the bar. On the other hand, cracking is initiated on
a very small scale of bar profile geometry. The uniaxial tension of reinforced
concrete member or double pull-out test is considered to illustrate damage of
the member. The evidence of the problem nature and the experimental set-up
is described in the first subsection while development of the DEM model is
presented in the second subsection.

5.1. Experimental measurements

A double pull-out test with recorded strains of the reinforcement bar embed-
ded into the concrete is considered. The performed experiment is an alternative
approach to the standard pull-out test, which is the most common experimen-
tal technique to study the interaction between reinforcement and concrete. From
a measured load-displacement relationship, mean bond stress distribution within
the anchorage length as a function of slip (or relative displacement) may be ob-
tained in the standard pull-out test. However, in such a way established bond
stress-slip relationship may not be suitable for accurate simulation of tensile and
bending members at the serviceability limit state (cracking and deformation
analysis). Two main reasons for that are the non-uniform bond stress distribu-
tion within the anchorage length and the compressive stress fields in the concrete
arising from the supports [53]. In the double pull-out test, bond stress-slip be-
haviour is obtained from the reinforcement strain curves. This technique does
not have the earlier mentioned drawbacks as the concrete stresses are tensile and
the bond stress variation can be established throughout the anchorage length in-
stead of taking the averaged bond stress value. The double pull-out test can be
performed on short members that have not open cracks or relatively longer spec-
imens that contain one or more open cracks [54]. Short members are preferred, if
the objective is deriving a bond-stress relationship as the emerging cracks might
significantly complicate the shape of bond stress distribution within the length
of the member. Moreover, defining the reference section with zero slip can be
rather tricky in the cracked members.

Reinforced concrete prisms of 150 × 150 × 270 mm with 20 mm diameter
reinforcing bars instrumented with internal strain gauges were tested. Strain
gauges were spaced at 30 mm intervals, allowing to measure strain at 11 points
along the bar. The reinforcement was longitudinally cut and glued after plac-
ing strain gauges and required wiring inside the bar. The experimental setup,
including the geometrical characteristics and the positions of strain gauges and
the tested specimen fixed in press, is shown in Fig. 4. Prior to testing, the com-
pressive strength of concrete was determined from cubes (150 × 150 × 150 mm)
and cylinders (150 mm diameter, 300 mm height), which resulted in compressive
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a) b)

Fig. 4. An experimental setup: a) geometrical characteristics and the positions of strain
gauges of the specimen; b) specimen fixed in press.

strength values equal to 45.4 MPa and 40.4 MPa, respectively. The measured
elasticity modulus of steel reinforcement was equal to 203 GPa, while that of
concrete was equal to 35.6 GPa. Specimens were tested 28 days after casting
by using hydraulic machine with displacement control. The load capacity of the
machine (200 kN) allowed achieving the maximal strain in the reinforcement
of 120 N/m.

The reinforcement strain profile was measured allowing for straightforward
calculation of interface zone stresses and slip at any point of reinforcement. It
is worth noting that good agreement among independent measurements was ob-
tained. This supposes that accidental experimental errors were minimized and
present data may be used to evaluate the adequacy of different numerical mod-
elling techniques. The detailed description of the experimental program, per-
formed at Vilnius Gediminas Technical University in 2016, is given in [55].

5.2. Solution domain and numerical details

Discussion on the DEM model and demonstration the model features is the
key issue of recent investigation. As mentioned in previous sections, this study
applies to illustrate the numerical DEM technique able to describe failure of the
bond. Formally, development of DEM model and spatial discretization of the
double pull-out problem by using spherical particles is rather routine task. Due
to the axial symmetry, only the 1/8 part of the reinforced concrete specimen
shown in Fig. 4 is considered. Geometry of the solution domain is presented in
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Fig. 5. Thus, the dimensions of the considered solution domain, containing 12
ribs, are equal to 75 × 75 × 138 mm. The radius of reinforcing bar is equal to
10 mm. The simplified reinforcing bar profile with the assumed height, pitch and
width of ribs is also shown in Fig. 5a. This profile is the main characteristic of the
bar roughness. The interface surface between concrete and the reinforcing steel
bar is obtained by rotating the bar profile about the y axis. Material properties of
steel are assigned to particles, which centres are located on the inner side of the
interface surface, while other particles are labelled as being concrete particles. In
spite of the considered geometric simplifications, the interface surface between
concrete and the reinforcing bar formed by ribs has a complicated shape. It
is obvious, that singularities of interface might lead to local concentration of
stresses and, finally, to local damage occurring on a small scale. Thus, sufficiently
fine discretization is necessary to accurately describe the fracture pattern, which
leads to high numbers of particles.

The solution domain is discretized by monosized spherical particles that are
uniformly distributed by using cubic close pack algorithm, disregarding material
properties. Heterogeneity of concrete is considered by defining five fractions of
concrete particles with different values of elasticity modulus and bond strengths.
The values of elasticity modulus of five fractions are freely selected to preserve
the considered value of their harmonic mean according to the homogenization
methodology [48]. Thus, it is assumed that heterogeneity of material can be
approximated by monosized particles with randomly distributed material prop-
erties in the case of sufficiently large number of particles.

a) b)

Fig. 5. Discrete model of reinforced concrete under uniaxial tension: a) geometry of the
solution domain; b) spatial discretization by using spherical particles.

Different boundary conditions are specified on the domain boundaries. Par-
ticles located at the end of steel reinforcing bar are moved with a prescribed
constant velocity in y direction, which simulates the uniaxial tension. Displace-
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ments and velocities of concrete particles located on the same plane are not
fixed. The symmetry boundary conditions are defined on the opposite plane,
setting the displacement of concrete and steel particles to zero in y direction.
The normal components of displacements of particles are also fixed on the other
two symmetry planes crossing each other on the y axis. Figure 5b shows the
most often used discretization, consisting of 627264 particles with the radius
of 0.6 mm and 3691410 bonds. The comparatively rough discretization con-
sists of 377844 particles with the radius of 0.8 mm, while fine discretization
consists of 1089892 particles with the radius of 0.5 mm. It is obvious that
highly efficient parallel code is necessary to model damage and fracture of rein-
forced concrete, simulating behaviour of million discrete particles in a reasonable
time.

6. The results

The problem of uniaxial tension of reinforced concrete is considered to ex-
amine the performance of the developed GPU algorithm and to validate the
applied DEM model. All double-precision computations are performed on the
NVIDIA R©TeslaTMP100 GPU Computing Accelerator (56 Streaming Multipro-
cessors, 1792 FP64 CUDA Cores, 12GB HBM2, 540GB/s memory bandwidth).
Hardware characteristics of the workstation used for quantitative comparison of
parallel performance are listed below: Intel R©XeonTME5-2630 2.20GHz 2xCPU,
32GB DDR4 2133MHz RAM. Hardware characteristics of the PC also employed
for comparison reasons are listed below: Intel R©CoreTMi7-6700 3.40GHz CPU,
32GB DDR4 2133MHz RAM. Preprocessing, visualization and computations are
performed on the computational infrastructure of Vilnius Gediminas Technical
University, hosting software services [52] for the DEM simulations.

6.1. Performance analysis

The actual computation time spent on 100000 time steps is measured to
investigate the computational efficiency of the developed code for damage and
fracture simulations in the case of different numbers of particles; 7 assemblies of
monosized particles are generated to represent the reinforced concrete prism. The
numbers of particles are 29040, 42500, 67280, 117600, 377844, 627264, 1089892
and 1858560.

Figure 6 shows the scaling performance of the developed GPU code, in-
creasing the number of particles. The curves GPU-P100, CPU-E5-2630 and
CPU-i7-6700 represent an average execution time per time step measured on
NVIDIA R©TeslaTMP100, Intel R©XeonTME5-2630 and Intel R©CoreTMi7-6700, re-
spectively. It can be observed that the computational time rises linearly with the
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Fig. 6. Performance scaling with number of particles.

increase of particle number, which demonstrates the scalability of the developed
parallel DEM algorithm.

The same OpenCL code optimized for multithread shared memory architec-
tures is executed on Intel R©XeonTME5-2630 CPU and Intel R©CoreTMi7-6700 CPU
to evaluate the speedup ratio of GPU to CPU. In the case of Intel R©CoreTMi7-6700
CPU with 4 physical cores, the measured speedup values varies from 3.93 to 9.58
for different numbers of particles. In the case of more powerful Intel R©XeonTME5-
2630 CPU with 20 physical cores, the lower speedup values, varying from 2.71
to 6.71, are measured. Higher differences become obvious in the case of larger
numbers of particles. The sufficiently high speedup values can be observed in
spite of intensive usage of advanced vector extensions by OpenCL on CPU and
comparatively powerful Intel R©XeonTME5-2630 CPU employed for the compa-
rison.

In absolute values, the developed code computes 23.1 time steps/frames per
second (FPS) in case of 1858560 particles, which leads to the Cundall number
(FPS × number of particles) C = 4.3E+07. The direct comparison with per-
formance achieved by other authors can be hardly performed because of differ-
ent physical models implemented, different particle systems used and different
hardware employed in different research. However, the measured performance
is higher than that (C varies from 6.0E+05 to 2.2E+06) obtained with GPU
implementation of BPM for concrete by Zheng et al. [40], because of a larger
number of particles. Moreover, the achieved performance is comparable with the
results of various authors [5, 33, 35, 39] in spite of simpler DEM models without
damage simulation implemented and tested on GPU.
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6.2. Reinforced concrete simulations

Damage of the reinforced concrete prism is simulated by using the developed
GPU code to validate the considered DEM model. The elastic perfectly brittle
constitutive model (Fig. 1) is used in the most of computations. A plastic range
during shearing is not considered, because the load does not reach it in the
simulated experiment. Calibration of the DEM model is performed by using
results of the experimental tests [55]. The values of the elasticity modulus of
steel particles are calibrated according to the load-displacement curve of the
reinforcement bar shown in Fig. 7. The curve is obtained from experimentally
measured elasticity modulus of steel reinforcement equal to 203GPa. Elasticity
moduli of steel particles equal to 1250 GPa, 1300 GPa and 1400 GPa are obtained
from calibration results in the case of particles with the radii of 0.5 mm, 0.6 mm
and 0.8 mm, respectively. Poisson’s ratio of steel particles is assumed to be equal
to 0.3.

Fig. 7. The load-displacement curve of the reinforcement bar.

The elasticity moduli of the concrete particles is calibrated according to the
strain curve of the load equal to 22 kN (Fig. 8). Heterogeneity of concrete is
modelled by defining five fractions of concrete particles with different values of
elasticity modulus and bond strength, preserving the harmonic mean values of
the considered material properties. In the case of the rough discretization model,
consisting of 377844 particles with the radius of 0.8 mm, the values of elasticity
modulus of five concrete fractions vary from 60 GPa to 80 GPa with the harmonic
mean equal to 70 GPa. In the case of 627264 particles with the radius of 0.6 mm,
the values of elasticity modulus of concrete fractions vary from 50 GPa to 80 GPa
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with the harmonic mean equal to 60 GPa. In the case of 1089892 particles with
the radius of 0.5 mm, the values of elasticity modulus of concrete fractions vary
from 44 GPa to 70 GPa with the harmonic mean equal to 57 GPa. Poisson’s ratio
of concrete particles is considered to be equal to 0.2, while the friction coefficient
is assumed to be equal to 0.5 in the case of all discretization models.

In the normal direction, the bond strength values of five concrete fractions
of the rough model, consisting of 377844 particles with the radius of 0.8 mm, is
assumed to vary from 9.0 N to 10.0 N with the harmonic mean equal to 9.5 N. In
the case of 627264 particles with the radius of 0.6 mm, the normal bond strength
values of concrete fractions vary from 7.0 N to 8.0 N with the harmonic mean
equal to 7.5 N. In the case of 1089892 particles with the radius of 0.5 mm, the
normal bond strength values of concrete fractions vary from 5.0 N to 6.0 N with
the harmonic mean equal to 5.5 N. In the tangential direction, the bond strength
values are obtained multiplying the normal bond strength by the coefficient equal
0.2 for all discretization models.

Figure 8 shows the quantitative comparison of numerical results with the
experimental measurements. Figure 8a presents reinforcement strain profiles ob-
tained from the experimental double pull-out test for different load values and
those extracted from DEM computations with different radii of particles. Fig-
ure 8b presents load-displacement curves obtained from experimentally measured
strain profiles by means of numerical integration and those obtained from DEM
computations with different radii of particles. In Fig. 8a, a set of curves “Exper-
iment” represents the strain profiles of reinforced concrete obtained from exper-
imental measurements for different load values. In Fig. 8b, curves “Experiment”
and “Reinforcement bar” represent the load-displacement of reinforced concrete
member and reinforcement bar without concrete, respectively. The sets of curves
“R5”, “R6” and “R8” represent the strain profiles and load-displacement curves
computed numerically by using 1089892, 627264 and 377844 particles, respec-
tively. Thus, the influence of the number of used particles on the accuracy of
DEM solution can be also evaluated.

The values of the parameters of the DEM model are calibrated according the
strain curve of the load equal to 22 kN. Thus, the accurate solution is obtained
in the case of the load equal to 34 kN. In Fig. 8a, larger differences between DEM
solution and experimental measurements can be observed for larger load values.
The numerical results are accurate enough at the end of the reinforced concrete
prism in all cases. In the case of 1089892 particles with radius R = 0.5 mm,
the numerical error varies from 0.2% to 3.4% of the experimentally measured
strain for different load values. Significant errors can be observed at the mid-
section of the specimen because of the difficulties related with the considered
symmetry boundary conditions and the calculation of strains from the discrete
model. In the case of 377844 particles with radius R = 0.8 mm, the numerical
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a) b)

Fig. 8. Comparison of numerical results with the experimental measurements: a) strain
dependency on the distance from midsection for different load values; b) load-displacement

curves with different radii of particles.

error varies from 4.6% to 36.4% of the experimentally measured strain for differ-
ent load values. The most accurate results are obtained performing simulations
with the largest number of particles equal to 1089892 (radius R = 0.5 mm). The
differences between the strain curves extracted from simulations with 1089892
and 627264 particles are not large. It is worth noting that the solution obtained
by using the smallest set of 377844 particles with the radius of 0.8 mm is not
enough accurate, especially, for larger load values. The averaged numerical er-
ror reaches 14.9% of the experimentally measured strain in the case of the load
equal to 60 kN. The same tendency can be observed in the case of load displace-
ment curves (Fig. 8b). The load-displacement curves extracted from simulations
with 1089892 and 627264 particles are in good agreement with experimental
measurements. However, the load displacement curve “R8” obtained from simu-
lations with 377844 particles with the radius of 0.8 mm is less accurate. Thus,
the discrete model of 627264 particles with the radius of 0.6 mm is considered
as the reference model for further simulations to obtain a sufficiently accurate
solution in a reasonable computing time.

Figures 9 and 10 show formation and propagation of cracks in the rein-
forced concrete prism simulated by using 627264 particles. Cracks are visualized
by using the local Voronoi decompositions generated according to the topol-
ogy of bonds and the positions of the neighbouring particles [52]. The local
decompositions are generated in the vicinity of broken bonds that are mapped
on the Voronoi faces between the bonded particles. Finally, the Voronoi faces
are described by graphics primitives, coloured in red and rendered. Thus, the
two-dimensional surfaces of propagating cracks can be constructed from broken
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a) b)

c) d)

Fig. 9. Crack propagation in the reinforced concrete prism: a) t = 0.004 s; b) t = 0.008 s;
c) t = 0.010 s; d) t = 0.012 s.

one-dimensional bonds between the neighbouring particles. The algorithm of the
local Voronoi-based technique is implemented in the visualization engine of cloud
visualization software service VisLT [52].

It can be observed that initial damages of concrete form in front of the ribs of
steel reinforcement (Fig. 9a). The first damages form near the steel ribs located
at the moving end of the reinforcement while the next damages form at the
sequent ribs in the direction of the midsection of the specimen. Later the radial
crack forms at the moving end of the reinforcement and propagates towards the
midsection of the specimen, which can fracture the reinforced concrete member
at higher load. Figure 10 shows radial crack at the end of the reinforced concrete
member, which is observed performing the double pull-out test (Fig. 10a) and
obtained numerically (Fig. 10b). DEM computations qualitatively capture the
formation of the radial crack at the end of the reinforced concrete member.
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a) b)

Fig. 10. Radial cracks at the end of the reinforced concrete member: a) the experiment;
b) DEM computations.

a) b)

c)

Fig. 11. The effect of the reinforcement bar roughness: a) the reinforcement bar with ribs
(R = 0.5 mm); b) the reinforcement bar with ribs (R = 0.8 mm); c) the reinforcement bar

without ribs (R = 0.5 mm).

Figure 11 shows the effect of reinforcement bar roughness on crack patterns.
Cracks caused by bond breakage according to the normal failure criterion (3.11)
are coloured in red, while cracks caused by bond breakage according to the tan-
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gential failure criterion (3.12) are coloured in blue. Figures 11a and 11b show the
reinforcement bar represented by particles with the radii of 0.5 mm and 0.8 mm,
respectively. It can be observed that the crack pattern obtained by using small
particles with the radius of 0.5 mm is more regular than that computed by using
rough discretization based on large particles with the radius of 0.8 mm. More-
over, the radial crack obtained by using the rough discretization is significantly
larger, which is in agreement with the load-displacement curves in Fig. 8b. Thus,
discretization scale has a significant influence on the crack pattern. Figure 11c
shows the reinforcement bar without ribs discretized by small particles with the
radius of 0.5mm. The crack pattern is also less regular than that presented in
Fig. 11a, which is in agreement with conclusions made by Rabczuk et al. [25].
It also can be observed that larger radial crack is obtained in the case of the
reinforcement bar without ribs.

a) b)

Fig. 12. The effect of reinforcement ratio: a) the load-displacement curves; b) the percentage
of broken bonds.

Figure 12 shows the effect of reinforcement ratio on load-displacement curves
(Fig. 12a) and the percentage of broken bonds (Fig. 12b). The curves “R6-
RATIO-1.4%”, “R6-RATIO-2.18%” and “R6-RATIO-3.14%” represent reinforce-
ment ratios equal to 1.4%, 2.18% and 3.14% of the total volumes of the reinforced
concrete members, respectively. It is worth noting that the reinforcement ratio
is increased, considering the same volume of the reinforcement bar and reducing
the volume of concrete. The effect of reinforcement ratio is investigated by using
particles with the radius equal to 0.6 mm. The load displacement curve, rep-
resenting the lowest concrete volume and the highest reinforcement ratio equal
to 3.14% of the volume, is located below other curves, which corresponds to
higher values of displacements (Fig. 12a) and significantly larger percentage of
the broken bonds (Fig. 12b).
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Fig. 13. Strain dependency on the distance from specimen centre for different loads in case
of the elastic-softening constitutive model.

Figure 13 illustrates the application of the elastic-softening constitutive model.
The dependency of the strain on the distance from specimen centre is investi-
gated in the case of different softening slopes. It is assumed that values of the
softening parameters csoft

n = csoft
t = csoft are the same in the normal direction

and in the tangential direction. A set of curves “Experiment” represents the rein-
forcement strain profiles obtained from experimental measurements for different
load values. The set of curves “R6” represents the strain profiles computed nu-
merically by using 627264 particles in the case of the elastic perfectly brittle
constitutive model. The sets of curves “R6 Csoft = 1.2”, “R6Csoft = 1.4” and
“R6 Csoft = 1.8” represent the strain profiles computed numerically by using the
elastic-softening constitutive model with the softening parameter equal to 1.2,
1.4 and 1.8, respectively. It can be observed that increased values of the softening
parameter decrease the strain values at the midsection of the specimen in case
of the large load values. In general, the introduced softening leads to existence
of tension forces between particles after bond breakage, which reduces the strain
values in the specimen. However, the obtained curves show that the influence of
the softening is not significant. Moreover, the employed elastic-softening consti-
tutive model does not lead to better agreement of the numerical solution with
the experimental measurements.

7. Conclusions

The newly developed GPU-based DEM code is applied to simulate brittle
damage of reinforced concrete and to investigate the discretization scale of the
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reinforcement bar geometry, which requires millions of particles. The computa-
tional performance of the developed GPU code and applicability of the DEM
methodology is examined, simulating the double pull-out test of the short re-
inforced concrete member. The contribution of the reinforcement bar geometry,
considering ribs, and its discretisation issues are investigated by using three sam-
ples with radii of particles equal to 0.8 mm, 0.6 mm and 0.5 mm that yield sets
of 377844, 627264 and 1089892 particles, respectively. Thus, the relatively small
refinement reveals dramatic increase of the number of particles, which illustrates
the complexity of the discretisation problem.

Qualitatively, contribution of refinement is demonstrated by the shape of
cracking patterns, where regular propagation of radial cracks and born of lon-
gitudinal crack is observed. The visual comparison of longitudinal crack on the
end of the specimen shows adequacy with the experiment. Quantitatively, the
contribution of the refinement is evaluated by the difference between numeri-
cally calculated and experimentally measured values of the reinforcement strain
profile and the load-displacement relationship, where convergence of modelling
results to experiment is observed. As expected, higher accuracy of strains is
achieved by using a larger number of particles. In the case of the largest number
of particles equal to 1089892 (radius R = 0.5 mm), the averaged numerical er-
ror varies from 3.0% to 9.1% of the experimentally measured strain for different
load values. In the case of the reference model with 627264 (radius R = 0.6 mm)
particles, only insignificant changes can be observed that lead to variation of the
averaged difference from 3.1% to 10.5% of the experimentally measured strain.
However, in the case of the rough discretization, containing 377844 particles
(radius R = 0.8 mm), the averaged difference varies from 4.2% to 14.9% of the
experimentally measured strain for different loads. The application of the elastic-
softening constitutive model with the softening parameter equal to 1.8 leads to
increase of the averaged difference, which varies from 5.0% to 13.6% of the ex-
perimentally measured strain in the case of the reference model. The obtained
results help to understand the contribution of discretization scale of the ribs to
cracking patterns.

The developed GPU algorithm does not require any atomic operation for effi-
cient handling of computations on bonds between particles, but the size of addi-
tional data arrays is increased, which requires the efficient memory management.
The Cundall number equal to 4.3E+07 is obtained on NVIDIA R©TeslaTMP100
GPU in the case of 1858560 particles, which demonstrates high performance of
the code based on the implementation of the complex physical model. The same
OpenCL code optimized for shared memory architectures is executed on different
CPUs to evaluate the speed-up ratio of GPU to CPU. Sufficiently high speed-up
values, varying from 2.71 to 9.58, are observed for different CPUs and different
numbers of particles. Thus, the developed GPU code efficiently handles millions
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of discrete particles necessary for damage and fracture simulations of reinforced
concrete.
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